Compare commits

..

70 Commits

Author SHA1 Message Date
lyken c845924c20
allow ListObject to have TVar item_type 2024-08-24 12:37:25 +08:00
lyken 2941e8e865
fixup! fixup! core/ndstrides: implement np_array()
fix binop +
2024-08-23 16:35:43 +08:00
lyken 4e3e490b92
fixup! core/object: add ListObject and TupleObject
fix List field items name
2024-08-23 16:27:49 +08:00
lyken aad4fafcba
fixup! core: refactor to use ListObject / List
fix gen_expr list index slice bug
2024-08-23 16:24:18 +08:00
lyken 9e005e9b07
core/model: fix Ptr::copy_from int types 2024-08-23 16:23:16 +08:00
lyken 7e45c104be
core: remove List proxy 2024-08-23 15:34:26 +08:00
lyken d2650e6979
core: refactor to use ListObject / List 2024-08-23 15:33:00 +08:00
lyken 2d799d13e2
core/model: add Int not 2024-08-23 15:28:34 +08:00
lyken 2fa3ada445
fixup! core/ndstrides: implement np_array()
fix ListObject::get_opaque_list_ptr comment
2024-08-23 12:10:51 +08:00
lyken 787fe23202
fixup! core/ndstrides: implement ndarray indexing
fix index comment
2024-08-23 11:50:45 +08:00
lyken 5a893e1c15
core: remove Range proxy 2024-08-23 10:57:31 +08:00
lyken 2b29f7b0f5
core: refactor to use RangeObject / Range 2024-08-23 10:47:30 +08:00
lyken 122f55e615
core/object: add RangeObject & RangeObject::len 2024-08-23 10:22:01 +08:00
lyken c0cace843d
core/object: remove *Object::is_instance
This makes implementations awkward.
2024-08-23 10:21:39 +08:00
lyken 5c68ef00ac
core/irrt: refactor out slice::indices and range::len 2024-08-23 10:02:45 +08:00
lyken 3782791323
core: make IRRT slice and range work for any int types 2024-08-23 09:52:08 +08:00
lyken ac6c7c5985
fixup! artiq: reimplement get_obj_value to use ndarray with strides
update symbol_resolver for general array
2024-08-22 20:57:56 +08:00
lyken 8b0305ab6b
fixup! core/model: introduce models
general array
2024-08-22 20:56:25 +08:00
lyken be4b04dbb3
core: remove old ndarray code and NDArray proxy
Nothing depends on the old ndarray implementation now.
2024-08-22 16:34:27 +08:00
lyken e652919b8e
artiq: reimplement get_obj_value to use ndarray with strides 2024-08-22 16:34:27 +08:00
lyken ef391b81aa
artiq: reimplement polymorphic_print for ndarray 2024-08-22 16:34:27 +08:00
lyken ad5506bff1
artiq: reimplement reformat_rpc_arg for ndarrays 2024-08-22 16:34:27 +08:00
lyken 31931b7b26
core/ndstrides: implement np_size() 2024-08-22 16:34:27 +08:00
lyken be6d704020
standalone: add test_ndarray_broadcast_to 2024-08-22 16:23:01 +08:00
lyken 117110dd91
standalone: add test_ndarray_subscript_assignment 2024-08-22 16:23:01 +08:00
lyken c582ffe53d
core/ndstrides: implement ndarray subscript assignment 2024-08-22 16:23:01 +08:00
lyken 51b1921e05
core/ndstrides: implement cmpop 2024-08-22 16:23:01 +08:00
lyken 50457f19e6
core/ndstrides: implement unary op 2024-08-22 16:23:01 +08:00
lyken 54f7e1edfd
core/ndstrides: implement nalgebra functions 2024-08-22 16:23:01 +08:00
lyken 1562a938a1
core/ndstrides: add NDArrayObject::to_any 2024-08-22 16:23:01 +08:00
lyken 00800ba6ee
core/ndstrides: add ContiguousNDArray
Currently this is used to interop with nalgebra.
2024-08-22 16:23:01 +08:00
lyken b9e00eb8a5
core/ndstrides: partially update builtin_fns to use ndarray with strides
nalgebra functions are not updated
2024-08-22 16:23:01 +08:00
lyken 566ce7df50
core/ndstrides: implement np_dot() for scalars and 1D 2024-08-22 16:23:01 +08:00
lyken 70c26561e1
standalone: extend test_ndarray_matmul 2024-08-22 16:23:01 +08:00
lyken 4fef633090
core/ndstrides: implement general ndarray matmul 2024-08-22 16:23:01 +08:00
lyken ae351f7678
core/ndstrides: implement binop 2024-08-22 16:23:01 +08:00
lyken 3efae534f7
core/ndstrides: add NDArrayOut, broadcast_map and map 2024-08-22 16:23:01 +08:00
lyken adca310424
core/ndstrides: add more ScalarOrNDArray and NDArrayObject utils 2024-08-22 16:23:01 +08:00
lyken e8e4801c92
core/ndstrides: implement np_transpose() (no axes argument) 2024-08-22 16:23:01 +08:00
lyken 9bdc520bbc
core/ndstrides: implement broadcasting & np_broadcast_to() 2024-08-22 16:23:01 +08:00
lyken 9bd08f8de8
core/ndstrides: implement np_reshape() 2024-08-22 16:23:01 +08:00
lyken 5f94f4a4cd
core: categorize np_{transpose,reshape} as 'view functions' 2024-08-22 16:23:01 +08:00
lyken a2a1e74be0
core/ndstrides: implement np_shape() and np_strides()
These functions are not important, but they are handy for debugging +
implementing them takes little effort.

NOTE: `np.strides()` is not an actual NumPy function. You can only(?)
access them thru `ndarray.strides`.
2024-08-22 16:23:01 +08:00
lyken 99eac99db2
core/ndstrides: implement ndarray.fill() and .copy() 2024-08-22 16:23:01 +08:00
lyken 70e1349d32
core/ndstrides: implement np_identity() and np_eye() 2024-08-22 16:23:01 +08:00
lyken ada6e95d75
core/ndstrides: implement np_array()
It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`. Previously it was a todo of
`np_array()`.
2024-08-22 16:23:01 +08:00
lyken 4dcbaed8ee
core/irrt: add List
Needed for implementing np_array()
2024-08-22 16:23:01 +08:00
lyken 0bb2b02daa
core/ndstrides: add NDArrayObject::atleast_nd 2024-08-22 16:23:01 +08:00
lyken df6916dbe8
core/ndstrides: add NDArrayObject::make_copy 2024-08-22 16:23:01 +08:00
lyken 0a874da5fc
core/ndstrides: implement ndarray indexing
The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
#486.
2024-08-22 16:23:01 +08:00
lyken c74b1eb9d8
core/irrt: rename NDIndex to NDIndexInt
The name `NDIndex` is used in later commits.
2024-08-22 16:23:01 +08:00
lyken bda003989e
core/irrt: add Slice and Range
Needed for implementing general ndarray indexing
2024-08-22 16:23:01 +08:00
lyken 5411ac5c88
core/ndstrides: implement & refactor call_len() 2024-08-22 16:23:01 +08:00
lyken 1c317f9205
core/ndstrides: implement ndarray np_{zeros,ones,full,empty} 2024-08-22 16:23:01 +08:00
lyken 701e45364c
core/object: add is_instance for ndarray, tuple and list 2024-08-22 16:23:01 +08:00
lyken fd1a9f4f77
core/model: add util::gen_for_model 2024-08-22 16:23:01 +08:00
lyken f9b8071df9
core/object: add ListObject and TupleObject
Needed for implementing other ndarray utils.
2024-08-22 16:23:00 +08:00
lyken 48fb3ff5ad
core/ndstrides: add ndarray iterator (NDIter) 2024-08-22 16:23:00 +08:00
lyken 4777909543
core/ndstrides: define ndarray with strides 2024-08-22 16:23:00 +08:00
lyken 2ae9196540
core/toplevel/helper: add {extract,create}_ndims 2024-08-22 16:23:00 +08:00
lyken 851ae28460
core/object: introduce object
Small abstraction to simplify implementations.
2024-08-22 16:23:00 +08:00
lyken 7c604237b3
core/model: introduce models 2024-08-22 16:23:00 +08:00
lyken 1c7ce22fd5
core/irrt/exceptions: add debug utils with exceptions 2024-08-22 10:06:45 +08:00
lyken 9d3d552e93
core/irrt/exceptions: allow irrt to raise exceptions 2024-08-22 10:06:45 +08:00
lyken d6deb5af26
core/irrt: split irrt.cpp into headers 2024-08-22 10:06:45 +08:00
lyken e3f3c498fe
core/irrt: build.rs capture IR defined constants 2024-08-22 10:06:45 +08:00
lyken 20781d11fd
core/irrt: build.rs capture IR defined types 2024-08-22 10:06:45 +08:00
lyken ecd72e8cad
core/irrt: reformat 2024-08-22 10:06:45 +08:00
lyken b2183fba24
core: add .clang-format 2024-08-22 10:06:45 +08:00
lyken 3c4d04e7c9
core/irrt: comment build.rs & move irrt to its own dir
To prepare for future IRRT implementations, and to also make cargo
only have to watch a single directory.
2024-08-22 10:06:45 +08:00
112 changed files with 9753 additions and 9293 deletions

View File

@ -1,32 +1,3 @@
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
BasedOnStyle: Microsoft
IndentWidth: 4
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never
ReflowComments: false

View File

@ -8,17 +8,17 @@ repos:
hooks:
- id: nac3-cargo-fmt
name: nac3 cargo format
entry: nix
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo fmt on the codebase.
args: [develop, -c, cargo, fmt, --all]
args: [fmt]
- id: nac3-cargo-clippy
name: nac3 cargo clippy
entry: nix
entry: cargo
language: system
types: [file, rust]
pass_filenames: false
description: Runs cargo clippy on the codebase.
args: [develop, -c, cargo, clippy, --tests]
args: [clippy, --tests]

375
Cargo.lock generated
View File

@ -26,9 +26,9 @@ dependencies = [
[[package]]
name = "anstream"
version = "0.6.17"
version = "0.6.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23a1e53f0f5d86382dafe1cf314783b2044280f406e7e1506368220ad11b1338"
checksum = "64e15c1ab1f89faffbf04a634d5e1962e9074f2741eef6d97f3c4e322426d526"
dependencies = [
"anstyle",
"anstyle-parse",
@ -41,67 +41,67 @@ dependencies = [
[[package]]
name = "anstyle"
version = "1.0.9"
version = "1.0.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8365de52b16c035ff4fcafe0092ba9390540e3e352870ac09933bebcaa2c8c56"
checksum = "1bec1de6f59aedf83baf9ff929c98f2ad654b97c9510f4e70cf6f661d49fd5b1"
[[package]]
name = "anstyle-parse"
version = "0.2.6"
version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3b2d16507662817a6a20a9ea92df6652ee4f94f914589377d69f3b21bc5798a9"
checksum = "eb47de1e80c2b463c735db5b217a0ddc39d612e7ac9e2e96a5aed1f57616c1cb"
dependencies = [
"utf8parse",
]
[[package]]
name = "anstyle-query"
version = "1.1.2"
version = "1.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "79947af37f4177cfead1110013d678905c37501914fba0efea834c3fe9a8d60c"
checksum = "6d36fc52c7f6c869915e99412912f22093507da8d9e942ceaf66fe4b7c14422a"
dependencies = [
"windows-sys 0.59.0",
"windows-sys 0.52.0",
]
[[package]]
name = "anstyle-wincon"
version = "3.0.6"
version = "3.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2109dbce0e72be3ec00bed26e6a7479ca384ad226efdd66db8fa2e3a38c83125"
checksum = "5bf74e1b6e971609db8ca7a9ce79fd5768ab6ae46441c572e46cf596f59e57f8"
dependencies = [
"anstyle",
"windows-sys 0.59.0",
"windows-sys 0.52.0",
]
[[package]]
name = "ascii-canvas"
version = "4.0.0"
version = "3.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef1e3e699d84ab1b0911a1010c5c106aa34ae89aeac103be5ce0c3859db1e891"
checksum = "8824ecca2e851cec16968d54a01dd372ef8f95b244fb84b84e70128be347c3c6"
dependencies = [
"term",
]
[[package]]
name = "autocfg"
version = "1.4.0"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26"
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
[[package]]
name = "bit-set"
version = "0.8.0"
version = "0.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08807e080ed7f9d5433fa9b275196cfc35414f66a0c79d864dc51a0d825231a3"
checksum = "0700ddab506f33b20a03b13996eccd309a48e5ff77d0d95926aa0210fb4e95f1"
dependencies = [
"bit-vec",
]
[[package]]
name = "bit-vec"
version = "0.8.0"
version = "0.6.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5e764a1d40d510daf35e07be9eb06e75770908c27d411ee6c92109c9840eaaf7"
checksum = "349f9b6a179ed607305526ca489b34ad0a41aed5f7980fa90eb03160b69598fb"
[[package]]
name = "bitflags"
@ -109,15 +109,6 @@ version = "2.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b048fb63fd8b5923fc5aa7b340d8e156aec7ec02f0c78fa8a6ddc2613f6f71de"
[[package]]
name = "block-buffer"
version = "0.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
dependencies = [
"generic-array",
]
[[package]]
name = "byteorder"
version = "1.5.0"
@ -126,9 +117,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]]
name = "cc"
version = "1.1.31"
version = "1.1.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c2e7962b54006dcfcc61cb72735f4d89bb97061dd6a7ed882ec6b8ee53714c6f"
checksum = "72db2f7947ecee9b03b510377e8bb9077afa27176fdbff55c51027e976fdcc48"
dependencies = [
"shlex",
]
@ -141,9 +132,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "clap"
version = "4.5.20"
version = "4.5.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b97f376d85a664d5837dbae44bf546e6477a679ff6610010f17276f686d867e8"
checksum = "ed6719fffa43d0d87e5fd8caeab59be1554fb028cd30edc88fc4369b17971019"
dependencies = [
"clap_builder",
"clap_derive",
@ -151,9 +142,9 @@ dependencies = [
[[package]]
name = "clap_builder"
version = "4.5.20"
version = "4.5.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "19bc80abd44e4bed93ca373a0704ccbd1b710dc5749406201bb018272808dc54"
checksum = "216aec2b177652e3846684cbfe25c9964d18ec45234f0f5da5157b207ed1aab6"
dependencies = [
"anstream",
"anstyle",
@ -163,14 +154,14 @@ dependencies = [
[[package]]
name = "clap_derive"
version = "4.5.18"
version = "4.5.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ac6a0c7b1a9e9a5186361f67dfa1b88213572f427fb9ab038efb2bd8c582dab"
checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0"
dependencies = [
"heck 0.5.0",
"proc-macro2",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
@ -181,9 +172,9 @@ checksum = "1462739cb27611015575c0c11df5df7601141071f07518d56fcc1be504cbec97"
[[package]]
name = "colorchoice"
version = "1.0.3"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b63caa9aa9397e2d9480a9b13673856c78d8ac123288526c37d7839f2a86990"
checksum = "d3fd119d74b830634cea2a0f58bbd0d54540518a14397557951e79340abc28c0"
[[package]]
name = "console"
@ -197,15 +188,6 @@ dependencies = [
"windows-sys 0.52.0",
]
[[package]]
name = "cpufeatures"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "608697df725056feaccfa42cffdaeeec3fccc4ffc38358ecd19b243e716a78e0"
dependencies = [
"libc",
]
[[package]]
name = "crossbeam"
version = "0.8.4"
@ -263,23 +245,30 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80"
[[package]]
name = "crypto-common"
version = "0.1.6"
name = "crunchy"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"
[[package]]
name = "dirs-next"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b98cf8ebf19c3d1b223e151f99a4f9f0690dca41414773390fc824184ac833e1"
dependencies = [
"generic-array",
"typenum",
"cfg-if",
"dirs-sys-next",
]
[[package]]
name = "digest"
version = "0.10.7"
name = "dirs-sys-next"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
checksum = "4ebda144c4fe02d1f7ea1a7d9641b6fc6b580adcfa024ae48797ecdeb6825b4d"
dependencies = [
"block-buffer",
"crypto-common",
"libc",
"redox_users",
"winapi",
]
[[package]]
@ -321,9 +310,9 @@ dependencies = [
[[package]]
name = "fastrand"
version = "2.1.1"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e8c02a5121d4ea3eb16a80748c74f5549a5665e4c21333c6098f283870fbdea6"
checksum = "9fc0510504f03c51ada170672ac806f1f105a88aa97a5281117e1ddc3368e51a"
[[package]]
name = "fixedbitset"
@ -340,16 +329,6 @@ dependencies = [
"byteorder",
]
[[package]]
name = "generic-array"
version = "0.14.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
dependencies = [
"typenum",
"version_check",
]
[[package]]
name = "getopts"
version = "0.2.21"
@ -385,12 +364,6 @@ dependencies = [
"ahash",
]
[[package]]
name = "hashbrown"
version = "0.15.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e087f84d4f86bf4b218b927129862374b72199ae7d8657835f1e89000eea4fb"
[[package]]
name = "heck"
version = "0.4.1"
@ -403,15 +376,6 @@ version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]]
name = "home"
version = "0.5.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e3d1354bf6b7235cb4a0576c2619fd4ed18183f689b12b006a0ee7329eeff9a5"
dependencies = [
"windows-sys 0.52.0",
]
[[package]]
name = "indexmap"
version = "1.9.3"
@ -424,12 +388,12 @@ dependencies = [
[[package]]
name = "indexmap"
version = "2.6.0"
version = "2.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "707907fe3c25f5424cce2cb7e1cbcafee6bdbe735ca90ef77c29e84591e5b9da"
checksum = "93ead53efc7ea8ed3cfb0c79fc8023fbb782a5432b52830b6518941cebe6505c"
dependencies = [
"equivalent",
"hashbrown 0.15.0",
"hashbrown 0.14.5",
]
[[package]]
@ -440,9 +404,9 @@ checksum = "b248f5224d1d606005e02c97f5aa4e88eeb230488bcc03bc9ca4d7991399f2b5"
[[package]]
name = "inkwell"
version = "0.5.0"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "40fb405537710d51f6bdbc8471365ddd4cd6d3a3c3ad6e0c8291691031ba94b2"
checksum = "b597a7b2cdf279aeef6d7149071e35e4bc87c2cf05a5b7f2d731300bffe587ea"
dependencies = [
"either",
"inkwell_internals",
@ -454,13 +418,13 @@ dependencies = [
[[package]]
name = "inkwell_internals"
version = "0.10.0"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9dd28cfd4cfba665d47d31c08a6ba637eed16770abca2eccbbc3ca831fef1e44"
checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
@ -483,6 +447,15 @@ version = "1.70.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
[[package]]
name = "itertools"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b1c173a5686ce8bfa551b3563d0c2170bf24ca44da99c7ca4bfdab5418c3fe57"
dependencies = [
"either",
]
[[package]]
name = "itertools"
version = "0.13.0"
@ -498,45 +471,35 @@ version = "1.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"
[[package]]
name = "keccak"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ecc2af9a1119c51f12a14607e783cb977bde58bc069ff0c3da1095e635d70654"
dependencies = [
"cpufeatures",
]
[[package]]
name = "lalrpop"
version = "0.22.0"
version = "0.20.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "06093b57658c723a21da679530e061a8c25340fa5a6f98e313b542268c7e2a1f"
checksum = "55cb077ad656299f160924eb2912aa147d7339ea7d69e1b5517326fdcec3c1ca"
dependencies = [
"ascii-canvas",
"bit-set",
"ena",
"itertools",
"itertools 0.11.0",
"lalrpop-util",
"petgraph",
"pico-args",
"regex",
"regex-syntax",
"sha3",
"string_cache",
"term",
"tiny-keccak",
"unicode-xid",
"walkdir",
]
[[package]]
name = "lalrpop-util"
version = "0.22.0"
version = "0.20.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "feee752d43abd0f4807a921958ab4131f692a44d4d599733d4419c5d586176ce"
checksum = "507460a910eb7b32ee961886ff48539633b788a36b65692b95f225b844c82553"
dependencies = [
"regex-automata",
"rustversion",
]
[[package]]
@ -547,9 +510,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]]
name = "libc"
version = "0.2.161"
version = "0.2.157"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e9489c2807c139ffd9c1794f4af0ebe86a828db53ecdc7fea2111d0fed085d1"
checksum = "374af5f94e54fa97cf75e945cce8a6b201e88a1a07e688b47dfd2a59c66dbd86"
[[package]]
name = "libloading"
@ -561,6 +524,16 @@ dependencies = [
"windows-targets",
]
[[package]]
name = "libredox"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c0ff37bd590ca25063e35af745c343cb7a0271906fb7b37e4813e8f79f00268d"
dependencies = [
"bitflags",
"libc",
]
[[package]]
name = "linked-hash-map"
version = "0.5.6"
@ -621,9 +594,11 @@ dependencies = [
name = "nac3artiq"
version = "0.1.0"
dependencies = [
"itertools",
"inkwell",
"itertools 0.13.0",
"nac3core",
"nac3ld",
"nac3parser",
"parking_lot",
"pyo3",
"tempfile",
@ -634,6 +609,7 @@ name = "nac3ast"
version = "0.1.0"
dependencies = [
"fxhash",
"lazy_static",
"parking_lot",
"string-interner",
]
@ -643,11 +619,11 @@ name = "nac3core"
version = "0.1.0"
dependencies = [
"crossbeam",
"indexmap 2.6.0",
"indexmap 2.4.0",
"indoc",
"inkwell",
"insta",
"itertools",
"itertools 0.13.0",
"nac3parser",
"parking_lot",
"rayon",
@ -685,7 +661,9 @@ name = "nac3standalone"
version = "0.1.0"
dependencies = [
"clap",
"inkwell",
"nac3core",
"nac3parser",
"parking_lot",
]
@ -697,9 +675,9 @@ checksum = "650eef8c711430f1a879fdd01d4745a7deea475becfb90269c06775983bbf086"
[[package]]
name = "once_cell"
version = "1.20.2"
version = "1.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1261fe7e33c73b354eab43b1273a57c8f967d0391e80353e51f764ac02cf6775"
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"
[[package]]
name = "parking_lot"
@ -731,7 +709,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
dependencies = [
"fixedbitset",
"indexmap 2.6.0",
"indexmap 2.4.0",
]
[[package]]
@ -774,7 +752,7 @@ dependencies = [
"phf_shared 0.11.2",
"proc-macro2",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
@ -803,9 +781,9 @@ checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"
[[package]]
name = "portable-atomic"
version = "1.9.0"
version = "1.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cc9c68a3f6da06753e9335d63e27f6b9754dd1920d941135b7ea8224f141adb2"
checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265"
[[package]]
name = "ppv-lite86"
@ -824,9 +802,9 @@ checksum = "925383efa346730478fb4838dbe9137d2a47675ad789c546d150a6e1dd4ab31c"
[[package]]
name = "proc-macro2"
version = "1.0.89"
version = "1.0.86"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f139b0662de085916d1fb67d2b4169d1addddda1919e696f3252b740b629986e"
checksum = "5e719e8df665df0d1c8fbfd238015744736151d4445ec0836b8e628aae103b77"
dependencies = [
"unicode-ident",
]
@ -878,7 +856,7 @@ dependencies = [
"proc-macro2",
"pyo3-macros-backend",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
@ -891,14 +869,14 @@ dependencies = [
"proc-macro2",
"pyo3-build-config",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
name = "quote"
version = "1.0.37"
version = "1.0.36"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b5b9d34b8991d19d98081b46eacdd8eb58c6f2b201139f7c5f643cc155a633af"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
dependencies = [
"proc-macro2",
]
@ -955,18 +933,29 @@ dependencies = [
[[package]]
name = "redox_syscall"
version = "0.5.7"
version = "0.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9b6dfecf2c74bce2466cabf93f6664d6998a69eb21e39f4207930065b27b771f"
checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4"
dependencies = [
"bitflags",
]
[[package]]
name = "regex"
version = "1.11.1"
name = "redox_users"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b544ef1b4eac5dc2db33ea63606ae9ffcfac26c1416a2806ae0bf5f56b201191"
checksum = "bd283d9651eeda4b2a83a43c1c91b266c40fd76ecd39a50a8c630ae69dc72891"
dependencies = [
"getrandom",
"libredox",
"thiserror",
]
[[package]]
name = "regex"
version = "1.10.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619"
dependencies = [
"aho-corasick",
"memchr",
@ -976,9 +965,9 @@ dependencies = [
[[package]]
name = "regex-automata"
version = "0.4.8"
version = "0.4.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "368758f23274712b504848e9d5a6f010445cc8b87a7cdb4d7cbee666c1288da3"
checksum = "38caf58cc5ef2fed281f89292ef23f6365465ed9a41b7a7754eb4e26496c92df"
dependencies = [
"aho-corasick",
"memchr",
@ -987,9 +976,9 @@ dependencies = [
[[package]]
name = "regex-syntax"
version = "0.8.5"
version = "0.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b15c43186be67a4fd63bee50d0303afffcef381492ebe2c5d87f324e1b8815c"
checksum = "7a66a03ae7c801facd77a29370b4faec201768915ac14a721ba36f20bc9c209b"
[[package]]
name = "runkernel"
@ -1000,9 +989,9 @@ dependencies = [
[[package]]
name = "rustix"
version = "0.38.38"
version = "0.38.34"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "aa260229e6538e52293eeb577aabd09945a09d6d9cc0fc550ed7529056c2e32a"
checksum = "70dc5ec042f7a43c4a73241207cecc9873a06d45debb38b329f8541d85c2730f"
dependencies = [
"bitflags",
"errno",
@ -1013,9 +1002,9 @@ dependencies = [
[[package]]
name = "rustversion"
version = "1.0.18"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0e819f2bc632f285be6d7cd36e25940d45b2391dd6d9b939e79de557f7014248"
checksum = "955d28af4278de8121b7ebeb796b6a45735dc01436d898801014aced2773a3d6"
[[package]]
name = "ryu"
@ -1046,29 +1035,29 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
[[package]]
name = "serde"
version = "1.0.214"
version = "1.0.208"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f55c3193aca71c12ad7890f1785d2b73e1b9f63a0bbc353c08ef26fe03fc56b5"
checksum = "cff085d2cb684faa248efb494c39b68e522822ac0de72ccf08109abde717cfb2"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.214"
version = "1.0.208"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "de523f781f095e28fa605cdce0f8307e451cc0fd14e2eb4cd2e98a355b147766"
checksum = "24008e81ff7613ed8e5ba0cfaf24e2c2f1e5b8a0495711e44fcd4882fca62bcf"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
name = "serde_json"
version = "1.0.132"
version = "1.0.125"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d726bfaff4b320266d395898905d0eba0345aae23b54aee3a737e260fd46db03"
checksum = "83c8e735a073ccf5be70aa8066aa984eaf2fa000db6c8d0100ae605b366d31ed"
dependencies = [
"itoa",
"memchr",
@ -1088,16 +1077,6 @@ dependencies = [
"yaml-rust",
]
[[package]]
name = "sha3"
version = "0.10.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75872d278a8f37ef87fa0ddbda7802605cb18344497949862c0d4dcb291eba60"
dependencies = [
"digest",
"keccak",
]
[[package]]
name = "shlex"
version = "1.3.0"
@ -1168,7 +1147,7 @@ dependencies = [
"proc-macro2",
"quote",
"rustversion",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
@ -1184,9 +1163,9 @@ dependencies = [
[[package]]
name = "syn"
version = "2.0.85"
version = "2.0.75"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5023162dfcd14ef8f32034d8bcd4cc5ddc61ef7a247c024a33e24e1f24d21b56"
checksum = "f6af063034fc1935ede7be0122941bafa9bacb949334d090b77ca98b5817c7d9"
dependencies = [
"proc-macro2",
"quote",
@ -1201,9 +1180,9 @@ checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
[[package]]
name = "tempfile"
version = "3.13.0"
version = "3.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f0f2c9fc62d0beef6951ccffd757e241266a2c833136efbe35af6cd2567dca5b"
checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64"
dependencies = [
"cfg-if",
"fastrand",
@ -1214,12 +1193,13 @@ dependencies = [
[[package]]
name = "term"
version = "1.0.0"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4df4175de05129f31b80458c6df371a15e7fc3fd367272e6bf938e5c351c7ea0"
checksum = "c59df8ac95d96ff9bede18eb7300b0fda5e5d8d90960e76f8e14ae765eedbf1f"
dependencies = [
"home",
"windows-sys 0.52.0",
"dirs-next",
"rustversion",
"winapi",
]
[[package]]
@ -1237,29 +1217,32 @@ dependencies = [
[[package]]
name = "thiserror"
version = "1.0.65"
version = "1.0.63"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5d11abd9594d9b38965ef50805c5e469ca9cc6f197f883f717e0269a3057b3d5"
checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724"
dependencies = [
"thiserror-impl",
]
[[package]]
name = "thiserror-impl"
version = "1.0.65"
version = "1.0.63"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae71770322cbd277e69d762a16c444af02aa0575ac0d174f0b9562d3b37f8602"
checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]
[[package]]
name = "typenum"
version = "1.17.0"
name = "tiny-keccak"
version = "2.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
checksum = "2c9d3793400a45f954c52e73d068316d76b6f4e36977e3fcebb13a2721e80237"
dependencies = [
"crunchy",
]
[[package]]
name = "unic-char-property"
@ -1315,27 +1298,27 @@ dependencies = [
[[package]]
name = "unicode-ident"
version = "1.0.13"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e91b56cd4cadaeb79bbf1a5645f6b4f8dc5bde8834ad5894a8db35fda9efa1fe"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
[[package]]
name = "unicode-width"
version = "0.1.14"
version = "0.1.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7dd6e30e90baa6f72411720665d41d89b9a3d039dc45b8faea1ddd07f617f6af"
checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d"
[[package]]
name = "unicode-xid"
version = "0.2.6"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ebc1c04c71510c7f702b52b7c350734c9ff1295c464a03335b00bb84fc54f853"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"
[[package]]
name = "unicode_names2"
version = "1.3.0"
version = "1.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d1673eca9782c84de5f81b82e4109dcfb3611c8ba0d52930ec4a9478f547b2dd"
checksum = "addeebf294df7922a1164f729fb27ebbbcea99cc32b3bf08afab62757f707677"
dependencies = [
"phf",
"unicode_names2_generator",
@ -1343,9 +1326,9 @@ dependencies = [
[[package]]
name = "unicode_names2_generator"
version = "1.3.0"
version = "1.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b91e5b84611016120197efd7dc93ef76774f4e084cd73c9fb3ea4a86c570c56e"
checksum = "f444b8bba042fe3c1251ffaca35c603f2dc2ccc08d595c65a8c4f76f3e8426c0"
dependencies = [
"getopts",
"log",
@ -1387,6 +1370,22 @@ version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
"winapi-i686-pc-windows-gnu",
"winapi-x86_64-pc-windows-gnu",
]
[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]]
name = "winapi-util"
version = "0.1.9"
@ -1396,6 +1395,12 @@ dependencies = [
"windows-sys 0.59.0",
]
[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
[[package]]
name = "windows-sys"
version = "0.52.0"
@ -1505,5 +1510,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.85",
"syn 2.0.75",
]

View File

@ -2,11 +2,11 @@
"nodes": {
"nixpkgs": {
"locked": {
"lastModified": 1727348695,
"narHash": "sha256-J+PeFKSDV+pHL7ukkfpVzCOO7mBSrrpJ3svwBFABbhI=",
"lastModified": 1723637854,
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "1925c603f17fc89f4c8f6bf6f631a802ad85d784",
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9",
"type": "github"
},
"original": {

View File

@ -12,10 +12,16 @@ crate-type = ["cdylib"]
itertools = "0.13"
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
parking_lot = "0.12"
tempfile = "3.13"
tempfile = "3.10"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
nac3ld = { path = "../nac3ld" }
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[features]
init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -112,15 +112,10 @@ def extern(function):
register_function(function)
return function
def rpc(arg=None, flags={}):
"""Decorates a function or method to be executed on the host interpreter."""
if arg is None:
def inner_decorator(function):
return rpc(function, flags)
return inner_decorator
register_function(arg)
return arg
def rpc(function):
"""Decorates a function declaration defined by the core device runtime."""
register_function(function)
return function
def kernel(function_or_method):
"""Decorates a function or method to be executed on the core device."""

View File

@ -1,3 +1,35 @@
use nac3core::{
codegen::{
expr::gen_call,
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
model::*,
object::{any::AnyObject, list::ListObject, ndarray::NDArrayObject, range::RangeObject},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
use inkwell::{
context::Context,
module::Linkage,
types::IntType,
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate,
};
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use itertools::Itertools;
use std::{
collections::{hash_map::DefaultHasher, HashMap},
hash::{Hash, Hasher},
@ -6,39 +38,6 @@ use std::{
sync::Arc,
};
use itertools::Itertools;
use pyo3::{
types::{PyDict, PyList},
PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
NDArrayValue, ProxyType, ProxyValue, RangeValue, UntypedArrayLikeAccessor,
},
expr::{destructure_range, gen_call},
irrt::call_ndarray_calc_size,
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator,
},
inkwell::{
context::Context,
module::Linkage,
types::{BasicType, IntType},
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
},
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
/// The parallelism mode within a block.
#[derive(Copy, Clone, Eq, PartialEq)]
enum ParallelMode {
@ -454,55 +453,41 @@ fn format_rpc_arg<'ctx>(
// NAC3: NDArray = { usize, usize*, T* }
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray = AnyObject { ty: arg_ty, value: arg };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
let dtype = ctx.get_llvm_type(generator, ndarray.dtype);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
// `ndarray.data` is possibly not contiguous. We need to force it to be continuous,
// and we might have to copy the whole ndarray.
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
let dims_buf_sz =
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx);
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
let buffer_size =
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx);
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata);
call_memcpy_generic(
ctx,
buffer.base_ptr(ctx, generator),
llvm_arg.ptr_to_data(ctx),
llvm_pdata_sizeof,
llvm_i1.const_zero(),
);
// buf = { data: void*, shape: [size_t; ndims]; }
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value);
let buf_data = buf;
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value);
let pbuffer_dims_begin =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
pbuffer_dims_begin,
llvm_arg.dim_sizes().base_ptr(ctx, generator),
dims_buf_sz,
llvm_i1.const_zero(),
);
// Write to `buf->data`
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any>
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte));
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value);
buffer.base_ptr(ctx, generator)
// Write to `buf->shape`
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte));
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value);
buf.value
}
_ => {
@ -512,7 +497,7 @@ fn format_rpc_arg<'ctx>(
ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder
.build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
@ -523,305 +508,12 @@ fn format_rpc_arg<'ctx>(
arg_slot
}
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i1 = ctx.ctx.bool_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Setup types
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
// Setup ndims
let ndims =
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
} else {
unreachable!();
};
// Set `ndarray.ndims`
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
// Allocate `ndarray.shape` [size_t; ndims]
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray.load_ndims(ctx));
/*
ndarray now:
- .ndims: initialized
- .shape: allocated but uninitialized .shape
- .data: uninitialized
*/
let llvm_usize_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
.unwrap();
let llvm_pdata_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
llvm_usize,
"",
)
.unwrap();
let llvm_elem_sizeof = ctx
.builder
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
.unwrap();
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_dims =
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
let unaligned_buffer_size =
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
let stackptr = call_stacksave(ctx, None);
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
let buffer = ctx
.builder
.build_array_alloca(
llvm_i8_8,
ctx.builder
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
.unwrap(),
"rpc.buffer",
)
.unwrap();
let buffer = ctx
.builder
.build_bit_cast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::UGT,
ndarray_nbytes,
ndarray_nbytes.get_type().const_zero(),
"",
)
.unwrap(),
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
let pbuffer_dims =
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
call_memcpy_generic(
ctx,
ndarray.dim_sizes().base_ptr(ctx, generator),
pbuffer_dims,
sizeof_dims,
llvm_i1.const_zero(),
);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
let num_elements =
call_ndarray_calc_size(generator, ctx, &ndarray.dim_sizes(), (None, None));
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let sizeof_data =
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::UGE,
sizeof_data,
ndarray_nbytes,
"",
).unwrap(),
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(sizeof_data), Some(ndarray_nbytes), None],
ctx.current_loc,
);
}
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
let ndarray_data_i8 =
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
let alloc_ptr = ctx
.builder
.build_array_alloca(
llvm_elem_ty,
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.as_base_value().into()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator,
is_async: bool,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type();
@ -930,64 +622,84 @@ fn rpc_codegen_callback_fn<'ctx>(
}
// call
if is_async {
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send_async",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(
rpc_send_async,
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
"rpc.send",
)
.unwrap();
} else {
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
}
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
ctx.module.add_function(
"rpc_send",
ctx.ctx.void_type().fn_type(
&[
int32.into(),
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
ptr_type.ptr_type(AddressSpace::default()).into(),
],
false,
),
None,
)
});
ctx.builder
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
.unwrap();
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
if is_async {
// async RPCs do not return any values
Ok(None)
} else {
let result = format_rpc_ret(generator, ctx, fun.0.ret);
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here.
call_stackrestore(ctx, stackptr);
}
Ok(result)
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
return Ok(None);
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
call_stackrestore(ctx, stackptr);
}
Ok(Some(result))
}
pub fn attributes_writeback(
@ -1082,7 +794,7 @@ pub fn attributes_writeback(
let args: Vec<_> =
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
if let Err(e) =
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, false)
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator)
{
return Ok(Err(e));
}
@ -1092,9 +804,9 @@ pub fn attributes_writeback(
Ok(())
}
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
pub fn rpc_codegen_callback() -> Arc<GenCall> {
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
})))
}
@ -1302,14 +1014,16 @@ fn polymorphic_print<'ctx>(
args.extend(&[str_len.into(), str_data.into()]);
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let elem_ty = *params.iter().next().unwrap().1;
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None);
let list = AnyObject { ty, value };
let list = ListObject::from_object(generator, ctx, list);
let items = list.instance.get(generator, ctx, |f| f.items);
let len = list.instance.get(generator, ctx, |f| f.len).value;
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
@ -1320,12 +1034,12 @@ fn polymorphic_print<'ctx>(
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
let item = items.get_index(generator, ctx, i).value;
polymorphic_print(
ctx,
generator,
&[(elem_ty, elem.into())],
&[(list.item_type, item.into())],
"",
None,
true,
@ -1359,56 +1073,46 @@ fn polymorphic_print<'ctx>(
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args);
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
let ndarray = AnyObject { ty, value };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
polymorphic_print(
ctx,
generator,
&[(elem_ty, elem.into())],
"",
None,
true,
as_rtio,
)?;
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
let i = hdl.get_index(generator, ctx);
let scalar = hdl.get_scalar(generator, ctx);
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::ULT, i, last, "")
.unwrap())
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
// if (i != 0) { puts(", "); }
gen_if_callback(
generator,
ctx,
|_, ctx| {
let not_first = i.compare(ctx, IntPredicate::NE, num_0);
Ok(not_first.value)
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
// Print element
polymorphic_print(
ctx,
generator,
&[(scalar.ty, scalar.value.into())],
"",
None,
true,
as_rtio,
)?;
Ok(())
})?;
fmt.push_str(")]");
flush(ctx, generator, &mut fmt, &mut args);
@ -1418,9 +1122,13 @@ fn polymorphic_print<'ctx>(
fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args);
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
let range = AnyObject { ty, value };
let range = RangeObject::from_object(generator, ctx, range);
let (start, stop, step) = destructure_range(ctx, val);
let (start, stop, step) = range.instance.destructure(generator, ctx);
let start = start.value;
let stop = stop.value;
let step = step.value;
polymorphic_print(
ctx,

View File

@ -16,65 +16,65 @@
clippy::wildcard_imports
)]
use std::{
collections::{HashMap, HashSet},
fs,
io::Write,
process::Command,
rc::Rc,
sync::Arc,
};
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::Write;
use std::process::Command;
use std::rc::Rc;
use std::sync::Arc;
use itertools::Itertools;
use parking_lot::{Mutex, RwLock};
use pyo3::{
create_exception, exceptions,
prelude::*,
types::{PyBytes, PyDict, PySet},
use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
};
use tempfile::{self, TempDir};
use itertools::Itertools;
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program,
};
use pyo3::create_exception;
use pyo3::prelude::*;
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
use parking_lot::{Mutex, RwLock};
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, WithCall, WorkerRegistry,
},
inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::{Linkage, Module},
passes::PassBuilderOptions,
support::is_multithreaded,
targets::*,
OptimizationLevel,
},
nac3parser::{
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
parser::parse_program,
},
codegen::irrt::load_irrt,
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver,
toplevel::{
builtins::get_exn_constructor,
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef,
},
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
typecheck::typedef::{FunSignature, FuncArg},
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
};
use nac3ld::Linker;
use codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
use crate::{
codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
};
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
use timeline::TimeFns;
use tempfile::{self, TempDir};
mod codegen;
mod symbol_resolver;
mod timeline;
use timeline::TimeFns;
#[derive(PartialEq, Clone, Copy)]
enum Isa {
Host,
@ -195,8 +195,10 @@ impl Nac3 {
body.retain(|stmt| {
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) {
id == "kernel" || id == "portable" || id == "rpc"
if let ExprKind::Name { id, .. } = decorator.node {
id.to_string() == "kernel"
|| id.to_string() == "portable"
|| id.to_string() == "rpc"
} else {
false
}
@ -209,8 +211,9 @@ impl Nac3 {
}
StmtKind::FunctionDef { ref decorator_list, .. } => {
decorator_list.iter().any(|decorator| {
if let Some(id) = decorator_id_string(decorator) {
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
if let ExprKind::Name { id, .. } = decorator.node {
let id = id.to_string();
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
} else {
false
}
@ -446,6 +449,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -476,25 +480,9 @@ impl Nac3 {
match &stmt.node {
StmtKind::FunctionDef { decorator_list, .. } => {
if decorator_list
.iter()
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
{
store_fun
.call1(
py,
(
def_id.0.into_py(py),
module.getattr(py, name.to_string().as_str()).unwrap(),
),
)
.unwrap();
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
rpc_ids.push((None, def_id, is_async));
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
rpc_ids.push((None, def_id));
}
}
StmtKind::ClassDef { name, body, .. } => {
@ -502,26 +490,19 @@ impl Nac3 {
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
for stmt in body {
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
if decorator_list.iter().any(|decorator| {
decorator_id_string(decorator) == Some("rpc".to_string())
}) {
let is_async = decorator_list.iter().any(|decorator| {
decorator_get_flags(decorator)
.iter()
.any(|constant| *constant == Constant::Str("async".into()))
});
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
if name == &"__init__".into() {
return Err(CompileError::new_err(format!(
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
class_name, stmt.location
)));
}
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
}
}
}
}
_ => (),
_ => ()
}
let id = *name_to_pyid.get(&name).unwrap();
@ -560,6 +541,7 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -577,8 +559,9 @@ impl Nac3 {
.unwrap();
// Process IRRT
let context = Context::create();
let irrt = load_irrt(&context, resolver.as_ref());
let context = inkwell::context::Context::create();
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
@ -617,12 +600,13 @@ impl Nac3 {
let top_level = Arc::new(composer.make_top_level_context());
{
let rpc_codegen = rpc_codegen_callback();
let defs = top_level.definitions.read();
for (class_data, id, is_async) in &rpc_ids {
for (class_data, id) in &rpc_ids {
let mut def = defs[id.0].write();
match &mut *def {
TopLevelDef::Function { codegen_callback, .. } => {
*codegen_callback = Some(rpc_codegen_callback(*is_async));
*codegen_callback = Some(rpc_codegen.clone());
}
TopLevelDef::Class { methods, .. } => {
let (class_def, method_name) = class_data.as_ref().unwrap();
@ -633,7 +617,7 @@ impl Nac3 {
if let TopLevelDef::Function { codegen_callback, .. } =
&mut *defs[id.0].write()
{
*codegen_callback = Some(rpc_codegen_callback(*is_async));
*codegen_callback = Some(rpc_codegen.clone());
store_fun
.call1(
py,
@ -648,11 +632,6 @@ impl Nac3 {
}
}
}
TopLevelDef::Variable { .. } => {
return Err(CompileError::new_err(String::from(
"Unsupported @rpc annotation on global variable",
)))
}
}
}
}
@ -712,7 +691,7 @@ impl Nac3 {
let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer);
})));
let size_t = context
let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 };
@ -731,7 +710,7 @@ impl Nac3 {
let mut generator =
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = Context::create();
let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
@ -869,41 +848,6 @@ impl Nac3 {
}
}
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
if let ExprKind::Name { id, .. } = decorator.node {
// Bare decorator
return Some(id.to_string());
} else if let ExprKind::Call { func, .. } = &decorator.node {
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
// need to extract the id from within.
if let ExprKind::Name { id, .. } = func.node {
return Some(id.to_string());
}
}
None
}
/// Retrieves flags from a decorator, if any.
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
let mut flags = vec![];
if let ExprKind::Call { keywords, .. } = &decorator.node {
for keyword in keywords {
if keyword.node.arg != Some("flags".into()) {
continue;
}
if let ExprKind::Set { elts } = &keyword.node.value.node {
for elt in elts {
if let ExprKind::Constant { value, .. } = &elt.node {
flags.push(value.clone());
}
}
}
}
}
flags
}
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
let linker_args = vec![
"-shared".to_string(),

View File

@ -1,30 +1,17 @@
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
use crate::PrimitivePythonId;
use inkwell::{
module::Linkage,
types::BasicType,
values::{BasicValue, BasicValueEnum},
AddressSpace,
};
use itertools::Itertools;
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python,
};
use nac3core::{
codegen::{
classes::{NDArrayType, ProxyType},
model::*,
object::ndarray::{make_contiguous_strides, NDArray},
CodeGenContext, CodeGenerator,
},
inkwell::{
module::Linkage,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
AddressSpace,
},
nac3parser::ast::{self, StrRef},
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
toplevel::{
helper::PrimDef,
@ -36,8 +23,19 @@ use nac3core::{
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
},
};
use super::PrimitivePythonId;
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyErr, PyObject, PyResult, Python,
};
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering::Relaxed},
Arc,
},
};
pub enum PrimitiveValue {
I32(i32),
@ -82,6 +80,7 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
@ -1088,15 +1087,12 @@ impl InnerResolver {
let (ndarray_dtype, ndarray_ndims) =
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
{
if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(),
Struct(NDArray).get_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&id_str,
)
@ -1116,100 +1112,138 @@ impl InnerResolver {
} else {
todo!("Unpacking literal of more than one element unimplemented")
};
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
let Ok(ndims) = u64::try_from(ndarray_ndims) else {
unreachable!("Expected u64 value for ndarray_ndims")
};
// Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
assert_eq!(shape_tuple.len(), ndims as usize);
// The Rust type inferencer cannot figure this out
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple
.iter()
.enumerate()
.map(|(i, elem)| {
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
)
let value = self
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
.map_err(|e| {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})?
.unwrap();
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap();
Ok(value)
})
.collect();
let shape_values = shape_values?.unwrap();
let shape_values = llvm_usize.const_array(
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
);
let shape_values = shape_values?;
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
let shape_u64s = shape_values
.iter()
.map(|dim| {
assert!(dim.value.is_const());
dim.value.get_zero_extended_constant().unwrap()
})
.collect_vec();
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values);
// create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global(
llvm_usize.array_type(ndarray_ndims as u32),
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".shape"),
);
shape_global.set_initializer(&shape_values);
shape_global.set_initializer(&shape_values.value);
// Obtain the (flattened) elements of the ndarray
let sz: usize = obj.getattr("size")?.extract()?;
let data: Result<Option<Vec<_>>, _> = (0..sz)
let data_values: Vec<Instance<'ctx, Any>> = (0..sz)
.map(|i| {
obj.getattr("flat")?.get_item(i).and_then(|elem| {
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})
let value = self
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
.map_err(|e| {
super::CompileError::new_err(format!(
"Error getting element {i}: {e}"
))
})?
.unwrap();
let value = dtype.check_value(generator, ctx.ctx, value).unwrap();
Ok(value)
})
})
.collect();
let data = data?.unwrap().into_iter();
let data = match ndarray_dtype_llvm_ty {
BasicTypeEnum::ArrayType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
}
BasicTypeEnum::FloatType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
}
BasicTypeEnum::IntType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
}
BasicTypeEnum::PointerType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
}
BasicTypeEnum::StructType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
}
BasicTypeEnum::VectorType(_) => unreachable!(),
};
.try_collect()?;
let data = dtype.const_array(generator, ctx.ctx, &data_values);
// create a global for ndarray.data and initialize it using the elements
//
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global(
ndarray_dtype_llvm_ty.array_type(sz as u32),
Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".data"),
);
data_global.set_initializer(&data);
data_global.set_initializer(&data.value);
// Get the constant itemsize.
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap();
let itemsize = itemsize.get_zero_extended_constant().unwrap();
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides = strides
.into_iter()
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride))
.collect_vec();
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".strides"),
);
strides_global.set_initializer(&strides.value);
// create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
llvm_usize.const_int(ndarray_ndims, false).into(),
shape_global
.as_pointer_value()
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
.into(),
data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]);
// We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
let ndarray = ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(),
// NOTE: data_global is an array of dtype, we want a `u8*`.
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize);
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims as u64);
let ndarray_shape =
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
let ndarray_strides =
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap();
let ndarray = Struct(NDArray).const_struct(
generator,
ctx.ctx,
&[
ndarray_data.value.as_basic_value_enum(),
ndarray_itemsize.value.as_basic_value_enum(),
ndarray_ndims.value.as_basic_value_enum(),
ndarray_shape.value.as_basic_value_enum(),
ndarray_strides.value.as_basic_value_enum(),
],
);
let ndarray_global = ctx.module.add_global(
Struct(NDArray).get_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&id_str,
);
ndarray.set_initializer(&value);
ndarray_global.set_initializer(&ndarray.value);
Ok(Some(ndarray.as_pointer_value().into()))
Ok(Some(ndarray_global.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
@ -1470,7 +1504,6 @@ impl SymbolResolver for Resolver {
&self,
id: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
let sym_value = {
let id_to_val = self.0.id_to_pyval.read();

View File

@ -1,12 +1,9 @@
use itertools::Either;
use nac3core::{
codegen::CodeGenContext,
inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
},
use inkwell::{
values::{BasicValueEnum, CallSiteValue},
AddressSpace, AtomicOrdering,
};
use itertools::Either;
use nac3core::codegen::CodeGenContext;
/// Functions for manipulating the timeline.
pub trait TimeFns {
@ -34,7 +31,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -83,7 +80,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -112,7 +109,7 @@ impl TimeFns for NowPinningTimeFns64 {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -210,7 +207,7 @@ impl TimeFns for NowPinningTimeFns {
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
@ -261,7 +258,7 @@ impl TimeFns for NowPinningTimeFns {
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
let now_hiptr = ctx
.builder
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
.map(BasicValueEnum::into_pointer_value)
.unwrap();

View File

@ -10,6 +10,7 @@ constant-optimization = ["fold"]
fold = []
[dependencies]
lazy_static = "1.5"
parking_lot = "0.12"
string-interner = "0.17"
fxhash = "0.2"

View File

@ -5,12 +5,14 @@ pub use crate::location::Location;
use fxhash::FxBuildHasher;
use parking_lot::{Mutex, MutexGuard};
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
use std::{cell::RefCell, collections::HashMap, fmt};
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
static INTERNER: LazyLock<Mutex<Interner>> =
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
lazy_static! {
static ref INTERNER: Mutex<Interner> =
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
}
thread_local! {
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();

View File

@ -14,6 +14,9 @@
clippy::wildcard_imports
)]
#[macro_use]
extern crate lazy_static;
mod ast_gen;
mod constant;
#[cfg(feature = "fold")]

View File

@ -10,17 +10,17 @@ no-escape-analysis = []
[dependencies]
itertools = "0.13"
crossbeam = "0.8"
indexmap = "2.6"
indexmap = "2.2"
parking_lot = "0.12"
rayon = "1.10"
rayon = "1.8"
nac3parser = { path = "../nac3parser" }
strum = "0.26"
strum_macros = "0.26"
[dependencies.inkwell]
version = "0.5"
version = "0.4"
default-features = false
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
[dev-dependencies]
test-case = "1.2.0"

View File

@ -1,3 +1,4 @@
use regex::Regex;
use std::{
env,
fs::File,
@ -6,9 +7,8 @@ use std::{
process::{Command, Stdio},
};
use regex::Regex;
fn main() {
// Define relevant directories
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
@ -23,7 +23,6 @@ fn main() {
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",
@ -99,6 +98,8 @@ fn main() {
file.write_all(filtered_output.as_bytes()).unwrap();
}
// Assemble the emitted and filtered IR to .bc
// That .bc will be integrated into nac3core's codegen
let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped())
.arg("-o")

View File

@ -1,6 +1,15 @@
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/ndarray.hpp"
#include "irrt/slice.hpp"
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/math_util.hpp>
#include <irrt/ndarray/array.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp>
#include <irrt/ndarray/iter.hpp>
#include <irrt/ndarray/matmul.hpp>
#include <irrt/ndarray/reshape.hpp>
#include <irrt/ndarray/transpose.hpp>
#include <irrt/original.hpp>
#include <irrt/slice.hpp>

View File

@ -1,9 +1,9 @@
#pragma once
#include "irrt/int_types.hpp"
#include <irrt/int_types.hpp>
template<typename SizeT>
struct CSlice {
uint8_t* base;
template <typename SizeT> struct CSlice
{
uint8_t *base;
SizeT len;
};

View File

@ -0,0 +1,20 @@
#pragma once
#include <irrt/int_types.hpp>
namespace cstr
{
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char *str)
{
uint32_t length = 0;
while (*str != '\0')
{
length++;
str++;
}
return length;
}
} // namespace cstr

View File

@ -1,6 +1,5 @@
#pragma once
// Set in nac3core/build.rs
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
@ -8,18 +7,15 @@
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
raise_exception(SizeT, EXN_ASSERTION_ERROR, \
"IRRT debug assert failed: " msg, param1, param2, param3);
#define debug_assert_eq(SizeT, lhs, rhs) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
#define debug_assert_eq(SizeT, lhs, rhs) \
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
}
#define debug_assert(SizeT, expr) \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
#define debug_assert(SizeT, expr) \
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
}

View File

@ -1,7 +1,8 @@
#pragma once
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
#include <irrt/cslice.hpp>
#include <irrt/cstr_util.hpp>
#include <irrt/int_types.hpp>
/**
* @brief The int type of ARTIQ exception IDs.
@ -12,11 +13,12 @@ typedef int32_t ExceptionId;
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
extern "C"
{
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
@ -25,14 +27,15 @@ ExceptionId EXN_TYPE_ERROR;
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void* err);
extern "C" void __nac3_raise(void *err);
namespace {
namespace
{
/**
* @brief NAC3's Exception struct
*/
template<typename SizeT>
struct Exception {
template <typename SizeT> struct Exception
{
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
@ -42,29 +45,24 @@ struct Exception {
int64_t params[3];
};
constexpr int64_t NO_PARAM = 0;
const int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
template <typename SizeT>
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
int64_t param0, int64_t param1, int64_t param2)
{
Exception<SizeT> e = {
.id = id,
.filename = {.base = reinterpret_cast<const uint8_t*>(filename), .len = __builtin_strlen(filename)},
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
.line = line,
.column = 0,
.function = {.base = reinterpret_cast<const uint8_t*>(function), .len = __builtin_strlen(function)},
.msg = {.base = reinterpret_cast<const uint8_t*>(msg), .len = __builtin_strlen(msg)},
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise(reinterpret_cast<void*>(&e));
__nac3_raise((void *)&e);
__builtin_unreachable();
}
@ -74,9 +72,9 @@ void _raise_exception_helper(ExceptionId id,
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
} // namespace
} // namespace

View File

@ -1,22 +1,8 @@
#pragma once
#if __STDC_VERSION__ >= 202000
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
#else
using int8_t = _ExtInt(8);
using uint8_t = unsigned _ExtInt(8);
using int32_t = _ExtInt(32);
using uint32_t = unsigned _ExtInt(32);
using int64_t = _ExtInt(64);
using uint64_t = unsigned _ExtInt(64);
#endif
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,75 +1,19 @@
#pragma once
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include <irrt/int_types.hpp>
#include <irrt/slice.hpp>
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"
namespace
{
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template <typename SizeT> struct List
{
uint8_t *items;
SizeT len;
};
} // namespace

View File

@ -1,93 +0,0 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
}

View File

@ -1,13 +1,14 @@
#pragma once
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
namespace
{
template <typename T> const T &max(const T &a, const T &b)
{
return a > b ? a : b;
}
template<typename T>
const T& min(const T& a, const T& b) {
template <typename T> const T &min(const T &a, const T &b)
{
return a > b ? b : a;
}
} // namespace
} // namespace

View File

@ -1,144 +0,0 @@
#pragma once
#include "irrt/int_types.hpp"
namespace {
template<typename SizeT>
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template<typename SizeT>
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template<typename SizeT>
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
SizeT lhs_ndims,
const SizeT* rhs_dims,
SizeT rhs_ndims,
SizeT* out_dims) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT* out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template<typename SizeT>
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
SizeT src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
} // namespace
extern "C" {
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
uint32_t lhs_ndims,
const uint32_t* rhs_dims,
uint32_t rhs_ndims,
uint32_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
uint64_t lhs_ndims,
const uint64_t* rhs_dims,
uint64_t rhs_ndims,
uint64_t* out_dims) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
uint32_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
uint64_t src_ndims,
const NDIndex* in_idx,
NDIndex* out_idx) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
}

View File

@ -0,0 +1,130 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace array
{
template <typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
{
if (shape[axis] == -1)
{
// Dimension is unspecified. Set it.
shape[axis] = list->len;
}
else
{
// Dimension is specified. Check.
if (shape[axis] != list->len)
{
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims)
{
// `list` has type `list[ItemType]`
// Do nothing
}
else
{
// `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
// TODO: Document me
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
template <typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
{
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL)
{
if (!ndarray::basic::is_c_contiguous(ndarray))
{
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims)
{
// `list` has type `list[ItemType]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
}
else
{
// `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
// TODO: Document me
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
{
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace array
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
}

View File

@ -0,0 +1,380 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace basic
{
/**
* @brief Asserts that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
if (shape[axis] < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
*
* This function throws error messages for output shape mismatches.
*/
template <typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
const SizeT *output_shape)
{
if (ndarray_ndims != output_ndims)
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
{
if (ndarray_shape[axis] != output_shape[axis])
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Returns the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
{
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
{
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
{
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The returned result
*/
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
{
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0)
{
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
}
else
{
return ndarray->shape[0];
}
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
{
// Other references:
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0)
{
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
{
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++)
{
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
{
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices`.
*/
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
uint8_t *element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Convenience function. Like `get_pelement_by_indices` but
* reinterprets the element pointer.
*/
template <typename SizeT, typename T> T *get_ptr(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
return (T *)get_pelement_by_indices(ndarray, indices);
}
/**
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
*
* This function does no bound check.
*/
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
{
uint8_t *element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape`
* and assuming that the ndarray is fully c-contagious.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
{
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
{
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// TODO: Make this faster with memcpy
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++)
{
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
int32_t output_ndims, const int32_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
int64_t output_ndims, const int64_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
{
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
{
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
{
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
{
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
{
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
{
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
{
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
{
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,188 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace
{
template <typename SizeT> struct ShapeEntry
{
SizeT ndims;
SizeT *shape;
};
} // namespace
namespace
{
namespace ndarray
{
namespace broadcast
{
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template <typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
{
if (src_ndims > target_ndims)
{
return false;
}
for (SizeT i = 0; i < src_ndims; i++)
{
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim))
{
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template <typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
{
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
{
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++)
{
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++)
{
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1)
{
dst_shape[dst_axis] = entry_dim;
}
else if (entry_dim == 1 || entry_dim == dst_dim)
{
// Do nothing
}
else
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape))
{
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
{
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
{
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
}
else
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace broadcast
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
int32_t *dst_shape)
{
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
int64_t *dst_shape)
{
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -0,0 +1,47 @@
#pragma once
#include <irrt/int_types.hpp>
namespace
{
/**
* @brief The NDArray object
*
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template <typename SizeT> struct NDArray
{
/**
* @brief The underlying data this `ndarray` is pointing to.
*
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
*/
uint8_t *data;
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT *shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values.
*/
SizeT *strides;
};
} // namespace

View File

@ -0,0 +1,242 @@
#pragma once
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace
{
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*/
struct NDIndex
{
/**
* @brief Enum tag to specify the type of index.
*
* Please see comments of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see comments of each enum constant.
*/
uint8_t *data;
};
} // namespace
namespace
{
namespace ndarray
{
namespace indexing
{
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template <typename SizeT>
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++)
{
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
expected_dst_ndims--;
num_indexed++;
}
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
{
num_indexed++;
}
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
{
expected_dst_ndims++;
}
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
{
num_ellipsis++;
if (num_ellipsis > 1)
{
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
}
else
{
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0)
{
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++)
{
const NDIndex *index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
SizeT input = (SizeT) * ((int32_t *)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1)
{
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++;
}
else if (index->type == ND_INDEX_TYPE_SLICE)
{
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
}
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
{
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
}
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
{
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++)
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
}
else
{
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
{
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace indexing
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
NDArray<int32_t> *dst_ndarray)
{
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
NDArray<int64_t> *dst_ndarray)
{
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,142 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
/**
* @brief Helper struct to enumerate through all indices under a shape.
*
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
* - `[0, 0]`
* - `[0, 1]`
* - `[1, 0]`
* - `[1, 1]`
* - `[2, 0]`
* - `[2, 1]`
* - end.
*
* Interesting cases:
* - If ndims == 0, there is one enumeration.
* - If shape contains zeroes, there are no enumerations.
*/
template <typename SizeT> struct NDIter
{
SizeT ndims;
SizeT *shape;
SizeT *strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT *indices;
/**
* @brief The nth (0-based) index of the current indices.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*/
uint8_t *element;
/**
* @brief The product of shape.
*/
SizeT size;
// TODO:: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
// Maybe LLVM is clever and knows how to optimize.
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
{
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size and backstrides
this->size = 1;
for (SizeT i = 0; i < ndims; i++)
{
this->size *= shape[i];
}
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
{
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
bool has_next()
{
return nth < size;
}
void next()
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis])
{
indices[axis] = 0;
// TODO: Can be optimized with backstrides.
element -= strides[axis] * (shape[axis] - 1);
}
else
{
element += strides[axis];
break;
}
}
nth++;
}
};
} // namespace
extern "C"
{
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
{
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
{
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
{
return iter->has_next();
}
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
{
return iter->has_next();
}
void __nac3_nditer_next(NDIter<int32_t> *iter)
{
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t> *iter)
{
iter->next();
}
}

View File

@ -0,0 +1,92 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/iter.hpp>
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace
{
namespace ndarray
{
namespace matmul
{
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template <typename SizeT>
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
{
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
{
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace matmul
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
int32_t *dst_shape)
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
int64_t *dst_shape)
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -0,0 +1,125 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace reshape
{
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
{
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
{
SizeT dim = new_shape[axis_i];
if (dim < 0)
{
if (dim == -1)
{
if (neg1_exists)
{
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
}
else
{
neg1_exists = true;
neg1_axis_i = axis_i;
}
}
else
{
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
}
else
{
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists)
{
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0)
{
// `x` has infinitely many solutions
can_reshape = false;
}
else if (new_size == 0 && size != 0)
{
// `x` has no solutions
can_reshape = false;
}
else if (size % new_size != 0)
{
// `x` has no integer solutions
can_reshape = false;
}
else
{
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
}
else
{
can_reshape = (new_size == size);
}
if (!can_reshape)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace reshape
} // namespace ndarray
} // namespace
extern "C"
{
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -0,0 +1,155 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace
{
namespace ndarray
{
namespace transpose
{
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
{
if (ndims != num_axes)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1)
{
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis])
{
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template <typename SizeT>
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
{
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr)
{
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++)
{
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
}
else
{
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++)
{
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace transpose
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
const int32_t *axes)
{
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
int64_t num_axes, const int64_t *axes)
{
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -0,0 +1,215 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace
{
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T> T __nac3_int_exp_impl(T base, T exp)
{
T res = 1;
/* repeated squaring method */
do
{
if (exp & 1)
{
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
extern "C"
{
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) \
{ \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
{
if (i < 0)
{
i = len + i;
}
if (i < 0)
{
return 0;
}
else if (i > len)
{
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
{
SliceIndex diff = end - start;
if (diff > 0 && step > 0)
{
return ((diff - 1) / step) + 1;
}
else if (diff < 0 && step < 0)
{
return ((diff + 1) / step) + 1;
}
else
{
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
SliceIndex src_arr_len, const SliceIndex size)
{
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1)
{
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0)
{
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0)
{
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca)
{
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
{
/* for constant optimization */
if (size == 1)
{
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
}
else if (size == 4)
{
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
}
else if (size == 8)
{
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
}
else
{
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start)
{
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x)
{
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x)
{
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z)
{
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z))
{
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x))
{
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x))
{
return __builtin_nan("");
}
return j0(x);
}
} // extern "C"

View File

@ -1,28 +1,224 @@
#pragma once
#include "irrt/int_types.hpp"
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
namespace
{
namespace range
{
template <typename T> T len(T start, T stop, T step)
{
// Reference: https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
} else if (i > len) {
return len;
}
} // namespace range
/**
* @brief A Python range.
*/
template <typename T> struct Range
{
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template <typename SizeT> T len()
{
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
namespace slice
{
/**
* @brief Resolve a slice index under a given length like Python indexing.
*
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
*
* If `length` is 0, 0 is returned for any value of `index`.
*
* If `index` is out of bounds, clamps the returned value between `0` and
* `length - 1` (inclusive).
*
*/
template <typename T> T resolve_index_in_length_clamped(T length, T index)
{
if (index < 0)
{
return max<T>(length + index, 0);
}
else
{
return min<T>(length, index);
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
/**
* @brief Like `resolve_index_in_length_clamped`, but returns `-1` if `index` is out of bounds.
*/
template <typename T> T resolve_index_in_length(T length, T index)
{
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length)
{
return resolved;
}
else
{
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template <typename T>
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
T *range_start, T *range_stop, T *range_step)
{
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative)
{
lower = -1;
upper = length - 1;
}
else
{
lower = 0;
upper = length;
}
if (start_defined)
{
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
}
else
{
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined)
{
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
}
else
{
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template <typename T> struct Slice
{
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice()
{
this->reset();
}
void reset()
{
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start)
{
this->start_defined = true;
this->start = start;
}
void set_stop(T stop)
{
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step)
{
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template <typename SizeT> Range<T> indices(T length)
{
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template <typename SizeT> Range<T> indices_checked(T length)
{
// TODO: Switch to `SizeT length`
if (length < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C"
{
int32_t __nac3_range_len_i32(int32_t start, int32_t stop, int32_t step)
{
range::len<int32_t>(start, stop, step);
}
int32_t __nac3_range_len_i3264(int32_t start, int32_t stop, int32_t step)
{
range::len<int64_t>(start, stop, step);
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,9 +1,3 @@
use std::collections::HashMap;
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use crate::{
symbol_resolver::SymbolValue,
toplevel::DefinitionId,
@ -15,6 +9,10 @@ use crate::{
},
};
use indexmap::IndexMap;
use nac3parser::ast::StrRef;
use std::collections::HashMap;
pub struct ConcreteTypeStore {
store: Vec<ConcreteTypeEnum>,
}

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,8 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
};
use inkwell::attributes::{Attribute, AttributeLoc};
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
use itertools::Either;
use super::CodeGenContext;
use crate::codegen::CodeGenContext;
/// Macro to generate extern function
/// Both function return type and function parameter type are `FloatValue`

View File

@ -1,18 +1,16 @@
use crate::{
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, Type},
};
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;

View File

@ -1,30 +1,28 @@
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use super::{
model::*,
object::{
list::List,
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
},
CodeGenContext, CodeGenerator,
};
use function::CallFunction;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicTypeEnum, IntType},
types::BasicTypeEnum,
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
use nac3parser::ast::Expr;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAccessor, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics,
macros::codegen_unreachable,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
};
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
#[must_use]
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
pub fn load_irrt(ctx: &Context) -> Module {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -40,25 +38,6 @@ pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver)
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
@ -76,7 +55,7 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
@ -347,12 +326,11 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ty: BasicTypeEnum<'ctx>,
dest_arr: ListValue<'ctx>,
dest_arr: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
src_arr: ListValue<'ctx>,
src_arr: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
) {
let size_ty = generator.get_size_type(ctx.ctx);
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let int32 = ctx.ctx.i32_type();
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
@ -378,16 +356,14 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
let zero = int32.const_zero();
let one = int32.const_int(1, false);
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
let dest_arr_ptr =
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
dest_arr.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte)).value;
let src_arr_ptr =
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
let src_len = src_arr.load_size(ctx, Some("src.len"));
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
src_arr.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte)).value;
let dest_len = dest_arr.get(generator, ctx, |f| f.len).truncate(generator, ctx, Int32).value;
let src_len = src_arr.get(generator, ctx, |f| f.len).truncate(generator, ctx, Int32).value;
// index in bound and positive should be done
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
@ -462,7 +438,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
@ -483,8 +459,10 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
ctx.builder.position_at_end(update_bb);
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
dest_arr.store_size(ctx, generator, new_len);
let new_len = Int(SizeT).z_extend_or_bit_cast(generator, ctx, new_len);
dest_arr.set(ctx, |f| f.len, new_len);
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
ctx.builder.position_at_end(cont_bb);
}
@ -584,369 +562,339 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
.unwrap()
}
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
/// calculated total size.
///
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
/// or [`None`] if starting from the first dimension and ending at the last dimension
/// respectively.
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
dims: &Dims,
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Dims: ArrayLikeIndexer<'ctx>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'_, '_>,
name: &str,
) -> String {
let mut name = name.to_owned();
match generator.get_size_type(ctx.ctx).get_bit_width() {
32 => {}
64 => name.push_str("64"),
bit_width => {
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
}
}
name
}
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
/// containing `i32` indices of the flattened index.
///
/// * `index` - The index to compute the multidimensional index for.
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
pub fn setup_irrt_exceptions<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
symbol_resolver: &dyn SymbolResolver,
) {
let exn_id_type = ctx.i32_type();
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_nd_indices",
64 => "__nac3_ndarray_calc_nd_indices64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_nd_indices_fn =
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = module.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
global.set_initializer(&exn_id);
}
}
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
pub fn call_nac3_range_len_i32<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Index,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Index: ArrayLikeIndexer<'ctx>,
{
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
start: Instance<'ctx, Int<Int32>>,
stop: Instance<'ctx, Int<Int32>>,
step: Instance<'ctx, Int<Int32>>,
) -> Instance<'ctx, Int<Int32>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_range_len_i32");
CallFunction::begin(generator, ctx, &name)
.arg(start)
.arg(stop)
.arg(step)
.returning_auto("range_len")
}
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
/// dimension and size of each dimension of the resultant `ndarray`.
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast",
64 => "__nac3_ndarray_calc_broadcast64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
gen_for_callback_incrementing(
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
None,
llvm_usize.const_zero(),
(min_ndims, false),
|generator, ctx, _, idx| {
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
"__nac3_ndarray_util_assert_shape_no_negative",
);
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>,
broadcast_idx: &BroadcastIdx,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_broadcast_idx",
64 => "__nac3_ndarray_calc_broadcast_idx64",
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
};
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
output_ndims: Instance<'ctx, Int<SizeT>>,
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
CallFunction::begin(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
.arg(output_shape)
.returning_void();
}
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_indices: Instance<'ctx, Int<SizeT>>,
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
CallFunction::begin(generator, ctx, &name)
.arg(num_indices)
.arg(indices)
.arg(src_ndarray)
.arg(dst_ndarray)
.returning_void();
}
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: Instance<'ctx, Int<SizeT>>,
new_ndims: Instance<'ctx, Int<SizeT>>,
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
CallFunction::begin(generator, ctx, &name)
.arg(size)
.arg(new_ndims)
.arg(new_shape)
.returning_void();
}
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_shape_entries: Instance<'ctx, Int<SizeT>>,
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
dst_ndims: Instance<'ctx, Int<SizeT>>,
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
CallFunction::begin(generator, ctx, &name)
.arg(num_shape_entries)
.arg(shape_entries)
.arg(dst_ndims)
.arg(dst_shape)
.returning_void();
}
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
num_axes: Instance<'ctx, Int<SizeT>>,
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
CallFunction::begin(generator, ctx, &name)
.arg(src_ndarray)
.arg(dst_ndarray)
.arg(num_axes)
.arg(axes)
.returning_void();
}
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a_ndims: Instance<'ctx, Int<SizeT>>,
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
b_ndims: Instance<'ctx, Int<SizeT>>,
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
final_ndims: Instance<'ctx, Int<SizeT>>,
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
CallFunction::begin(generator, ctx, &name)
.arg(a_ndims)
.arg(a_shape)
.arg(b_ndims)
.arg(b_shape)
.arg(final_ndims)
.arg(new_a_shape)
.arg(new_b_shape)
.arg(dst_shape)
.returning_void();
}

View File

@ -1,14 +1,12 @@
use inkwell::{
context::Context,
intrinsics::Intrinsic,
types::{AnyTypeEnum::IntType, FloatType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use inkwell::context::Context;
use inkwell::intrinsics::Intrinsic;
use inkwell::types::AnyTypeEnum::IntType;
use inkwell::types::FloatType;
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
use inkwell::AddressSpace;
use itertools::Either;
use super::CodeGenContext;
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
/// functions.
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
@ -185,7 +183,7 @@ pub fn call_memcpy_generic<'ctx>(
dest
} else {
ctx.builder
.build_bit_cast(dest, llvm_p0i8, "")
.build_bitcast(dest, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};
@ -193,7 +191,7 @@ pub fn call_memcpy_generic<'ctx>(
src
} else {
ctx.builder
.build_bit_cast(src, llvm_p0i8, "")
.build_bitcast(src, llvm_p0i8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
};

View File

@ -1,12 +1,11 @@
use std::{
collections::{HashMap, HashSet},
sync::{
atomic::{AtomicBool, Ordering},
Arc,
use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
thread,
};
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -24,21 +23,16 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel,
};
use itertools::Itertools;
use parking_lot::{Condvar, Mutex};
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef};
use crate::{
symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
use object::{list::List, ndarray::NDArray, range::Range};
use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet};
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use classes::{ListType, NDArrayType, ProxyType, RangeType};
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
use std::thread;
pub mod builtin_fns;
pub mod classes;
@ -48,27 +42,16 @@ pub mod extern_fns;
mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod model;
pub mod numpy;
pub mod object;
pub mod stmt;
#[cfg(test)]
mod test;
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
#[derive(Default)]
pub struct StaticValueStore {
@ -504,17 +487,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
type_cache,
*params.iter().next().unwrap().1,
);
ListType::new(generator, ctx, element_type).as_base_type().into()
let item = Any(element_type);
Ptr(Struct(List { item })).get_type(generator, ctx).as_basic_type_enum()
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
}
_ => unreachable!(
@ -742,7 +720,7 @@ pub fn gen_func_impl<
Some(t) => t.as_basic_type_enum(),
}
}),
(primitives.range, RangeType::new(context).as_base_type().into()),
(primitives.range, Ptr(Range::<Int32>::default()).get_type(generator, context).into()),
(primitives.exception, {
let name = "Exception";
if let Some(t) = module.get_struct_type(name) {
@ -852,9 +830,10 @@ pub fn gen_func_impl<
builder.position_at_end(init_bb);
let body_bb = context.append_basic_block(fn_val, "body");
// Store non-vararg argument values into local variables
let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret);
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type(

View File

@ -0,0 +1,42 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
};
use crate::codegen::CodeGenerator;
use super::*;
/// A [`Model`] of any [`BasicTypeEnum`].
///
/// Use this when you cannot know the type beforehand or cannot be abstracted with [`Model`].
#[derive(Debug, Clone, Copy)]
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> Self::Type {
self.0
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
_generator: &mut G,
_ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}

View File

@ -0,0 +1,140 @@
use std::fmt;
use inkwell::{
context::Context,
types::{ArrayType, BasicType, BasicTypeEnum},
values::{ArrayValue, IntValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait LenKind: fmt::Debug + Clone + Copy {
fn get_length(&self) -> u32;
}
/// A statically known length.
#[derive(Debug, Clone, Copy, Default)]
pub struct Len<const N: u32>;
/// A dynamically known length.
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> LenKind for Len<N> {
fn get_length(&self) -> u32 {
N
}
}
impl LenKind for AnyLen {
fn get_length(&self) -> u32 {
self.0
}
}
/// A Model for an [`ArrayType`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Array<Len, Item> {
/// Length of this array.
pub len: Len,
/// [`Model`] of an array item.
pub item: Item,
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.item.get_type(generator, ctx).array_type(self.len.get_length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let BasicTypeEnum::ArrayType(ty) = ty else {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.get_length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.get_length()
)));
}
self.item
.check_type(generator, ctx, ty.get_element_type())
.map_err(|err| err.under_context("an ArrayType"))?;
Ok(())
}
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
Ptr(self.model.0.item).believe_value(ptr)
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.get_length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.get_length()
);
let i = ctx.ctx.i32_type().const_int(i, false);
self.gep(ctx, i)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.gep(ctx, i).load(generator, ctx)
}
/// Like `get` but `i` is a constant.
pub fn get_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u64,
) -> Instance<'ctx, Item> {
self.gep_const(ctx, i).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.gep(ctx, i).store(ctx, value);
}
/// Like `set` but `i` is a constant.
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
self.gep_const(ctx, i).store(ctx, value);
}
}

View File

@ -0,0 +1,156 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use itertools::Itertools;
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
type Type: BasicType<'ctx>;
/// Return the [`BasicType`] of this model.
#[must_use]
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
fn sizeof<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.get_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] is the same type of this model.
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError>;
/// Create an instance from a value with [`Instance::model`] being this model.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap it into an [`Instance`] if it is.
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(generator, ctx, value.get_type())
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
Ok(self.believe_value(value))
}
// Allocate a value on the stack and return its pointer.
fn alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
Ptr(*self).believe_value(p)
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
Ptr(*self).believe_value(p)
}
fn var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
Ok(Ptr(*self).believe_value(p))
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
}
fn const_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
values: &[Instance<'ctx, Self>],
) -> Instance<'ctx, Array<AnyLen, Self>> {
macro_rules! make {
($t:expr, $into_value:expr) => {
$t.const_array(
&values
.iter()
.map(|x| $into_value(x.value.as_basic_value_enum()))
.collect_vec(),
)
};
}
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
};
Array { len: AnyLen(values.len() as u32), item: *self }
.check_value(generator, ctx, value)
.unwrap()
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
pub value: M::Value,
}

View File

@ -0,0 +1,87 @@
use std::fmt;
use inkwell::{context::Context, types::FloatType, values::FloatValue};
use crate::codegen::CodeGenerator;
use super::*;
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Float64;
impl<'ctx> FloatKind<'ctx> for Float32 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f32_type()
}
}
impl<'ctx> FloatKind<'ctx> for Float64 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f64_type()
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> FloatType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float<N>(pub N);
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_float_type(generator, ctx)
}
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = FloatType::try_from(ty) else {
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
};
let exp_ty = self.0.get_float_type(generator, ctx);
// TODO: Inkwell does not have get_bit_width for FloatType?
// TODO: Quick hack for now, but does this actually work?
if ty != exp_ty {
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
}
Ok(())
}
}

View File

@ -0,0 +1,106 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// A structure to construct & call an LLVM function.
///
/// This is a helper to reduce IRRT Inkwell function call boilerplate
// TODO: Remove the lifetimes somehow? There are 4 of them.
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
/// LLVM function Attributes
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
#[must_use]
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
self.attrs = attrs;
self
}
/// Push a call argument to the function call.
#[allow(clippy::needless_pass_by_value)]
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
#[must_use]
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
self.returning(name, M::default())
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
}
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
// Declare the function if it doesn't exist.
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let func_type = make_fn_type(&tys);
let func = self.ctx.module.add_function(self.name, func_type, None);
for attr in &self.attrs {
func.add_attribute(
AttributeLoc::Function,
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}

View File

@ -0,0 +1,349 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, IntType},
values::IntValue,
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl<'ctx> IntKind<'ctx> for Bool {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl<'ctx> IntKind<'ctx> for Byte {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl<'ctx> IntKind<'ctx> for Int32 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl<'ctx> IntKind<'ctx> for Int64 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl<'ctx> IntKind<'ctx> for SizeT {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
generator.get_size_type(ctx)
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> IntType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(generator, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<'ctx, N: IntKind<'ctx>> Int<N> {
pub fn const_int<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: u64,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_int(value, false);
self.believe_value(value)
}
pub fn const_0<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_zero();
self.believe_value(value)
}
pub fn const_1<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_all_ones();
self.believe_value(value)
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let value =
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let value =
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let value =
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
}
impl Int<Bool> {
#[must_use]
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0)
}
#[must_use]
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
}
}
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend(generator, ctx, self.value)
}
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend(generator, ctx, self.value)
}
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
}
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate(generator, ctx, self.value)
}
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
pub fn compare(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
Int(Bool).believe_value(value)
}
#[must_use]
pub fn not(&self, ctx: &CodeGenContext<'ctx, '_>) -> Self {
let value = ctx.builder.build_not(self.value, "").unwrap();
self.model.believe_value(value)
}
}

View File

@ -0,0 +1,17 @@
mod any;
mod array;
mod core;
mod float;
pub mod function;
mod int;
mod ptr;
mod structure;
pub mod util;
pub use any::*;
pub use array::*;
pub use core::*;
pub use float::*;
pub use int::*;
pub use ptr::*;
pub use structure::*;

View File

@ -0,0 +1,192 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy, Default)]
pub struct Ptr<Item>(pub Item);
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type(generator, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<'ctx, Element: Model<'ctx>> Ptr<Element> {
/// Return a ***constant*** nullptr.
pub fn nullptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Element>> {
let ptr = self.get_type(generator, ctx).const_null();
self.believe_value(ptr)
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
) -> Instance<'ctx, Ptr<Element>> {
let t = self.get_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
self.believe_value(ptr)
}
}
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
self.model.believe_value(p)
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
#[must_use]
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: u64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset, false);
self.offset(ctx, offset)
}
pub fn set_index(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.offset(ctx, index).store(ctx, value);
}
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
}
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.offset(ctx, index).load(generator, ctx)
}
pub fn get_index_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Item> {
let value = ctx.builder.build_load(self.value, "").unwrap();
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
new_item: NewItem,
) -> Instance<'ctx, Ptr<NewItem>> {
Ptr(new_item).pointer_cast(generator, ctx, self.value)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
}
pub fn copy_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
source: Self,
num_items: IntValue<'ctx>,
) {
let llvm_usize = generator.get_size_type(ctx.ctx);
// Force extend `num_items` and `itemsize` so their types would match.
let itemsize = self.model.sizeof(generator, ctx.ctx);
let itemsize =
ctx.builder.build_int_z_extend_or_bit_cast(itemsize, llvm_usize, "").unwrap();
let num_items =
ctx.builder.build_int_z_extend_or_bit_cast(num_items, llvm_usize, "").unwrap();
let totalsize = ctx.builder.build_int_mul(itemsize, num_items, "totalsize").unwrap();
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
call_memcpy_generic(ctx, self.value, source.value, totalsize, is_volatile);
}
}

View File

@ -0,0 +1,261 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::{BasicValueEnum, StructValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Out<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
self.add(name, M::default())
}
}
/// Descriptor of an LLVM struct field.
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u64,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
pub model: M,
}
/// A traversal to get the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u64,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Out<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Out { gep_index, name, model }
}
}
/// A traversal to collect the field types of a struct.
///
/// This is used to collect the field types for [`Context::struct_type`].
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a G,
ctx: &'ctx Context,
/// The collected field types so far, in order.
field_types: Vec<BasicTypeEnum<'ctx>>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
/// A traversal to check the types of a field for debug assertions.
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a mut G,
ctx: &'ctx Context,
/// The current GEP index, so we can tell the index of the field we are checking
/// and report the GEP index.
index: u32,
/// The [`StructType`] to check.
scrutinee: StructType<'ctx>,
/// A list of collected errors so far.
errors: Vec<ModelError>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let i = self.index;
self.index += 1;
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
}
} // Otherwise, it will be caught by Struct's `check_type`.
}
}
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
type Fields<F: FieldTraversal<'ctx>>;
/// Traverse map through all fields of this [`StructKind`].
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
fn get_struct_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.traverse_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Struct<S>(pub S);
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
/// Create a constant struct value.
///
/// This function also validates `fields` and panic when there is something wrong.
pub fn const_struct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
fields: &[BasicValueEnum<'ctx>],
) -> Instance<'ctx, Self> {
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
// and if you try doing that Rust would force you put lifetimes everywhere.
let val = ctx.const_struct(fields, false);
self.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = StructType::try_from(ty) else {
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
};
let mut traversal =
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
self.0.traverse_fields(&mut traversal);
let exp_num_fields = traversal.index;
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
if exp_num_fields != got_num_fields {
return Err(ModelError(format!(
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
)));
}
if !traversal.errors.is_empty() {
return Err(traversal.errors[0].clone()); // TODO: Return other errors as well
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
/// Get a field with [`StructValue::get_field_at_index`].
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
&self,
generator: &mut G,
ctx: &'ctx Context,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
pub fn gep<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, Ptr<M>>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0 .0.fields());
let llvm_i32 = ctx.ctx.i32_type(); // i64 would segfault
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
Ptr(field.model).believe_value(ptr)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
value: Instance<'ctx, M>,
) where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).store(ctx, value);
}
}

View File

@ -0,0 +1,40 @@
use crate::codegen::{
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::*;
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
pub fn gen_for_model<'ctx, 'a, G, F, N>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
start: Instance<'ctx, Int<N>>,
stop: Instance<'ctx, Int<N>>,
step: Instance<'ctx, Int<N>>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
Instance<'ctx, Int<N>>,
) -> Result<(), String>,
N: IntKind<'ctx> + Default,
{
let int_model = Int(N::default());
gen_for_callback_incrementing(
generator,
ctx,
None,
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = int_model.believe_value(i);
body(g, ctx, hooks, i)
},
step.value,
)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,12 @@
use inkwell::values::BasicValueEnum;
use crate::typecheck::typedef::Type;
/// An NAC3 LLVM Python object.
#[derive(Debug, Clone, Copy)]
pub struct AnyObject<'ctx> {
/// Typechecker type of the object.
pub ty: Type,
/// LLVM value of the object.
pub value: BasicValueEnum<'ctx>,
}

View File

@ -0,0 +1,150 @@
use inkwell::types::BasicType;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
use super::any::AnyObject;
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Out<Ptr<Item>>,
/// Number of items in the array
pub len: F::Out<Int<SizeT>>,
}
/// A list in NAC3.
#[derive(Debug, Clone, Copy, Default)]
pub struct List<Item> {
/// Model of the list items
pub item: Item,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),
}
}
}
/// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> {
/// Typechecker type of the list items. Could be [`TypeEnum::TVar`] if unresolved (like
/// in the case of empty lists and the typechecker does not have enough hints).
pub item_type: Type,
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
}
impl<'ctx> ListObject<'ctx> {
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
assert!(matches!(
&*ctx.unifier.get_ty(object.ty),
TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap()
));
// Check typechecker type and extract `item_type`
let item_type = match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
}
_ => {
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
}
};
// If `item_type` is unresolved, the list's ptr will default to `size_t*`
// as a placeholder because there are no opaque pointers in LLVM 14.
let item_type_llvm = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty(item_type) {
generator.get_size_type(ctx.ctx).as_basic_type_enum()
} else {
ctx.get_llvm_type(generator, item_type)
};
let plist = Ptr(Struct(List { item: Any(item_type_llvm) }));
// Create object
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
ListObject { item_type, instance: value }
}
/// Get the `len()` of this list.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.len)
}
/// Get the `items` field as an opaque pointer.
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
self.instance.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte))
}
/// Get the value of this [`ListObject`] as a list with opaque items.
///
/// This function allocates on the stack to create the list, but the
/// reference to the `items` is preserved.
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
let opaque_list = Struct(List { item: Int(Byte) }).alloca(generator, ctx);
// Copy items pointer
let items = self.get_opaque_items_ptr(generator, ctx);
opaque_list.set(ctx, |f| f.items, items);
// Copy len
let len = self.instance.get(generator, ctx, |f| f.len);
opaque_list.set(ctx, |f| f.len, len);
opaque_list
}
/// Allocate a list on the stack given its `item_type` and `len`.
///
/// The returned list's content will be:
/// - `items`: allocated with an array of length `len` with uninitialized values.
/// - `len`: set to `len`.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
item_type: Type,
len: Instance<'ctx, Int<SizeT>>,
) -> Self {
// If `item_type` is unresolved, the list's ptr will default to `size_t*`
// as a placeholder because there are no opaque pointers in LLVM 14.
let item_type_llvm = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty(item_type) {
generator.get_size_type(ctx.ctx).as_basic_type_enum()
} else {
ctx.get_llvm_type(generator, item_type)
};
let items = Any(item_type_llvm).array_alloca(generator, ctx, len.value);
let instance = Struct(List { item: Any(item_type_llvm) }).alloca(generator, ctx);
instance.set(ctx, |f| f.items, items);
instance.set(ctx, |f| f.len, len);
ListObject { item_type, instance }
}
}

View File

@ -0,0 +1,5 @@
pub mod any;
pub mod list;
pub mod ndarray;
pub mod range;
pub mod tuple;

View File

@ -0,0 +1,178 @@
use super::NDArrayObject;
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_array_set_and_validate_list_shape,
call_nac3_ndarray_array_write_list_to_array,
},
model::*,
object::{any::AnyObject, list::ListObject},
stmt::gen_if_else_expr_callback,
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
fn get_list_object_dtype_and_ndims<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> (Type, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
let ndims = ndims + 1; // To count `list` itself.
(dtype, ndims)
}
impl<'ctx> NDArrayObject<'ctx> {
fn make_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
let list_value = list.get_opaque_list_ptr(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, shape,
);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
// Copy all contents from the list.
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
ndarray
}
fn make_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
if ndims == 1 {
// `list` is not nested
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
// Set data
let data = list.get_opaque_items_ptr(generator, ctx);
ndarray.instance.set(ctx, |f| f.data, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
let list_len = list.instance.get(generator, ctx, |f| f.len);
shape.set_index_const(ctx, 0, list_len);
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list)
}
}
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
|generator, ctx| {
let ndarray =
NDArrayObject::make_np_array_list_try_no_copy_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
}
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.instance.value))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(
generator,
ctx,
ndarray_val,
ndarray.dtype,
ndarray.ndims,
)
}
/// Create a new ndarray like `np.array()`.
///
/// NOTE: The `ndmin` argument is not here. You may want to
/// do [`NDArrayObject::atleast_nd`] to achieve that.
pub fn make_np_array<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
}
}
}

View File

@ -0,0 +1,135 @@
use itertools::Itertools;
use crate::codegen::{
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
model::*,
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`ShapeEntry`]
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
}
/// An IRRT structure used in broadcasting.
#[derive(Debug, Clone, Copy, Default)]
pub struct ShapeEntry;
impl<'ctx> StructKind<'ctx> for ShapeEntry {
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Debug, Clone)]
pub struct BroadcastAllResult<'ctx> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayObject<'ctx>>,
}
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
broadcast_ndims: u64,
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
pshape_entry.set(ctx, |f| f.shape, *in_shape);
}
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayObject<'ctx> {
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
/// containing all the information of the result of the broadcast operation.
pub fn broadcast<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[Self],
) -> BroadcastAllResult<'ctx> {
assert!(!ndarrays.is_empty());
// Infer the broadcast output ndims.
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
let shape_entries = ndarrays
.iter()
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays: Vec<_> = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -0,0 +1,134 @@
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Fields of [`ContiguousNDArray`]
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub data: F::Out<Ptr<Item>>,
}
/// An ndarray without strides and non-opaque `data` field in NAC3.
#[derive(Debug, Clone, Copy)]
pub struct ContiguousNDArray<M> {
/// [`Model`] of the items.
pub item: M,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
data: traversal.add("data", Ptr(self.item)),
}
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
///
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
///
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
///
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
/// will share memory with this ndarray.
///
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
/// if you don't care/cannot know the [`Model`] in advance.
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
item_model: Item,
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
// Sanity check on `self.dtype` and `item_model`.
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
// Allocate and setup the resulting [`ContiguousNDArray`].
let result = cdarray_model.alloca(generator, ctx);
// Set ndims and shape.
let ndims = self.ndims_llvm(generator, ctx.ctx);
result.set(ctx, |f| f.ndims, ndims);
let shape = self.instance.get(generator, ctx, |f| f.shape);
result.set(ctx, |f| f.shape, shape);
let is_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb; This ndarray is contiguous.
ctx.builder.position_at_end(then_bb);
let data = self.instance.get(generator, ctx, |f| f.data);
let data = data.pointer_cast(generator, ctx, item_model);
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
// `make_copy` produces an ndarray with contiguous `data`.
ctx.builder.position_at_end(else_bb);
let copied_ndarray = self.make_copy(generator, ctx);
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
let data = data.pointer_cast(generator, ctx, item_model);
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition to end_bb for continuation
ctx.builder.position_at_end(end_bb);
result
}
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
///
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
/// same memory as the [`ContiguousNDArray`].
///
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
/// the fact that the information should be contained within the [`ContiguousNDArray`].
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
dtype: Type,
ndims: u64,
) -> Self {
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
// Allocate the resulting ndarray.
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
// Copy shape and update strides
let shape = carray.get(generator, ctx, |f| f.shape);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.set_strides_contiguous(generator, ctx);
// Share data
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
}

View File

@ -0,0 +1,176 @@
use inkwell::{values::BasicValueEnum, IntPredicate};
use crate::{
codegen::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an ndarray like `np.empty`.
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
ndarray
}
/// Create an ndarray like `np.full`.
pub fn make_np_full<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
fill_value: BasicValueEnum<'ctx>,
) -> Self {
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like `np.zero`.
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_zero_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.ones`.
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_one_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.eye`.
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: Instance<'ctx, Int<SizeT>>,
ncols: Instance<'ctx, Int<SizeT>>,
offset: Instance<'ctx, Int<SizeT>>,
) -> Self {
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
// Create data and make the matrix like look np.eye()
ndarray.create_data(generator, ctx);
ndarray
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
// Load up `row_i` and `col_i` from indices.
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like `np.identity`.
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: Instance<'ctx, Int<SizeT>>,
) -> Self {
// Convenient implementation
let offset = Int(SizeT).const_0(generator, ctx.ctx);
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
}
}

View File

@ -0,0 +1,295 @@
use crate::codegen::{irrt::call_nac3_ndarray_index, model::*, CodeGenContext, CodeGenerator};
use super::NDArrayObject;
pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
pub data: F::Out<Ptr<Int<Byte>>>,
}
/// An IRRT representation of an ndarray subscript index.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
/// Fields of [`Slice`]
#[derive(Debug, Clone)]
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
pub start_defined: F::Out<Int<Bool>>,
pub start: F::Out<Int<N>>,
pub stop_defined: F::Out<Int<Bool>>,
pub stop: F::Out<Int<N>>,
pub step_defined: F::Out<Int<Bool>>,
pub step: F::Out<Int<N>>,
}
/// An IRRT representation of an (unresolved) slice.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Slice<N> {
int_kind: N,
}
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
start_defined: traversal.add_auto("start_defined"),
start: traversal.add("start", Int(self.int_kind)),
stop_defined: traversal.add_auto("stop_defined"),
stop: traversal.add("stop", Int(self.int_kind)),
step_defined: traversal.add_auto("step_defined"),
step: traversal.add("step", Int(self.int_kind)),
}
}
}
/// A convenience structure to prepare a [`Slice`].
#[derive(Debug, Clone)]
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
pub start: Option<Instance<'ctx, Int<N>>>,
pub stop: Option<Instance<'ctx, Int<N>>>,
pub step: Option<Instance<'ctx, Int<N>>>,
}
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
/// Write the contents to an LLVM [`Slice`].
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
) {
let false_ = Int(Bool).const_false(generator, ctx.ctx);
let true_ = Int(Bool).const_true(generator, ctx.ctx);
match self.start {
Some(start) => {
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
}
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
}
match self.stop {
Some(stop) => {
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
}
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
}
match self.step {
Some(step) => {
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
}
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
}
}
}
// A convenience enum to prepare an [`NDIndex`].
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(Instance<'ctx, Int<Int32>>), // TODO: To be SizeT
Slice(RustSlice<'ctx, Int32>),
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Get the value to set `NDIndex::type` for this variant.
fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Write the contents to an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
) {
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
ctx,
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
);
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = Int(Int32).alloca(generator, ctx);
index_ptr.store(ctx, *in_index);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr = Struct(Slice { int_kind: Int32 }).alloca(generator, ctx);
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
pub fn alloca_ndindices<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
let ndindex_model = Struct(NDIndex);
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = ndindices.offset_const(ctx, i as u64);
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
(num_ndindices, ndindices)
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Get the ndims [`Type`] after indexing with a given slice.
#[must_use]
pub fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indices index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
let (num_indices, indices) = RustNDIndex::alloca_ndindices(generator, ctx, indices);
call_nac3_ndarray_index(
generator,
ctx,
num_indices,
indices,
self.instance,
dst_ndarray.instance,
);
dst_ndarray
}
}
pub mod util {
use itertools::Itertools;
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{expr::gen_slice, model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::{RustNDIndex, RustSlice};
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(RustSlice { start: lower, stop: upper, step })
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
RustNDIndex::SingleElement(index)
};
rust_ndindices.push(ndindex);
}
Ok(rust_ndindices)
}
}

View File

@ -0,0 +1,220 @@
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use crate::{
codegen::{
object::ndarray::{AnyObject, NDArrayObject},
stmt::gen_for_callback,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
impl<'ctx> NDArrayObject<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[Self],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
result_ndarray.create_data(generator, ctx);
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(
generator,
ctx,
broadcast_result.ndims,
broadcast_result.shape,
);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_next()`.
// `in_nditers`' `has_next()`s should return the same value.
Ok(out_nditer.has_next(generator, ctx).value)
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars = in_nditers
.iter()
.map(|nditer| nditer.get_scalar(generator, ctx).value)
.collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
/// Map through this ndarray with an elementwise function.
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
NDArrayObject::broadcast_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
/// with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: Type,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayObject::broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
///
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
///
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
/// returned as a [`ScalarOrNDArray::NDArray`].
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: Type,
mapping: Mapping,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -0,0 +1,207 @@
use std::cmp::max;
use nac3parser::ast::Operator;
use util::gen_for_model;
use crate::{
codegen::{
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
},
typecheck::{magic_methods::Binop, typedef::Type},
};
use super::{NDArrayObject, NDArrayOut};
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_dtype: Type,
in_a: NDArrayObject<'ctx>,
in_b: NDArrayObject<'ctx>,
) -> NDArrayObject<'ctx> {
assert!(in_a.ndims >= 2);
assert!(in_b.ndims >= 2);
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
let (a, b, dst) = {
let in_a_ndims = in_a.ndims_llvm(generator, ctx.ctx);
let in_a_shape = in_a.instance.get(generator, ctx, |f| f.shape);
let in_b_ndims = in_b.ndims_llvm(generator, ctx.ctx);
let in_b_shape = in_b.instance.get(generator, ctx, |f| f.shape);
let a_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
let b_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
// Matmul dimension compatibility is checked here.
call_nac3_ndarray_matmul_calculate_shapes(
generator, ctx, in_a_ndims, in_a_shape, in_b_ndims, in_b_shape, ndims, a_shape,
b_shape, dst_shape,
);
let a = in_a.broadcast_to(generator, ctx, ndims_int, a_shape);
let b = in_b.broadcast_to(generator, ctx, ndims_int, b_shape);
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
dst.copy_shape_from_array(generator, ctx, dst_shape);
dst.create_data(generator, ctx);
(a, b, dst)
};
let len =
a.instance.get(generator, ctx, |f| f.shape).get_index_const(generator, ctx, ndims_int - 1);
let at_row = ndims_int - 2;
let at_col = ndims_int - 1;
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
let pdst_ij = hdl.get_pointer(generator, ctx);
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
let indices = hdl.get_indices();
let i = indices.get_index_const(generator, ctx, at_row);
let j = indices.get_index_const(generator, ctx, at_col);
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
indices.set_index_const(ctx, at_row, i);
indices.set_index_const(ctx, at_col, k);
let a_ik = a.get_scalar_by_indices(generator, ctx, indices);
indices.set_index_const(ctx, at_row, k);
indices.set_index_const(ctx, at_col, j);
let b_kj = b.get_scalar_by_indices(generator, ctx, indices);
// Restore `indices`.
indices.set_index_const(ctx, at_row, i);
indices.set_index_const(ctx, at_col, j);
// x = a_[...]ik * b_[...]kj
let x = gen_binop_expr_with_values(
generator,
ctx,
(&Some(a.dtype), a_ik.value),
Binop::normal(Operator::Mult),
(&Some(b.dtype), b_kj.value),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
// dst_[...]ij += x
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
let dst_ij = gen_binop_expr_with_values(
generator,
ctx,
(&Some(dst_dtype), dst_ij),
Binop::normal(Operator::Add),
(&Some(dst_dtype), x),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
Ok(())
})
})
.unwrap();
dst
}
impl<'ctx> NDArrayObject<'ctx> {
/// Perform `np.matmul` according to the rules in
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
///
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
/// to handle when the output could be a scalar.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
pub fn matmul<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: Self,
b: Self,
out: NDArrayOut<'ctx>,
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
/*
If both arguments are 2-D they are multiplied like conventional matrices.
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
*/
let new_a = if a.ndims == 1 {
// Prepend 1 to its dimensions
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
} else {
a
};
let new_b = if b.ndims == 1 {
// Append 1 to its dimensions
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
} else {
b
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
// Postprocessing on the result to remove prepended/appended axes.
let mut postindices = vec![];
let zero = Int(Int32).const_0(generator, ctx.ctx);
if a.ndims == 1 {
// Remove the prepended 1
postindices.push(RustNDIndex::SingleElement(zero));
}
if b.ndims == 1 {
// Remove the appended 1
postindices.push(RustNDIndex::Ellipsis);
postindices.push(RustNDIndex::SingleElement(zero));
}
if !postindices.is_empty() {
result = result.index(generator, ctx, &postindices);
}
match out {
NDArrayOut::NewNDArray { .. } => result,
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
out_ndarray.assert_can_be_written_by_out(
generator,
ctx,
result.ndims,
result_shape,
);
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

View File

@ -0,0 +1,671 @@
pub mod array;
pub mod broadcast;
pub mod contiguous;
pub mod factory;
pub mod indexing;
pub mod map;
pub mod matmul;
pub mod nditer;
pub mod shape_util;
pub mod view;
use inkwell::{
context::Context,
types::BasicType,
values::{BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
call_nac3_ndarray_util_assert_output_shape_same,
},
model::*,
CodeGenContext, CodeGenerator,
},
toplevel::{
helper::{create_ndims, extract_ndims},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
typecheck::typedef::{Type, TypeEnum},
};
use super::{any::AnyObject, tuple::TupleObject};
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Out<Ptr<Int<Byte>>>,
pub itemsize: F::Out<Int<SizeT>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
///
/// See IRRT implementation for details about its fields.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
}
}
}
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
}
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
/// `dtype` and `ndims`.
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: V,
dtype: Type,
ndims: u64,
) -> Self {
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims)
}
/// Get the typechecker ndarray type of this [`NDArrayObject`].
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
}
/// Forget that this is an ndarray and convert into an [`AnyObject`].
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
let ty = self.get_type(ctx);
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated on the stack.
//e
/// The returned ndarray's content will be:
/// - `data`: set to `nullptr`.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
) -> Self {
let ndarray = Struct(NDArray).alloca(generator, ctx);
let data = Ptr(Int(Byte)).nullptr(generator, ctx.ctx);
ndarray.set(ctx, |f| f.data, data);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize = Int(SizeT).s_extend_or_bit_cast(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.shape, shape);
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: ndarray }
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Instance<'ctx, Int<SizeT>>],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
}
ndarray
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let nbytes = self.nbytes(generator, ctx);
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
self.instance.set(ctx, |f| f.data, data);
self.set_strides_contiguous(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance
.get(generator, ctx, |f| f.strides)
.copy_from(generator, ctx, strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the n-th (0-based) scalar.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> AnyObject<'ctx> {
let ptr = self.get_nth_pelement(generator, ctx, nth);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Get the pointer to the element indexed by `indices`.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the scalar indexed by `indices`.
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> AnyObject<'ctx> {
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
///
/// The new ndarray will own its data and will be C-contiguous.
#[must_use]
pub fn make_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
clone.copy_shape_from_array(generator, ctx, shape);
clone.create_data(generator, ctx);
clone.copy_data_from(generator, ctx, *self);
clone
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
/// Otherwise, do nothing and return the ndarray itself.
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let value = self.get_nth_scalar(generator, ctx, zero).value;
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Return a tuple of SizeT
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.shape)
.get_index_const(generator, ctx, i)
.truncate(generator, ctx, Int32);
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::from_objects(generator, ctx, objects)
}
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Return a tuple of SizeT.
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.strides)
.get_index_const(generator, ctx, i)
.truncate(generator, ctx, Int32);
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::from_objects(generator, ctx, objects)
}
/// Create an unsized ndarray to contain `object`.
pub fn make_unsized<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
ctx.builder.build_store(data, object.value).unwrap();
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
///
/// Raise an exception if the shapes do not match.
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
out_ndims: u64,
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
let output_shape = out_shape;
call_nac3_ndarray_util_assert_output_shape_same(
generator,
ctx,
ndarray_ndims,
ndarray_shape,
output_ndims,
output_shape,
);
}
}
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
#[derive(Debug, Clone, Copy)]
pub enum ScalarOrNDArray<'ctx> {
Scalar(AnyObject<'ctx>),
NDArray(NDArrayObject<'ctx>),
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(_scalar) => Err(()),
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
}
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Split on `object` either into a scalar or an ndarray.
///
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
///
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
pub fn split_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> ScalarOrNDArray<'ctx> {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
ScalarOrNDArray::NDArray(ndarray)
}
_ => ScalarOrNDArray::Scalar(object),
}
}
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar.value,
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
}
}
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
/// - If this is an ndarray, the ndarray is returned.
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayObject<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
}
}
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
#[must_use]
pub fn get_dtype(&self) -> Type {
match self {
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
}
}
}
/// An helper enum specifying how a function should produce its output.
///
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
/// create a new ndarray and store the result in it.
#[derive(Debug, Clone, Copy)]
pub enum NDArrayOut<'ctx> {
/// Tell a function should create a new ndarray with the expected element type `dtype`.
NewNDArray { dtype: Type },
/// Tell a function to write the result to `ndarray`.
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
}
impl<'ctx> NDArrayOut<'ctx> {
/// Get the dtype of this output.
#[must_use]
pub fn get_dtype(&self) -> Type {
match self {
NDArrayOut::NewNDArray { dtype } => *dtype,
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
}
}
}
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
///
/// This function is used generating strides for globally defined contiguous ndarrays.
#[must_use]
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
let mut strides = Vec::with_capacity(ndims as usize);
let mut stride_product = 1u64;
for i in 0..ndims {
let axis = ndims - i - 1;
strides[axis as usize] = stride_product * itemsize;
stride_product *= shape[axis as usize];
}
strides
}

View File

@ -0,0 +1,168 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
pub indices: F::Out<Ptr<Int<SizeT>>>,
pub nth: F::Out<Int<SizeT>>,
pub element: F::Out<Ptr<Int<Byte>>>,
pub size: F::Out<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
indices: traversal.add_auto("indices"),
nth: traversal.add_auto("nth"),
element: traversal.add_auto("element"),
size: traversal.add_auto("size"),
}
}
}
/// A helper structure containing extra details of an [`NDIter`].
#[derive(Debug, Clone)]
pub struct NDIterHandle<'ctx> {
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
/// The ndarray this [`NDIter`] to iterating over.
ndarray: NDArrayObject<'ctx>,
/// The current indices of [`NDIter`].
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
}
impl<'ctx> NDIterHandle<'ctx> {
/// Allocate an [`NDIter`] that iterates through an ndarray.
pub fn new<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
) -> Self {
let nditer = Struct(NDIter).alloca(generator, ctx);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
NDIterHandle { ndarray, instance: nditer, indices }
}
#[must_use]
pub fn has_next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_next(generator, ctx, self.instance)
}
pub fn next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_nditer_next(generator, ctx, self.instance);
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
let p = self.instance.get(generator, ctx, |f| f.element);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
let p = self.get_pointer(generator, ctx);
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.ndarray.dtype, value }
}
/// Get the index of the current element.
#[must_use]
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.nth)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
self.indices
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterHandle<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

View File

@ -0,0 +1,105 @@
use util::gen_for_model;
use crate::{
codegen::{
model::*,
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::TypeEnum,
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
input_sequence: AnyObject<'ctx>,
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let one = Int(SizeT).const_1(generator, ctx.ctx);
// The result `list` to return.
match &*ctx.unifier.get_ty(input_sequence.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
// Check `input_sequence`
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
// Load the i-th int32 in the input sequence
let int = input_sequence
.instance
.get(generator, ctx, |f| f.items)
.get_index(generator, ctx, i.value)
.value
.into_int_value();
// Cast to SizeT
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
// Store
result.set_index(ctx, i.value, int);
Ok(())
})
.unwrap();
(len, result)
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_sequence = TupleObject::from_object(ctx, input_sequence);
let len = input_sequence.len(generator, ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
for i in 0..input_sequence.num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i as u64, int);
}
(len, result)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_sequence.value.into_int_value();
let len = Int(SizeT).const_1(generator, ctx.ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
// Storing into result[0]
result.store(ctx, int);
(len, result)
}
_ => panic!(
"encountered unknown sequence type: {}",
ctx.unifier.stringify(input_sequence.ty)
),
}
}

View File

@ -0,0 +1,119 @@
use crate::codegen::{
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
model::*,
CodeGenContext, CodeGenerator,
};
use super::{indexing::RustNDIndex, NDArrayObject};
impl<'ctx> NDArrayObject<'ctx> {
/// Make sure the ndarray is at least `ndmin`-dimensional.
///
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
#[must_use]
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndmin: u64,
) -> Self {
if self.ndims < ndmin {
// return this_ndarray[np.newaxis, np.newaxis, and more, ...]
let mut indices = vec![];
for _ in self.ndims..ndmin {
indices.push(RustNDIndex::NewAxis);
}
indices.push(RustNDIndex::Ellipsis);
self.index(generator, ctx, &indices)
} else {
*self
}
}
/// Create a reshaped view on this ndarray like `np.reshape()`.
///
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
///
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
///
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
/// * `new_shape` - The target shape to do `np.reshape()`.
#[must_use]
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
new_ndims: u64,
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
// without copying data. Look into how numpy does it.
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
// Reolsve negative indices
let size = self.size(generator, ctx);
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
generator, ctx, size, dst_ndims, dst_shape,
);
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb: reshape is possible without copying
ctx.builder.position_at_end(then_bb);
dst_ndarray.set_strides_contiguous(generator, ctx);
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb: reshape is impossible without copying
ctx.builder.position_at_end(else_bb);
dst_ndarray.create_data(generator, ctx);
dst_ndarray.copy_data_from(generator, ctx, *self);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition for continuation
ctx.builder.position_at_end(end_bb);
dst_ndarray
}
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
#[must_use]
pub fn transpose<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
) -> Self {
// Define models
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
let num_axes = self.ndims_llvm(generator, ctx.ctx);
// `axes = nullptr` if `axes` is unspecified.
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
call_nac3_ndarray_transpose(
generator,
ctx,
self.instance,
transposed_ndarray.instance,
num_axes,
axes,
);
transposed_ndarray
}
}

View File

@ -0,0 +1,70 @@
use crate::codegen::{irrt::call_nac3_range_len_i32, model::*, CodeGenContext, CodeGenerator};
use super::any::AnyObject;
/// A range in NAC3.
pub type Range<N> = Array<Len<3>, Int<N>>;
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Ptr<Range<N>>> {
/// Get GEP to `range.start`.
pub fn start(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
self.gep_const(ctx, 0)
}
/// Get GEP to `range.stop`.
pub fn stop(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
self.gep_const(ctx, 1)
}
/// Get GEP to `range.step`.
pub fn step(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
self.gep_const(ctx, 2)
}
/// Convenience function to get the load the `(start, stop, step)` of this range.
#[allow(clippy::type_complexity)]
pub fn destructure<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> (Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>) {
let start = self.start(ctx).load(generator, ctx);
let stop = self.stop(ctx).load(generator, ctx);
let step = self.step(ctx).load(generator, ctx);
(start, stop, step)
}
}
// TODO: `RangeObject` in the future will have range32, range64
/// A NAC3 Python range object.
#[derive(Debug, Clone, Copy)]
pub struct RangeObject<'ctx> {
pub instance: Instance<'ctx, Ptr<Range<Int32>>>,
}
impl<'ctx> RangeObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into a [`RangeObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> RangeObject<'ctx> {
assert!(ctx.unifier.unioned(object.ty, ctx.primitives.range));
let instance = Ptr(Range::default()).check_value(generator, ctx.ctx, object.value).unwrap();
RangeObject { instance }
}
/// Get the `len()` of this range.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Int32>> {
let start = self.instance.start(ctx).load(generator, ctx);
let stop = self.instance.stop(ctx).load(generator, ctx);
let step = self.instance.step(ctx).load(generator, ctx);
call_nac3_range_len_i32(generator, ctx, start, stop, step)
}
}

View File

@ -0,0 +1,101 @@
use inkwell::values::StructValue;
use itertools::Itertools;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::any::AnyObject;
/// A NAC3 tuple object.
///
/// NOTE: This struct has no copy trait.
#[derive(Debug, Clone)]
pub struct TupleObject<'ctx> {
/// The type of the tuple.
pub tys: Vec<Type>,
/// The underlying LLVM struct value of this tuple.
pub value: StructValue<'ctx>,
}
impl<'ctx> TupleObject<'ctx> {
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
// TODO: Keep `is_vararg_ctx` from TTuple?
assert!(matches!(&*ctx.unifier.get_ty(object.ty), TypeEnum::TTuple { .. }));
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
panic!(
"Expected type to be a TypeEnum::TTuple, got {}",
ctx.unifier.stringify(object.ty)
);
};
// Check number of fields
let value = object.value.into_struct_value();
let value_num_fields = value.get_type().count_fields() as usize;
assert!(
value_num_fields == tys.len(),
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
tys.len(),
value_num_fields
);
TupleObject { tys: tys.clone(), value }
}
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
objects: I,
) -> Self
where
I: IntoIterator<Item = AnyObject<'ctx>>,
{
let (values, tys): (Vec<_>, Vec<_>) =
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
for (i, val) in values.into_iter().enumerate() {
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
ctx.builder.build_store(pval, val).unwrap();
}
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
TupleObject { tys, value }
}
#[must_use]
pub fn num_elements(&self) -> usize {
self.tys.len()
}
/// Get the `len()` of this tuple.
#[must_use]
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
}
/// Get the `i`-th (0-based) object in this tuple.
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
assert!(
i < self.num_elements(),
"Tuple object with length {} have index {i}",
self.num_elements()
);
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
let ty = self.tys[i];
AnyObject { ty, value }
}
}

View File

@ -1,3 +1,24 @@
use super::{
super::symbol_resolver::ValueEnum,
irrt::{handle_slice_indices, list_slice_assignment},
object::{
any::AnyObject,
list::ListObject,
ndarray::{
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, ScalarOrNDArray,
},
range::RangeObject,
},
CodeGenContext, CodeGenerator,
};
use crate::{
codegen::{classes::ArraySliceValue, expr::gen_binop_expr, gen_in_range_check, model::*},
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
use inkwell::{
attributes::{Attribute, AttributeLoc},
basic_block::BasicBlock,
@ -6,28 +27,10 @@ use inkwell::{
IntPredicate,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
};
use super::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::{destructure_range, gen_binop_expr},
gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable,
CodeGenContext, CodeGenerator,
};
use crate::{
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
},
};
/// See [`CodeGenerator::gen_var_alloc`].
pub fn gen_var<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
@ -121,7 +124,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
return Ok(None);
};
let BasicValueEnum::PointerValue(ptr) = val else {
codegen_unreachable!(ctx);
unreachable!();
};
unsafe {
ctx.builder.build_in_bounds_gep(
@ -135,7 +138,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
}
.unwrap()
}
_ => codegen_unreachable!(ctx),
_ => unreachable!(),
}))
}
@ -176,14 +179,6 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
}
}
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
// Perform i1 <-> i8 conversion as needed
let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) {
generator.bool_to_i8(ctx, val.into_int_value()).into()
} else {
val
};
ctx.builder.build_store(ptr, val).unwrap();
}
};
@ -201,12 +196,12 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
codegen_unreachable!(ctx)
unreachable!()
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
codegen_unreachable!(ctx);
unreachable!();
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
@ -266,7 +261,7 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
codegen_unreachable!(ctx) // The typechecker ensures this
unreachable!() // The typechecker ensures this
}
// Handle assignment after the starred target
@ -298,65 +293,56 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
let key_ty = key.custom.unwrap();
match &*ctx.unifier.get_ty(target_ty) {
TypeEnum::TObj { obj_id, params: list_params, .. }
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// Handle list item assignment
let llvm_usize = generator.get_size_type(ctx.ctx);
let target_item_ty = iter_type_vars(list_params).next().unwrap().ty;
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?
.into_pointer_value();
let target = ListValue::from_ptr_val(target, llvm_usize, None);
.to_basic_value_enum(ctx, generator, target_ty)?;
let target = AnyObject { ty: target_ty, value: target };
let target = ListObject::from_object(generator, ctx, target);
let target_len = target.instance.get(generator, ctx, |f| f.len);
let target_item_type_llvm = ctx.get_llvm_type(generator, target.item_type);
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else {
codegen_unreachable!(ctx)
};
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
step,
ctx,
generator,
target.load_size(ctx, None),
)?
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let Some((start, end, step)) =
handle_slice_indices(lower, upper, step, ctx, generator, target_len.value)?
else {
return Ok(());
};
let value =
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
let value = ListValue::from_ptr_val(value, llvm_usize, None);
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
let Some(src_ind) = handle_slice_indices(
&None,
&None,
&None,
ctx,
generator,
value.load_size(ctx, None),
)?
let value = AnyObject { ty: value_ty, value };
let value = ListObject::from_object(generator, ctx, value);
let value_len = value.instance.get(generator, ctx, |f| f.len);
let Some(src_ind) =
handle_slice_indices(&None, &None, &None, ctx, generator, value_len.value)?
else {
return Ok(());
};
list_slice_assignment(
generator,
ctx,
target_item_ty,
target,
target_item_type_llvm,
target.instance,
(start, end, step),
value,
value.instance,
src_ind,
);
} else {
// Handle assigning to an index
let len = target.load_size(ctx, Some("len"));
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
let value =
Any(target_item_type_llvm).check_value(generator, ctx.ctx, value).unwrap();
let index = generator
.gen_expr(ctx, key)?
@ -378,7 +364,8 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
"is_neg",
)
.unwrap();
let adjusted = ctx.builder.build_int_add(index, len, "adjusted").unwrap();
let adjusted =
ctx.builder.build_int_add(index, target_len.value, "adjusted").unwrap();
let index = ctx
.builder
.build_select(is_negative, adjusted, index, "index")
@ -389,29 +376,70 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
// bigger than the length (for unsigned cmp)
let bound_check = ctx
.builder
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
.build_int_compare(IntPredicate::ULT, index, target_len.value, "inbound")
.unwrap();
ctx.make_assert(
generator,
bound_check,
"0:IndexError",
"index {0} out of bounds 0:{1}",
[Some(index), Some(len), None],
[Some(index), Some(target_len.value), None],
key.location,
);
// Write value to index on list
let item_ptr =
target.data().ptr_offset(ctx, generator, &index, Some("list_item_ptr"));
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
ctx.builder.build_store(item_ptr, value).unwrap();
target
.instance
.get(generator, ctx, |f| f.items)
.offset(ctx, index)
.store(ctx, value);
}
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
// Handle NDArray item assignment
todo!("ndarray subscript assignment is not yet implemented");
// Process target
let target = generator
.gen_expr(ctx, target)?
.unwrap()
.to_basic_value_enum(ctx, generator, target_ty)?;
let target = AnyObject { value: target, ty: target_ty };
// Process key
let key = gen_ndarray_subscript_ndindices(generator, ctx, key)?;
// Process value
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
let value = AnyObject { value, ty: value_ty };
/*
Reference code:
```python
target = target[key]
value = np.asarray(value)
shape = np.broadcast_shape((target, value))
target = np.broadcast_to(target, shape)
value = np.broadcast_to(value, shape)
...and finally copy 1-1 from value to target.
```
*/
let target = NDArrayObject::from_object(generator, ctx, target);
let target = target.index(generator, ctx, &key);
let value =
ScalarOrNDArray::split_object(generator, ctx, value).to_ndarray(generator, ctx);
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
let target = broadcast_result.ndarrays[0];
let value = broadcast_result.ndarrays[1];
target.copy_data_from(generator, ctx, value);
}
_ => {
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
@ -426,9 +454,7 @@ pub fn gen_for<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else {
codegen_unreachable!(ctx)
};
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -463,16 +489,22 @@ pub fn gen_for<G: CodeGenerator>(
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
{
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
let range = AnyObject { value: iter_val, ty: iter_ty };
let range = RangeObject::from_object(generator, ctx, range);
let (start, stop, step) = range.instance.destructure(generator, ctx);
let start = start.value;
let stop = stop.value;
let step = step.value;
// Internal variable for loop; Cannot be assigned
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
codegen_unreachable!(ctx)
unreachable!()
};
let (start, stop, step) = destructure_range(ctx, iter_val);
ctx.builder.build_store(i, start).unwrap();
@ -913,7 +945,7 @@ pub fn gen_while<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -943,7 +975,7 @@ pub fn gen_while<G: CodeGenerator>(
return Ok(());
};
let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) };
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
@ -1091,7 +1123,7 @@ pub fn gen_if<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -1214,11 +1246,11 @@ pub fn exn_constructor<'ctx>(
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
obj_id.0
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let defs = ctx.top_level.definitions.read();
let def = defs[zelf_id].read();
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) };
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
unsafe {
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
@ -1326,7 +1358,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
target: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
codegen_unreachable!(ctx)
unreachable!()
};
// if we need to generate anything related to exception, we must have personality defined
@ -1403,7 +1435,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
*obj_id
} else {
codegen_unreachable!(ctx)
unreachable!()
};
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
let exn_id = ctx.resolver.get_string_id(&exception_name);
@ -1675,23 +1707,6 @@ pub fn gen_return<G: CodeGenerator>(
} else {
None
};
// Remap boolean return type into i1
let value = value.map(|ret_val| {
// The "return type" of a sret function is in the first parameter
let expected_ty = if ctx.need_sret {
func.get_type().get_param_types()[0]
} else {
func.get_type().get_return_type().unwrap()
};
if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) {
generator.bool_to_i1(ctx, ret_val.into_int_value()).into()
} else {
ret_val
}
});
if let Some(return_target) = ctx.return_target {
if let Some(value) = value {
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
@ -1702,6 +1717,25 @@ pub fn gen_return<G: CodeGenerator>(
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
ctx.builder.build_return(None).unwrap();
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}
.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value).unwrap();
}
@ -1770,30 +1804,7 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
if let Some(exc) = exc {
let exn = if let ExprKind::Name { id, .. } = &exc.node {
// Handle "raise Exception" short form
let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), exc.location)
})?;
let def = ctx.top_level.definitions.read();
let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into)
} else {
generator.gen_expr(ctx, exc)?
};
let exc = if let Some(v) = exn {
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
} else {
return Ok(());
@ -1828,37 +1839,6 @@ pub fn gen_stmt<G: CodeGenerator>(
stmt.location,
);
}
StmtKind::Global { names, .. } => {
let registered_globals = ctx
.top_level
.definitions
.read()
.iter()
.filter_map(|def| {
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
Some((*simple_name, *ty))
} else {
None
}
})
.collect_vec();
for id in names {
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
return Err(format!("{id} is not a global at {}", stmt.location));
};
let resolver = ctx.resolver.clone();
let ptr = resolver
.get_symbol_value(*id, ctx, generator)
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
.transpose()?
.map(BasicValueEnum::into_pointer_value)
.unwrap();
ctx.var_assignment.insert(*id, (ptr, None, 0));
}
}
_ => unimplemented!(),
};
Ok(())

View File

@ -1,37 +1,32 @@
use std::{
collections::{HashMap, HashSet},
sync::Arc,
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::{
ast::{fold::Fold, FileName, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use super::{
classes::{ListType, NDArrayType, ProxyType, RangeType},
concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator,
DefaultCodeGenerator, WithCall, WorkerRegistry,
};
use crate::{
codegen::{
concrete_type::ConcreteTypeStore, CodeGenContext, CodeGenLLVMOptions,
CodeGenTargetMachineOptions, CodeGenTask, DefaultCodeGenerator, WithCall, WorkerRegistry,
},
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::{
composer::{ComposerConfig, TopLevelComposer},
DefinitionId, FunInstance, TopLevelContext, TopLevelDef,
},
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer, PrimitiveStore},
type_inferencer::{FunctionData, Inferencer, PrimitiveStore},
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
},
};
use indexmap::IndexMap;
use indoc::indoc;
use inkwell::{
targets::{InitializationConfig, Target},
OptimizationLevel,
};
use nac3parser::ast::FileName;
use nac3parser::{
ast::{fold::Fold, StrRef},
parser::parse_program,
};
use parking_lot::RwLock;
use std::collections::{HashMap, HashSet};
use std::sync::Arc;
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
@ -67,7 +62,6 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -142,8 +136,7 @@ fn test_primitives() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "b".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut identifiers: HashSet<_> = ["a".into(), "b".into()].into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -322,8 +315,7 @@ fn test_simple_call() {
};
let mut virtual_checks = Vec::new();
let mut calls = HashMap::new();
let mut identifiers: HashMap<_, _> =
["a".into(), "foo".into()].map(|id| (id, IdentifierInfo::default())).into();
let mut identifiers: HashSet<_> = ["a".into(), "foo".into()].into();
let mut inferencer = Inferencer {
top_level: &top_level,
function_data: &mut function_data,
@ -442,35 +434,3 @@ fn test_simple_call() {
registry.add_task(task);
registry.wait_tasks_complete(handles);
}
#[test]
fn test_classes_list_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
}
#[test]
fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
}
#[test]
fn test_classes_ndarray_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -19,10 +19,6 @@
clippy::wildcard_imports
)]
// users of nac3core need to use the same version of these dependencies, so expose them as nac3core::*
pub use inkwell;
pub use nac3parser;
pub mod codegen;
pub mod symbol_resolver;
pub mod toplevel;

View File

@ -1,15 +1,7 @@
use std::{
collections::{HashMap, HashSet},
fmt::{Debug, Display},
rc::Rc,
sync::Arc,
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use parking_lot::RwLock;
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use std::fmt::Debug;
use std::rc::Rc;
use std::sync::Arc;
use std::{collections::HashMap, collections::HashSet, fmt::Display};
use crate::{
codegen::{CodeGenContext, CodeGenerator},
@ -19,6 +11,10 @@ use crate::{
typedef::{Type, TypeEnum, Unifier, VarMap},
},
};
use inkwell::values::{BasicValueEnum, FloatValue, IntValue, PointerValue, StructValue};
use itertools::{chain, izip, Itertools};
use nac3parser::ast::{Constant, Expr, Location, StrRef};
use parking_lot::RwLock;
#[derive(Clone, PartialEq, Debug)]
pub enum SymbolValue {
@ -369,7 +365,6 @@ pub trait SymbolResolver {
&self,
str: StrRef,
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>>;
fn get_default_param_value(&self, expr: &Expr) -> Option<SymbolValue>;

View File

@ -1,5 +1,6 @@
use std::iter::once;
use helper::{debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDefDetails};
use indexmap::IndexMap;
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -8,24 +9,28 @@ use inkwell::{
IntPredicate,
};
use itertools::Either;
use numpy::unpack_ndarray_var_tys;
use strum::IntoEnumIterator;
use super::{
helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDef, PrimDefDetails},
numpy::make_ndarray_ty,
*,
};
use crate::{
codegen::{
builtin_fns,
classes::{ProxyValue, RangeValue},
model::*,
numpy::*,
object::{
any::AnyObject,
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
range::RangeObject,
},
stmt::exn_constructor,
},
symbol_resolver::SymbolValue,
toplevel::{helper::PrimDef, numpy::make_ndarray_ty},
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
};
use super::*;
type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>;
pub fn get_exn_constructor(
@ -512,6 +517,14 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpEye
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
PrimDef::FunNpSize | PrimDef::FunNpShape | PrimDef::FunNpStrides => {
self.build_ndarray_property_getter_function(prim)
}
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
self.build_ndarray_view_function(prim)
}
PrimDef::FunStr => self.build_str_function(),
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
@ -577,10 +590,6 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpHypot
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
self.build_np_sp_ndarray_function(prim)
}
PrimDef::FunNpDot
| PrimDef::FunNpLinalgCholesky
| PrimDef::FunNpLinalgQr
@ -708,9 +717,10 @@ impl<'a> BuiltinBuilder<'a> {
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, _, args, generator| {
let (zelf_ty, zelf) = obj.unwrap();
let zelf =
zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
let zelf = RangeValue::from_ptr_val(zelf, Some("range"));
let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?;
let zelf = AnyObject { ty: zelf_ty, value: zelf };
let zelf = RangeObject::from_object(generator, ctx, zelf);
let mut start = None;
let mut stop = None;
@ -793,11 +803,14 @@ impl<'a> BuiltinBuilder<'a> {
});
let start = start.unwrap_or_else(|| int32.const_zero());
zelf.store_start(ctx, start);
zelf.store_end(ctx, stop);
zelf.store_step(ctx, step);
let start = Int(Int32).believe_value(start);
let stop = Int(Int32).believe_value(stop);
let step = Int(Int32).believe_value(step);
zelf.instance.start(ctx).store(ctx, start);
zelf.instance.stop(ctx).store(ctx, stop);
zelf.instance.step(ctx).store(ctx, step);
Ok(Some(zelf.as_base_value().into()))
Ok(Some(zelf.instance.value.as_basic_value_enum()))
},
)))),
loc: None,
@ -1386,6 +1399,169 @@ impl<'a> BuiltinBuilder<'a> {
}
}
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpSize, PrimDef::FunNpShape, PrimDef::FunNpStrides],
);
let mut var_map = self.num_var_map.clone();
var_map.insert(self.ndarray_dtype_tvar.id, self.ndarray_dtype_tvar.ty);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpSize => create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.primitives.int32,
&[(in_ndarray_ty.ty, "a")],
Box::new(|ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let size = ndarray.size(generator, ctx).truncate(generator, ctx, Int32);
Ok(Some(size.value.as_basic_value_enum()))
}),
),
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
// The fnuction signatures of `np_shape` an `np_size` are the same.
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
ret_ty,
&[(in_ndarray_ty.ty, "a")],
Box::new(move |ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let result_tuple = match prim {
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
_ => unreachable!(),
};
Ok(Some(result_tuple.value.as_basic_value_enum()))
}),
)
}
_ => unreachable!(),
}
}
/// Build np/sp functions that take as input `NDArray` only
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpTranspose => {
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
in_ndarray_ty.ty,
&[(in_ndarray_ty.ty, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let arg = AnyObject { ty: arg_ty, value: arg_val };
let ndarray = NDArrayObject::from_object(generator, ctx, arg);
let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument
Ok(Some(ndarray.instance.value.as_basic_value_enum()))
}),
)
}
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
ret_ty,
&[
(in_ndarray_ty.ty, "x"),
(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding
],
Box::new(move |ctx, _, fun, args, generator| {
let ndarray_ty = fun.0.args[0].ty;
let ndarray_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let shape_ty = fun.0.args[1].ty;
let shape_val =
args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
let ndarray = AnyObject { value: ndarray_val, ty: ndarray_ty };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let shape = AnyObject { value: shape_val, ty: shape_ty };
let (_, shape) = parse_numpy_int_sequence(generator, ctx, shape);
// The ndims after reshaping is gotten from the return type of the call.
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
let ndims = extract_ndims(&ctx.unifier, ndims);
let new_ndarray = match prim {
PrimDef::FunNpBroadcastTo => {
ndarray.broadcast_to(generator, ctx, ndims, shape)
}
PrimDef::FunNpReshape => {
ndarray.reshape_or_copy(generator, ctx, ndims, shape)
}
_ => unreachable!(),
};
Ok(Some(new_ndarray.instance.value.as_basic_value_enum()))
}),
)
}
_ => unreachable!(),
}
}
/// Build the `str()` function.
fn build_str_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunStr;
@ -1873,57 +2049,6 @@ impl<'a> BuiltinBuilder<'a> {
}
}
/// Build np/sp functions that take as input `NDArray` only
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
match prim {
PrimDef::FunNpTranspose => {
let ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.ndarray_num_ty],
Some("T".into()),
None,
);
create_fn_by_codegen(
self.unifier,
&into_var_map([ndarray_ty]),
prim.name(),
ndarray_ty.ty,
&[(ndarray_ty.ty, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
}),
)
}
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
// the `param_ty` for `create_fn_by_codegen`.
//
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
PrimDef::FunNpReshape => create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.ndarray_num_ty,
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
Box::new(move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
}),
),
_ => unreachable!(),
}
}
/// Build `np_linalg` and `sp_linalg` functions
///
/// The input to these functions must be floating point `NDArray`
@ -1955,10 +2080,12 @@ impl<'a> BuiltinBuilder<'a> {
Box::new(move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
Ok(Some(result))
}),
),

View File

@ -1,17 +1,17 @@
use nac3parser::ast::fold::Fold;
use std::rc::Rc;
use nac3parser::ast::{fold::Fold, ExprKind, Ident};
use super::*;
use crate::{
codegen::{expr::get_subst_key, stmt::exn_constructor},
symbol_resolver::SymbolValue,
typecheck::{
type_inferencer::{FunctionData, IdentifierInfo, Inferencer},
type_inferencer::{FunctionData, Inferencer},
typedef::{TypeVar, VarMap},
},
};
use super::*;
pub struct ComposerConfig {
pub kernel_ann: Option<&'static str>,
pub kernel_invariant_ann: &'static str,
@ -23,7 +23,7 @@ impl Default for ComposerConfig {
}
}
pub type DefAst = (Arc<RwLock<TopLevelDef>>, Option<Stmt<()>>);
type DefAst = (Arc<RwLock<TopLevelDef>>, Option<Stmt<()>>);
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_ast_list: Vec<DefAst>,
@ -101,8 +101,7 @@ impl TopLevelComposer {
.iter()
.map(|def_ast| match *def_ast.0.read() {
TopLevelDef::Class { name, .. } => name.to_string(),
TopLevelDef::Function { simple_name, .. }
| TopLevelDef::Variable { simple_name, .. } => simple_name.to_string(),
TopLevelDef::Function { simple_name, .. } => simple_name.to_string(),
})
.collect_vec();
@ -382,87 +381,13 @@ impl TopLevelComposer {
))
}
ast::StmtKind::Assign { .. } => {
// Assignment statements can assign to (and therefore create) more than one
// variable, but this function only allows returning one set of symbol information.
// We want to avoid changing this to return a `Vec` of symbol info, as this would
// require `iter().next().unwrap()` on every variable created from a non-Assign
// statement.
//
// Make callers use `register_top_level_var` instead, as it provides more
// fine-grained control over which symbols to register, while also simplifying the
// usage of this function.
panic!("Registration of top-level Assign statements must use TopLevelComposer::register_top_level_var (at {})", ast.location);
}
ast::StmtKind::AnnAssign { target, annotation, .. } => {
let ExprKind::Name { id: name, .. } = target.node else {
return Err(format!(
"global variable declaration must be an identifier (at {})",
target.location
));
};
self.register_top_level_var(
name,
Some(annotation.as_ref().clone()),
resolver,
mod_path,
target.location,
)
}
_ => Err(format!(
"registrations of constructs other than top level classes/functions/variables are not supported (at {})",
"registrations of constructs other than top level classes/functions are not supported (at {})",
ast.location
)),
}
}
/// Registers a top-level variable with the given `name` into the composer.
///
/// `annotation` - The type annotation of the top-level variable, or [`None`] if no type
/// annotation is provided.
/// `location` - The location of the top-level variable.
pub fn register_top_level_var(
&mut self,
name: Ident,
annotation: Option<Expr>,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
mod_path: &str,
location: Location,
) -> Result<(StrRef, DefinitionId, Option<Type>), String> {
if self.keyword_list.contains(&name) {
return Err(format!("cannot use keyword `{name}` as a class name (at {location})"));
}
let global_var_name =
if mod_path.is_empty() { name.to_string() } else { format!("{mod_path}.{name}") };
if !self.defined_names.insert(global_var_name.clone()) {
return Err(format!(
"global variable `{global_var_name}` defined twice (at {location})"
));
}
let ty_to_be_unified = self.unifier.get_dummy_var().ty;
self.definition_ast_list.push((
RwLock::new(Self::make_top_level_variable_def(
global_var_name,
name,
// dummy here, unify with correct type later,
ty_to_be_unified,
annotation,
resolver,
Some(location),
))
.into(),
None,
));
Ok((name, DefinitionId(self.definition_ast_list.len() - 1), Some(ty_to_be_unified)))
}
pub fn start_analysis(&mut self, inference: bool) -> Result<(), HashSet<String>> {
self.analyze_top_level_class_type_var()?;
self.analyze_top_level_class_bases()?;
@ -471,7 +396,6 @@ impl TopLevelComposer {
if inference {
self.analyze_function_instance()?;
}
self.analyze_top_level_variables()?;
Ok(())
}
@ -509,7 +433,7 @@ impl TopLevelComposer {
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// i.e. only simple names are allowed in the subscript
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ExprKind::Subscript { value, slice, .. }
ast::ExprKind::Subscript { value, slice, .. }
if {
matches!(
&value.node,
@ -525,9 +449,9 @@ impl TopLevelComposer {
}
is_generic = true;
let type_var_list: Vec<&Expr<()>>;
let type_var_list: Vec<&ast::Expr<()>>;
// if `class A(Generic[T, V, G])`
if let ExprKind::Tuple { elts, .. } = &slice.node {
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
type_var_list = elts.iter().collect_vec();
// `class A(Generic[T])`
} else {
@ -576,7 +500,6 @@ impl TopLevelComposer {
}
Ok(())
};
let mut errors = HashSet::new();
for (class_def, class_ast) in def_list.iter().skip(self.builtin_num) {
if class_ast.is_none() {
@ -930,6 +853,7 @@ impl TopLevelComposer {
let unifier = self.unifier.borrow_mut();
let primitives_store = &self.primitives_ty;
let mut errors = HashSet::new();
let mut analyze = |function_def: &Arc<RwLock<TopLevelDef>>, function_ast: &Option<Stmt>| {
let mut function_def = function_def.write();
let function_def = &mut *function_def;
@ -1038,18 +962,18 @@ impl TopLevelComposer {
}
}
let arg_with_default: Vec<(&ast::Located<ast::ArgData<()>>, Option<&Expr>)> = args
.args
.iter()
.rev()
.zip(
args.defaults
.iter()
.rev()
.map(|x| -> Option<&Expr> { Some(x) })
.chain(std::iter::repeat(None)),
)
.collect_vec();
let arg_with_default: Vec<(&ast::Located<ast::ArgData<()>>, Option<&ast::Expr>)> =
args.args
.iter()
.rev()
.zip(
args.defaults
.iter()
.rev()
.map(|x| -> Option<&ast::Expr> { Some(x) })
.chain(std::iter::repeat(None)),
)
.collect_vec();
arg_with_default
.iter()
@ -1204,8 +1128,6 @@ impl TopLevelComposer {
})?;
Ok(())
};
let mut errors = HashSet::new();
for (function_def, function_ast) in def_list.iter().skip(self.builtin_num) {
if function_ast.is_none() {
continue;
@ -1307,7 +1229,7 @@ impl TopLevelComposer {
let arg_with_default: Vec<(
&ast::Located<ast::ArgData<()>>,
Option<&Expr>,
Option<&ast::Expr>,
)> = args
.args
.iter()
@ -1316,7 +1238,7 @@ impl TopLevelComposer {
args.defaults
.iter()
.rev()
.map(|x| -> Option<&Expr> { Some(x) })
.map(|x| -> Option<&ast::Expr> { Some(x) })
.chain(std::iter::repeat(None)),
)
.collect_vec();
@ -1473,7 +1395,7 @@ impl TopLevelComposer {
.map_err(|e| HashSet::from([e.to_display(unifier).to_string()]))?;
}
ast::StmtKind::AnnAssign { target, annotation, value, .. } => {
if let ExprKind::Name { id: attr, .. } = &target.node {
if let ast::ExprKind::Name { id: attr, .. } = &target.node {
if defined_fields.insert(attr.to_string()) {
let dummy_field_type = unifier.get_dummy_var().ty;
@ -1481,7 +1403,7 @@ impl TopLevelComposer {
None => {
// handle Kernel[T], KernelInvariant[T]
let (annotation, mutable) = match &annotation.node {
ExprKind::Subscript { value, slice, .. }
ast::ExprKind::Subscript { value, slice, .. }
if matches!(
&value.node,
ast::ExprKind::Name { id, .. } if id == &core_config.kernel_invariant_ann.into()
@ -1489,7 +1411,7 @@ impl TopLevelComposer {
{
(slice, false)
}
ExprKind::Subscript { value, slice, .. }
ast::ExprKind::Subscript { value, slice, .. }
if matches!(
&value.node,
ast::ExprKind::Name { id, .. } if core_config.kernel_ann.map_or(false, |c| id == &c.into())
@ -1507,13 +1429,13 @@ impl TopLevelComposer {
Some(boxed_expr) => {
// Class attributes are set as immutable regardless
let (annotation, _) = match &annotation.node {
ExprKind::Subscript { slice, .. } => (slice, false),
ast::ExprKind::Subscript { slice, .. } => (slice, false),
_ if core_config.kernel_ann.is_none() => (annotation, false),
_ => continue,
};
match &**boxed_expr {
ast::Located {location: _, custom: (), node: ExprKind::Constant { value: v, kind: _ }} => {
ast::Located {location: _, custom: (), node: ast::ExprKind::Constant { value: v, kind: _ }} => {
// Restricting the types allowed to be defined as class attributes
match v {
ast::Constant::Bool(_) | ast::Constant::Str(_) | ast::Constant::Int(_) | ast::Constant::Float(_) => {}
@ -1780,6 +1702,7 @@ impl TopLevelComposer {
}
}
let mut errors = HashSet::new();
let mut analyze = |i, def: &Arc<RwLock<TopLevelDef>>, ast: &Option<Stmt>| {
let class_def = def.read();
if let TopLevelDef::Class {
@ -1899,12 +1822,7 @@ impl TopLevelComposer {
if *name != init_str_id {
unreachable!("must be init function here")
}
let all_inited = Self::get_all_assigned_field(
object_id.0,
definition_ast_list,
body.as_slice(),
)?;
let all_inited = Self::get_all_assigned_field(body.as_slice())?;
for (f, _, _) in fields {
if !all_inited.contains(f) {
return Err(HashSet::from([
@ -1922,8 +1840,6 @@ impl TopLevelComposer {
}
Ok(())
};
let mut errors = HashSet::new();
for (i, (def, ast)) in definition_ast_list.iter().enumerate().skip(self.builtin_num) {
if ast.is_none() {
continue;
@ -1961,296 +1877,272 @@ impl TopLevelComposer {
if ast.is_none() {
return Ok(());
}
let (name, simple_name, signature, resolver) = {
let function_def = def.read();
let TopLevelDef::Function { name, simple_name, signature, resolver, .. } =
&*function_def
let mut function_def = def.write();
if let TopLevelDef::Function {
instance_to_stmt,
instance_to_symbol,
name,
simple_name,
signature,
resolver,
..
} = &mut *function_def
{
let signature_ty_enum = unifier.get_ty(*signature);
let TypeEnum::TFunc(FunSignature { args, ret, vars }) = signature_ty_enum.as_ref()
else {
return Ok(());
unreachable!("must be typeenum::tfunc")
};
(name.clone(), *simple_name, *signature, resolver.clone())
};
let mut vars = vars.clone();
// None if is not class method
let uninst_self_type = {
if let Some(class_id) = method_class.get(&DefinitionId(id)) {
let class_def = definition_ast_list.get(class_id.0).unwrap();
let class_def = class_def.0.read();
let TopLevelDef::Class { type_vars, .. } = &*class_def else {
unreachable!("must be class def")
};
let signature_ty_enum = unifier.get_ty(signature);
let TypeEnum::TFunc(FunSignature { args, ret, vars, .. }) = signature_ty_enum.as_ref()
else {
unreachable!("must be typeenum::tfunc")
};
let ty_ann = make_self_type_annotation(type_vars, *class_id);
let self_ty = get_type_from_type_annotation_kinds(
&def_list,
unifier,
primitives_ty,
&ty_ann,
&mut None,
)?;
vars.extend(type_vars.iter().map(|ty| {
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else {
unreachable!()
};
let mut vars = vars.clone();
// None if is not class method
let uninst_self_type = {
if let Some(class_id) = method_class.get(&DefinitionId(id)) {
let class_def = definition_ast_list.get(class_id.0).unwrap();
let class_def = class_def.0.read();
let TopLevelDef::Class { type_vars, .. } = &*class_def else {
unreachable!("must be class def")
(*id, *ty)
}));
Some((self_ty, type_vars.clone()))
} else {
None
}
};
// carefully handle those with bounds, without bounds and no typevars
// if class methods, `vars` also contains all class typevars here
let (type_var_subst_comb, no_range_vars) = {
let mut no_ranges: Vec<Type> = Vec::new();
let var_combs = vars
.values()
.map(|ty| {
unifier.get_instantiations(*ty).unwrap_or_else(|| {
let TypeEnum::TVar { name, loc, is_const_generic: false, .. } =
&*unifier.get_ty(*ty)
else {
unreachable!()
};
let rigid = unifier.get_fresh_rigid_var(*name, *loc).ty;
no_ranges.push(rigid);
vec![rigid]
})
})
.multi_cartesian_product()
.collect_vec();
let mut result: Vec<VarMap> = Vec::default();
for comb in var_combs {
result.push(vars.keys().copied().zip(comb).collect());
}
// NOTE: if is empty, means no type var, append a empty subst, ok to do this?
if result.is_empty() {
result.push(VarMap::new());
}
(result, no_ranges)
};
for subst in type_var_subst_comb {
// for each instance
let inst_ret = unifier.subst(*ret, &subst).unwrap_or(*ret);
let inst_args = {
args.iter()
.map(|a| FuncArg {
name: a.name,
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
default_value: a.default_value.clone(),
is_vararg: false,
})
.collect_vec()
};
let self_type = {
uninst_self_type.clone().map(|(self_type, type_vars)| {
let subst_for_self = {
let class_ty_var_ids = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
*id
} else {
unreachable!("must be type var here");
}
})
.collect::<HashSet<_>>();
subst
.iter()
.filter_map(|(ty_var_id, ty_var_target)| {
if class_ty_var_ids.contains(ty_var_id) {
Some((*ty_var_id, *ty_var_target))
} else {
None
}
})
.collect::<VarMap>()
};
unifier.subst(self_type, &subst_for_self).unwrap_or(self_type)
})
};
let mut identifiers = {
let mut result: HashSet<_> = HashSet::new();
if self_type.is_some() {
result.insert("self".into());
}
result.extend(inst_args.iter().map(|x| x.name));
result
};
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new();
let mut inferencer = Inferencer {
top_level: ctx.as_ref(),
defined_identifiers: identifiers.clone(),
function_data: &mut FunctionData {
resolver: resolver.as_ref().unwrap().clone(),
return_type: if unifier.unioned(inst_ret, primitives_ty.none) {
None
} else {
Some(inst_ret)
},
// NOTE: allowed type vars
bound_variables: no_range_vars.clone(),
},
unifier,
variable_mapping: {
let mut result: HashMap<StrRef, Type> = HashMap::new();
if let Some(self_ty) = self_type {
result.insert("self".into(), self_ty);
}
result.extend(inst_args.iter().map(|x| (x.name, x.ty)));
result
},
primitives: primitives_ty,
virtual_checks: &mut Vec::new(),
calls: &mut calls,
in_handler: false,
};
let ty_ann = make_self_type_annotation(type_vars, *class_id);
let self_ty = get_type_from_type_annotation_kinds(
&def_list,
unifier,
primitives_ty,
&ty_ann,
&mut None,
)?;
vars.extend(type_vars.iter().map(|ty| {
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else {
unreachable!()
};
(*id, *ty)
}));
Some((self_ty, type_vars.clone()))
} else {
None
}
};
// carefully handle those with bounds, without bounds and no typevars
// if class methods, `vars` also contains all class typevars here
let (type_var_subst_comb, no_range_vars) = {
let mut no_ranges: Vec<Type> = Vec::new();
let var_combs = vars
.values()
.map(|ty| {
unifier.get_instantiations(*ty).unwrap_or_else(|| {
let TypeEnum::TVar { name, loc, is_const_generic: false, .. } =
&*unifier.get_ty(*ty)
else {
unreachable!()
};
let rigid = unifier.get_fresh_rigid_var(*name, *loc).ty;
no_ranges.push(rigid);
vec![rigid]
})
})
.multi_cartesian_product()
.collect_vec();
let mut result: Vec<VarMap> = Vec::default();
for comb in var_combs {
result.push(vars.keys().copied().zip(comb).collect());
}
// NOTE: if is empty, means no type var, append a empty subst, ok to do this?
if result.is_empty() {
result.push(VarMap::new());
}
(result, no_ranges)
};
for subst in type_var_subst_comb {
// for each instance
let inst_ret = unifier.subst(*ret, &subst).unwrap_or(*ret);
let inst_args = {
args.iter()
.map(|a| FuncArg {
name: a.name,
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
default_value: a.default_value.clone(),
is_vararg: false,
})
.collect_vec()
};
let self_type = {
uninst_self_type.clone().map(|(self_type, type_vars)| {
let subst_for_self = {
let class_ty_var_ids = type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
*id
} else {
unreachable!("must be type var here");
}
})
.collect::<HashSet<_>>();
subst
.iter()
.filter_map(|(ty_var_id, ty_var_target)| {
if class_ty_var_ids.contains(ty_var_id) {
Some((*ty_var_id, *ty_var_target))
} else {
None
}
})
.collect::<VarMap>()
};
unifier.subst(self_type, &subst_for_self).unwrap_or(self_type)
})
};
let mut identifiers = {
let mut result = HashMap::new();
if self_type.is_some() {
result.insert("self".into(), IdentifierInfo::default());
}
result.extend(inst_args.iter().map(|x| (x.name, IdentifierInfo::default())));
result
};
let mut calls: HashMap<CodeLocation, CallId> = HashMap::new();
let mut inferencer = Inferencer {
top_level: ctx.as_ref(),
defined_identifiers: identifiers.clone(),
function_data: &mut FunctionData {
resolver: resolver.as_ref().unwrap().clone(),
return_type: if unifier.unioned(inst_ret, primitives_ty.none) {
None
} else {
Some(inst_ret)
},
// NOTE: allowed type vars
bound_variables: no_range_vars.clone(),
},
unifier,
variable_mapping: {
let mut result: HashMap<StrRef, Type> = HashMap::new();
if let Some(self_ty) = self_type {
result.insert("self".into(), self_ty);
}
result.extend(inst_args.iter().map(|x| (x.name, x.ty)));
result
},
primitives: primitives_ty,
virtual_checks: &mut Vec::new(),
calls: &mut calls,
in_handler: false,
};
let ast::StmtKind::FunctionDef { body, decorator_list, .. } =
ast.clone().unwrap().node
else {
unreachable!("must be function def ast")
};
if !decorator_list.is_empty() {
if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"extern".into())
let ast::StmtKind::FunctionDef { body, decorator_list, .. } =
ast.clone().unwrap().node
else {
unreachable!("must be function def ast")
};
if !decorator_list.is_empty()
&& matches!(&decorator_list[0].node,
ast::ExprKind::Name{ id, .. } if id == &"extern".into())
{
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
if !decorator_list.is_empty()
&& matches!(&decorator_list[0].node,
ast::ExprKind::Name{ id, .. } if id == &"rpc".into())
{
let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write()
else {
unreachable!()
};
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
if matches!(&decorator_list[0].node, ExprKind::Name { id, .. } if id == &"rpc".into())
{
let TopLevelDef::Function { instance_to_symbol, .. } = &mut *def.write()
else {
unreachable!()
};
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
if let ExprKind::Call { func, .. } = &decorator_list[0].node {
if matches!(&func.node, ExprKind::Name { id, .. } if id == &"rpc".into()) {
let TopLevelDef::Function { instance_to_symbol, .. } =
&mut *def.write()
else {
unreachable!()
};
instance_to_symbol.insert(String::new(), simple_name.to_string());
continue;
}
}
}
let fun_body =
body.into_iter()
let fun_body = body
.into_iter()
.map(|b| inferencer.fold_stmt(b))
.collect::<Result<Vec<_>, _>>()?;
let returned = inferencer.check_block(fun_body.as_slice(), &mut identifiers)?;
{
// check virtuals
let defs = ctx.definitions.read();
for (subtype, base, loc) in &*inferencer.virtual_checks {
let base_id = {
let base = inferencer.unifier.get_ty(*base);
if let TypeEnum::TObj { obj_id, .. } = &*base {
*obj_id
} else {
return Err(HashSet::from([format!(
"Base type should be a class (at {loc})"
)]));
}
};
let subtype_id = {
let ty = inferencer.unifier.get_ty(*subtype);
if let TypeEnum::TObj { obj_id, .. } = &*ty {
*obj_id
} else {
let returned = inferencer.check_block(fun_body.as_slice(), &mut identifiers)?;
{
// check virtuals
let defs = ctx.definitions.read();
for (subtype, base, loc) in &*inferencer.virtual_checks {
let base_id = {
let base = inferencer.unifier.get_ty(*base);
if let TypeEnum::TObj { obj_id, .. } = &*base {
*obj_id
} else {
return Err(HashSet::from([format!(
"Base type should be a class (at {loc})"
)]));
}
};
let subtype_id = {
let ty = inferencer.unifier.get_ty(*subtype);
if let TypeEnum::TObj { obj_id, .. } = &*ty {
*obj_id
} else {
let base_repr = inferencer.unifier.stringify(*base);
let subtype_repr = inferencer.unifier.stringify(*subtype);
return Err(HashSet::from([format!(
"Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"),
]));
}
};
let subtype_entry = defs[subtype_id.0].read();
let TopLevelDef::Class { ancestors, .. } = &*subtype_entry else {
unreachable!()
};
let m = ancestors.iter()
.find(|kind| matches!(kind, TypeAnnotation::CustomClass { id, .. } if *id == base_id));
if m.is_none() {
let base_repr = inferencer.unifier.stringify(*base);
let subtype_repr = inferencer.unifier.stringify(*subtype);
return Err(HashSet::from([format!(
"Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"),
]));
}
};
let subtype_entry = defs[subtype_id.0].read();
let TopLevelDef::Class { ancestors, .. } = &*subtype_entry else {
unreachable!()
};
let m = ancestors.iter()
.find(|kind| matches!(kind, TypeAnnotation::CustomClass { id, .. } if *id == base_id));
if m.is_none() {
let base_repr = inferencer.unifier.stringify(*base);
let subtype_repr = inferencer.unifier.stringify(*subtype);
return Err(HashSet::from([format!(
"Expected a subtype of {base_repr}, but got {subtype_repr} (at {loc})"),
]));
}
}
}
if !unifier.unioned(inst_ret, primitives_ty.none) && !returned {
let def_ast_list = &definition_ast_list;
let ret_str = unifier.internal_stringify(
inst_ret,
&mut |id| {
let TopLevelDef::Class { name, .. } = &*def_ast_list[id].0.read()
else {
unreachable!("must be class id here")
};
if !unifier.unioned(inst_ret, primitives_ty.none) && !returned {
let def_ast_list = &definition_ast_list;
let ret_str = unifier.internal_stringify(
inst_ret,
&mut |id| {
let TopLevelDef::Class { name, .. } = &*def_ast_list[id].0.read()
else {
unreachable!("must be class id here")
};
name.to_string()
name.to_string()
},
&mut |id| format!("typevar{id}"),
&mut None,
);
return Err(HashSet::from([format!(
"expected return type of `{}` in function `{}` (at {})",
ret_str,
name,
ast.as_ref().unwrap().location
)]));
}
instance_to_stmt.insert(
get_subst_key(
unifier,
self_type,
&subst,
Some(&vars.keys().copied().collect()),
),
FunInstance {
body: Arc::new(fun_body),
unifier_id: 0,
calls: Arc::new(calls),
subst,
},
&mut |id| format!("typevar{id}"),
&mut None,
);
return Err(HashSet::from([format!(
"expected return type of `{}` in function `{}` (at {})",
ret_str,
name,
ast.as_ref().unwrap().location
)]));
}
let TopLevelDef::Function { instance_to_stmt, .. } = &mut *def.write() else {
unreachable!()
};
instance_to_stmt.insert(
get_subst_key(
unifier,
self_type,
&subst,
Some(&vars.keys().copied().collect()),
),
FunInstance {
body: Arc::new(fun_body),
unifier_id: 0,
calls: Arc::new(calls),
subst,
},
);
}
Ok(())
};
for (id, (def, ast)) in self.definition_ast_list.iter().enumerate().skip(self.builtin_num) {
if ast.is_none() {
continue;
@ -2264,59 +2156,4 @@ impl TopLevelComposer {
}
Ok(())
}
/// Step 6. Analyze and populate the types of global variables.
fn analyze_top_level_variables(&mut self) -> Result<(), HashSet<String>> {
let def_list = &self.definition_ast_list;
let temp_def_list = self.extract_def_list();
let unifier = &mut self.unifier;
let primitives_store = &self.primitives_ty;
let mut analyze = |variable_def: &Arc<RwLock<TopLevelDef>>| -> Result<_, HashSet<String>> {
let TopLevelDef::Variable { ty: dummy_ty, ty_decl, resolver, loc, .. } =
&*variable_def.read()
else {
// not top level variable def, skip
return Ok(());
};
let resolver = &**resolver.as_ref().unwrap();
if let Some(ty_decl) = ty_decl {
let ty_annotation = parse_ast_to_type_annotation_kinds(
resolver,
&temp_def_list,
unifier,
primitives_store,
ty_decl,
HashMap::new(),
)?;
let ty_from_ty_annotation = get_type_from_type_annotation_kinds(
&temp_def_list,
unifier,
primitives_store,
&ty_annotation,
&mut None,
)?;
unifier.unify(*dummy_ty, ty_from_ty_annotation).map_err(|e| {
HashSet::from([e.at(Some(loc.unwrap())).to_display(unifier).to_string()])
})?;
}
Ok(())
};
let mut errors = HashSet::new();
for (variable_def, _) in def_list.iter().skip(self.builtin_num) {
if let Err(e) = analyze(variable_def) {
errors.extend(e);
}
}
if !errors.is_empty() {
return Err(errors);
}
Ok(())
}
}

View File

@ -1,15 +1,13 @@
use std::convert::TryInto;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap};
use nac3parser::ast::{Constant, Location};
use strum::IntoEnumIterator;
use strum_macros::EnumIter;
use nac3parser::ast::{Constant, ExprKind, Location};
use super::{numpy::unpack_ndarray_var_tys, *};
use crate::{
symbol_resolver::SymbolValue,
typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap},
};
use super::*;
/// All primitive types and functions in nac3core.
#[derive(Clone, Copy, Debug, EnumIter, PartialEq, Eq)]
@ -54,6 +52,16 @@ pub enum PrimDef {
FunNpEye,
FunNpIdentity,
// NumPy ndarray property getters
FunNpSize,
FunNpShape,
FunNpStrides,
// NumPy ndarray view functions
FunNpBroadcastTo,
FunNpTranspose,
FunNpReshape,
// Miscellaneous NumPy & SciPy functions
FunNpRound,
FunNpFloor,
@ -101,8 +109,6 @@ pub enum PrimDef {
FunNpLdExp,
FunNpHypot,
FunNpNextAfter,
FunNpTranspose,
FunNpReshape,
// Linalg functions
FunNpDot,
@ -240,6 +246,16 @@ impl PrimDef {
PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None),
// NumPy NDArray property getters,
PrimDef::FunNpSize => fun("np_size", None),
PrimDef::FunNpShape => fun("np_shape", None),
PrimDef::FunNpStrides => fun("np_strides", None),
// NumPy NDArray view functions
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Miscellaneous NumPy & SciPy functions
PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunNpFloor => fun("np_floor", None),
@ -287,8 +303,6 @@ impl PrimDef {
PrimDef::FunNpLdExp => fun("np_ldexp", None),
PrimDef::FunNpHypot => fun("np_hypot", None),
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Linalg functions
PrimDef::FunNpDot => fun("np_dot", None),
@ -389,9 +403,6 @@ impl TopLevelDef {
r
}
),
TopLevelDef::Variable { name, ty, .. } => {
format!("Variable {{ name: {name:?}, ty: {:?} }}", unifier.stringify(*ty),)
}
}
}
}
@ -593,18 +604,6 @@ impl TopLevelComposer {
}
}
#[must_use]
pub fn make_top_level_variable_def(
name: String,
simple_name: StrRef,
ty: Type,
ty_decl: Option<Expr>,
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
loc: Option<Location>,
) -> TopLevelDef {
TopLevelDef::Variable { name, simple_name, ty, ty_decl, resolver, loc }
}
#[must_use]
pub fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
class_name.push('.');
@ -750,16 +749,7 @@ impl TopLevelComposer {
)
}
/// This function returns the fields that have been initialized in the `__init__` function of a class
/// The function takes as input:
/// * `class_id`: The `object_id` of the class whose function is being evaluated (check `TopLevelDef::Class`)
/// * `definition_ast_list`: A list of ast definitions and statements defined in `TopLevelComposer`
/// * `stmts`: The body of function being parsed. Each statment is analyzed to check varaible initialization statements
pub fn get_all_assigned_field(
class_id: usize,
definition_ast_list: &Vec<DefAst>,
stmts: &[Stmt<()>],
) -> Result<HashSet<StrRef>, HashSet<String>> {
pub fn get_all_assigned_field(stmts: &[Stmt<()>]) -> Result<HashSet<StrRef>, HashSet<String>> {
let mut result = HashSet::new();
for s in stmts {
match &s.node {
@ -795,138 +785,30 @@ impl TopLevelComposer {
// TODO: do not check for For and While?
ast::StmtKind::For { body, orelse, .. }
| ast::StmtKind::While { body, orelse, .. } => {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(orelse.as_slice())?);
}
ast::StmtKind::If { body, orelse, .. } => {
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
.copied()
.collect::<HashSet<_>>();
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
}
ast::StmtKind::Try { body, orelse, finalbody, .. } => {
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
.copied()
.collect::<HashSet<_>>();
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
finalbody.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(finalbody.as_slice())?);
}
ast::StmtKind::With { body, .. } => {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
}
// Variables Initialized in function calls
ast::StmtKind::Expr { value, .. } => {
let ExprKind::Call { func, .. } = &value.node else {
continue;
};
let ExprKind::Attribute { value, attr, .. } = &func.node else {
continue;
};
let ExprKind::Name { id, .. } = &value.node else {
continue;
};
// Need to consider the two cases:
// Case 1) Call to class function i.e. id = `self`
// Case 2) Call to class ancestor function i.e. id = ancestor_name
// We leave checking whether function in case 2 belonged to class ancestor or not to type checker
//
// According to current handling of `self`, function definition are fixed and do not change regardless
// of which object is passed as `self` i.e. virtual polymorphism is not supported
// Therefore, we change class id for case 2 to reflect behavior of our compiler
let class_name = if *id == "self".into() {
let ast::StmtKind::ClassDef { name, .. } =
&definition_ast_list[class_id].1.as_ref().unwrap().node
else {
unreachable!()
};
name
} else {
id
};
let parent_method = definition_ast_list.iter().find_map(|def| {
let (
class_def,
Some(ast::Located {
node: ast::StmtKind::ClassDef { name, body, .. },
..
}),
) = &def
else {
return None;
};
let TopLevelDef::Class { object_id: class_id, .. } = &*class_def.read()
else {
unreachable!()
};
if name == class_name {
body.iter().find_map(|m| {
let ast::StmtKind::FunctionDef { name, body, .. } = &m.node else {
return None;
};
if *name == *attr {
return Some((body.clone(), class_id.0));
}
None
})
} else {
None
}
});
// If method body is none then method does not exist
if let Some((method_body, class_id)) = parent_method {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
method_body.as_slice(),
)?);
} else {
return Err(HashSet::from([format!(
"{}.{} not found in class {class_name} at {}",
*id, *attr, value.location
)]));
}
result.extend(Self::get_all_assigned_field(body.as_slice())?);
}
ast::StmtKind::Pass { .. }
| ast::StmtKind::Assert { .. }
| ast::StmtKind::AnnAssign { .. } => {}
| ast::StmtKind::Expr { .. } => {}
_ => {
unimplemented!()
@ -1134,3 +1016,23 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
_ => 0,
}
}
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
/// The `ndims` must only contain 1 value.
#[must_use]
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
panic!("ndims_ty should be a TLiteral");
};
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
let ndims = values[0].clone();
u64::try_from(ndims).unwrap()
}
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
}

View File

@ -6,36 +6,36 @@ use std::{
sync::Arc,
};
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use parking_lot::RwLock;
use nac3parser::ast::{self, Expr, Location, Stmt, StrRef};
use super::codegen::CodeGenContext;
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{
FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier, VarMap,
};
use crate::{
codegen::{CodeGenContext, CodeGenerator},
codegen::CodeGenerator,
symbol_resolver::{SymbolResolver, ValueEnum},
typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{
CallId, FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, TypeVarId, Unifier,
VarMap,
},
type_inferencer::CodeLocation,
typedef::{CallId, TypeVarId},
},
};
use composer::*;
use type_annotation::*;
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use nac3parser::ast::{self, Location, Stmt, StrRef};
use parking_lot::RwLock;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub struct DefinitionId(pub usize);
pub mod builtins;
pub mod composer;
pub mod helper;
pub mod numpy;
pub mod type_annotation;
use composer::*;
use type_annotation::*;
#[cfg(test)]
mod test;
pub mod type_annotation;
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub struct DefinitionId(pub usize);
type GenCallCallback = dyn for<'ctx, 'a> Fn(
&mut CodeGenContext<'ctx, 'a>,
@ -148,25 +148,6 @@ pub enum TopLevelDef {
/// Definition location.
loc: Option<Location>,
},
Variable {
/// Qualified name of the global variable, should be unique globally.
name: String,
/// Simple name, the same as in method/function definition.
simple_name: StrRef,
/// Type of the global variable.
ty: Type,
/// The declared type of the global variable, or [`None`] if no type annotation is provided.
ty_decl: Option<Expr>,
/// Symbol resolver of the module defined the class.
resolver: Option<Arc<dyn SymbolResolver + Send + Sync>>,
/// Definition location.
loc: Option<Location>,
},
}
pub struct TopLevelContext {

View File

@ -1,10 +1,11 @@
use itertools::Itertools;
use super::helper::PrimDef;
use crate::typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
use crate::{
toplevel::helper::PrimDef,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{Type, TypeEnum, TypeVarId, Unifier, VarMap},
},
};
use itertools::Itertools;
/// Creates a `ndarray` [`Type`] with the given type arguments.
///

View File

@ -1,23 +1,21 @@
use std::{collections::HashMap, sync::Arc};
use indoc::indoc;
use parking_lot::Mutex;
use test_case::test_case;
use nac3parser::{
ast::{fold::Fold, FileName},
parser::parse_program,
};
use super::{helper::PrimDef, DefinitionId, *};
use super::*;
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::into_var_map;
use crate::{
codegen::CodeGenContext,
symbol_resolver::{SymbolResolver, ValueEnum},
toplevel::DefinitionId,
typecheck::{
type_inferencer::PrimitiveStore,
typedef::{into_var_map, Type, Unifier},
typedef::{Type, Unifier},
},
};
use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::{ast::fold::Fold, parser::parse_program};
use parking_lot::Mutex;
use std::{collections::HashMap, sync::Arc};
use test_case::test_case;
struct ResolverInternal {
id_to_type: Mutex<HashMap<StrRef, Type>>,
@ -64,7 +62,6 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}

View File

@ -1,12 +1,9 @@
use strum::IntoEnumIterator;
use super::*;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::{PrimDef, PrimDefDetails};
use crate::typecheck::typedef::VarMap;
use nac3parser::ast::Constant;
use super::{
helper::{PrimDef, PrimDefDetails},
*,
};
use crate::{symbol_resolver::SymbolValue, typecheck::typedef::VarMap};
use strum::IntoEnumIterator;
#[derive(Clone, Debug)]
pub enum TypeAnnotation {

View File

@ -1,19 +1,13 @@
use std::{
collections::{HashMap, HashSet},
iter::once,
};
use crate::toplevel::helper::PrimDef;
use super::type_inferencer::Inferencer;
use super::typedef::{Type, TypeEnum};
use nac3parser::ast::{
self, Constant, Expr, ExprKind,
Operator::{LShift, RShift},
Stmt, StmtKind, StrRef,
};
use super::{
type_inferencer::{DeclarationSource, IdentifierInfo, Inferencer},
typedef::{Type, TypeEnum},
};
use crate::toplevel::helper::PrimDef;
use std::{collections::HashSet, iter::once};
impl<'a> Inferencer<'a> {
fn should_have_value(&mut self, expr: &Expr<Option<Type>>) -> Result<(), HashSet<String>> {
@ -27,29 +21,15 @@ impl<'a> Inferencer<'a> {
fn check_pattern(
&mut self,
pattern: &Expr<Option<Type>>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
defined_identifiers: &mut HashSet<StrRef>,
) -> Result<(), HashSet<String>> {
match &pattern.node {
ExprKind::Name { id, .. } if id == &"none".into() => {
Err(HashSet::from([format!("cannot assign to a `none` (at {})", pattern.location)]))
}
ExprKind::Name { id, .. } => {
// If `id` refers to a declared symbol, reject this assignment if it is used in the
// context of an (implicit) global variable
if let Some(id_info) = defined_identifiers.get(id) {
if matches!(
id_info.source,
DeclarationSource::Global { is_explicit: Some(false) }
) {
return Err(HashSet::from([format!(
"cannot access local variable '{id}' before it is declared (at {})",
pattern.location
)]));
}
}
if !defined_identifiers.contains_key(id) {
defined_identifiers.insert(*id, IdentifierInfo::default());
if !defined_identifiers.contains(id) {
defined_identifiers.insert(*id);
}
self.should_have_value(pattern)?;
Ok(())
@ -89,7 +69,7 @@ impl<'a> Inferencer<'a> {
fn check_expr(
&mut self,
expr: &Expr<Option<Type>>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
defined_identifiers: &mut HashSet<StrRef>,
) -> Result<(), HashSet<String>> {
// there are some cases where the custom field is None
if let Some(ty) = &expr.custom {
@ -110,7 +90,7 @@ impl<'a> Inferencer<'a> {
return Ok(());
}
self.should_have_value(expr)?;
if !defined_identifiers.contains_key(id) {
if !defined_identifiers.contains(id) {
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
@ -118,22 +98,7 @@ impl<'a> Inferencer<'a> {
*id,
) {
Ok(_) => {
let is_global = self.is_id_global(*id);
defined_identifiers.insert(
*id,
IdentifierInfo {
source: match is_global {
Some(true) => {
DeclarationSource::Global { is_explicit: Some(false) }
}
Some(false) => {
DeclarationSource::Global { is_explicit: None }
}
None => DeclarationSource::Local,
},
},
);
self.defined_identifiers.insert(*id);
}
Err(e) => {
return Err(HashSet::from([format!(
@ -206,7 +171,9 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = defined_identifiers.clone();
for arg in &args.args {
// TODO: should we check the types here?
defined_identifiers.entry(arg.node.arg).or_default();
if !defined_identifiers.contains(&arg.node.arg) {
defined_identifiers.insert(arg.node.arg);
}
}
self.check_expr(body, &mut defined_identifiers)?;
}
@ -269,7 +236,7 @@ impl<'a> Inferencer<'a> {
fn check_stmt(
&mut self,
stmt: &Stmt<Option<Type>>,
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
defined_identifiers: &mut HashSet<StrRef>,
) -> Result<bool, HashSet<String>> {
match &stmt.node {
StmtKind::For { target, iter, body, orelse, .. } => {
@ -295,11 +262,9 @@ impl<'a> Inferencer<'a> {
let body_returned = self.check_block(body, &mut body_identifiers)?;
let orelse_returned = self.check_block(orelse, &mut orelse_identifiers)?;
for ident in body_identifiers.keys() {
if !defined_identifiers.contains_key(ident)
&& orelse_identifiers.contains_key(ident)
{
defined_identifiers.insert(*ident, IdentifierInfo::default());
for ident in &body_identifiers {
if !defined_identifiers.contains(ident) && orelse_identifiers.contains(ident) {
defined_identifiers.insert(*ident);
}
}
Ok(body_returned && orelse_returned)
@ -330,7 +295,7 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = defined_identifiers.clone();
let ast::ExcepthandlerKind::ExceptHandler { name, body, .. } = &handler.node;
if let Some(name) = name {
defined_identifiers.insert(*name, IdentifierInfo::default());
defined_identifiers.insert(*name);
}
self.check_block(body, &mut defined_identifiers)?;
}
@ -394,44 +359,6 @@ impl<'a> Inferencer<'a> {
}
Ok(true)
}
StmtKind::Global { names, .. } => {
for id in names {
if let Some(id_info) = defined_identifiers.get(id) {
if id_info.source == DeclarationSource::Local {
return Err(HashSet::from([format!(
"name '{id}' is referenced prior to global declaration at {}",
stmt.location,
)]));
}
continue;
}
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
self.primitives,
*id,
) {
Ok(_) => {
defined_identifiers.insert(
*id,
IdentifierInfo {
source: DeclarationSource::Global { is_explicit: Some(true) },
},
);
}
Err(e) => {
return Err(HashSet::from([format!(
"type error at identifier `{}` ({}) at {}",
id, e, stmt.location
)]))
}
}
}
Ok(false)
}
// break, raise, etc.
_ => Ok(false),
}
@ -440,7 +367,7 @@ impl<'a> Inferencer<'a> {
pub fn check_block(
&mut self,
block: &[Stmt<Option<Type>>],
defined_identifiers: &mut HashMap<StrRef, IdentifierInfo>,
defined_identifiers: &mut HashSet<StrRef>,
) -> Result<bool, HashSet<String>> {
let mut ret = false;
for stmt in block {

View File

@ -1,21 +1,17 @@
use std::{cmp::max, collections::HashMap, rc::Rc};
use itertools::{iproduct, Itertools};
use strum::IntoEnumIterator;
use nac3parser::ast::{Cmpop, Operator, StrRef, Unaryop};
use super::{
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::{extract_ndims, PrimDef};
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
use crate::typecheck::{
type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
};
use crate::{
symbol_resolver::SymbolValue,
toplevel::{
helper::PrimDef,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
};
use itertools::{iproduct, Itertools};
use nac3parser::ast::StrRef;
use nac3parser::ast::{Cmpop, Operator, Unaryop};
use std::cmp::max;
use std::collections::HashMap;
use std::rc::Rc;
use strum::IntoEnumIterator;
/// The variant of a binary operator.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
@ -524,53 +520,41 @@ pub fn typeof_binop(
}
Operator::MatMult => {
// NOTE: NumPy matmul's LHS and RHS must both be ndarrays. Scalars are not allowed.
match (&*unifier.get_ty(lhs), &*unifier.get_ty(rhs)) {
(
TypeEnum::TObj { obj_id: lhs_obj_id, .. },
TypeEnum::TObj { obj_id: rhs_obj_id, .. },
) if *lhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap()
&& *rhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap() =>
{
// LHS and RHS have valid types
}
_ => {
let lhs_str = unifier.stringify(lhs);
let rhs_str = unifier.stringify(rhs);
return Err(format!("ndarray.__matmul__ only accepts ndarray operands, but left operand has type {lhs_str}, and right operand has type {rhs_str}"));
}
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims = extract_ndims(unifier, rhs_ndims);
if !(unifier.unioned(lhs_dtype, primitives.float)
&& unifier.unioned(rhs_dtype, primitives.float))
{
return Err(format!(
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
unifier.stringify(lhs),
unifier.stringify(rhs)
));
}
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
let result_ndims = match (lhs_ndims, rhs_ndims) {
(0, _) | (_, 0) => {
return Err(
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
)
}
_ => unreachable!(),
};
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
TypeEnum::TLiteral { values, .. } => {
assert_eq!(values.len(), 1);
u64::try_from(values[0].clone()).unwrap()
}
_ => unreachable!(),
(1, 1) => 0,
(1, _) => rhs_ndims - 1,
(_, 1) => lhs_ndims - 1,
(m, n) => max(m, n),
};
match (lhs_ndims, rhs_ndims) {
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
(lhs, rhs) if lhs == 0 || rhs == 0 => {
return Err(format!(
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
u8::from(rhs == 0)
))
}
(lhs, rhs) => {
return Err(format!(
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
))
}
if result_ndims == 0 {
// If the result is unsized, NumPy returns a scalar.
primitives.float
} else {
let result_ndims_ty =
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
}
}
@ -773,7 +757,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);

View File

@ -1,13 +1,14 @@
use std::{collections::HashMap, fmt::Display};
use std::collections::HashMap;
use std::fmt::Display;
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
use crate::typecheck::{magic_methods::HasOpInfo, typedef::TypeEnum};
use super::{
magic_methods::{Binop, HasOpInfo},
typedef::{RecordKey, Type, TypeEnum, Unifier},
magic_methods::Binop,
typedef::{RecordKey, Type, Unifier},
};
use itertools::Itertools;
use nac3parser::ast::{Cmpop, Location, StrRef};
#[derive(Debug, Clone)]
pub enum TypeErrorKind {

View File

@ -1,25 +1,14 @@
use std::{
cell::RefCell,
cmp::max,
collections::{HashMap, HashSet},
convert::{From, TryInto},
iter::once,
sync::Arc,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
self,
fold::{self, Fold},
Arguments, Comprehension, ExprContext, ExprKind, Ident, Located, Location, StrRef,
};
use std::cmp::max;
use std::collections::{HashMap, HashSet};
use std::convert::{From, TryInto};
use std::iter::{self, once};
use std::{cell::RefCell, sync::Arc};
use super::{
magic_methods::*,
type_error::{TypeError, TypeErrorKind},
typedef::{
into_var_map, iter_type_vars, Call, CallId, FunSignature, FuncArg, Mapping, OperatorInfo,
into_var_map, iter_type_vars, Call, CallId, FunSignature, FuncArg, OperatorInfo,
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
},
};
@ -28,9 +17,15 @@ use crate::{
toplevel::{
helper::{arraylike_flatten_element_type, arraylike_get_ndims, PrimDef},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
type_annotation::TypeAnnotation,
TopLevelContext, TopLevelDef,
},
typecheck::typedef::Mapping,
};
use itertools::{izip, Itertools};
use nac3parser::ast::{
self,
fold::{self, Fold},
Arguments, Comprehension, ExprContext, ExprKind, Located, Location, StrRef,
};
#[cfg(test)]
@ -88,40 +83,6 @@ impl PrimitiveStore {
}
}
/// The location where an identifier declaration refers to.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum DeclarationSource {
/// Local scope.
Local,
/// Global scope.
Global {
/// Whether the identifier is declared by the use of `global` statement. This field is
/// [`None`] if the identifier does not refer to a variable.
is_explicit: Option<bool>,
},
}
/// Information regarding a defined identifier.
#[derive(Clone, Copy, Debug)]
pub struct IdentifierInfo {
/// Whether this identifier refers to a global variable.
pub source: DeclarationSource,
}
impl Default for IdentifierInfo {
fn default() -> Self {
IdentifierInfo { source: DeclarationSource::Local }
}
}
impl IdentifierInfo {
#[must_use]
pub fn new() -> IdentifierInfo {
IdentifierInfo::default()
}
}
pub struct FunctionData {
pub resolver: Arc<dyn SymbolResolver + Send + Sync>,
pub return_type: Option<Type>,
@ -130,7 +91,7 @@ pub struct FunctionData {
pub struct Inferencer<'a> {
pub top_level: &'a TopLevelContext,
pub defined_identifiers: HashMap<StrRef, IdentifierInfo>,
pub defined_identifiers: HashSet<StrRef>,
pub function_data: &'a mut FunctionData,
pub unifier: &'a mut Unifier,
pub primitives: &'a PrimitiveStore,
@ -141,7 +102,6 @@ pub struct Inferencer<'a> {
}
type InferenceError = HashSet<String>;
type OverrideResult = Result<Option<ast::Expr<Option<Type>>>, InferenceError>;
struct NaiveFolder();
impl Fold<()> for NaiveFolder {
@ -262,7 +222,9 @@ impl<'a> Fold<()> for Inferencer<'a> {
handler.location,
));
if let Some(name) = name {
self.defined_identifiers.entry(name).or_default();
if !self.defined_identifiers.contains(&name) {
self.defined_identifiers.insert(name);
}
if let Some(old_typ) = self.variable_mapping.insert(name, typ) {
let loc = handler.location;
self.unifier.unify(old_typ, typ).map_err(|e| {
@ -414,7 +376,6 @@ impl<'a> Fold<()> for Inferencer<'a> {
| ast::StmtKind::Continue { .. }
| ast::StmtKind::Expr { .. }
| ast::StmtKind::For { .. }
| ast::StmtKind::Global { .. }
| ast::StmtKind::Pass { .. }
| ast::StmtKind::Try { .. } => {}
ast::StmtKind::If { test, .. } | ast::StmtKind::While { test, .. } => {
@ -586,7 +547,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
unreachable!("must be tobj")
}
} else {
if !self.defined_identifiers.contains_key(id) {
if !self.defined_identifiers.contains(id) {
match self.function_data.resolver.get_symbol_type(
self.unifier,
&self.top_level.definitions.read(),
@ -594,22 +555,7 @@ impl<'a> Fold<()> for Inferencer<'a> {
*id,
) {
Ok(_) => {
let is_global = self.is_id_global(*id);
self.defined_identifiers.insert(
*id,
IdentifierInfo {
source: match is_global {
Some(true) => DeclarationSource::Global {
is_explicit: Some(false),
},
Some(false) => {
DeclarationSource::Global { is_explicit: None }
}
None => DeclarationSource::Local,
},
},
);
self.defined_identifiers.insert(*id);
}
Err(e) => {
return report_error(
@ -674,8 +620,8 @@ impl<'a> Inferencer<'a> {
fn infer_pattern<T>(&mut self, pattern: &ast::Expr<T>) -> Result<(), InferenceError> {
match &pattern.node {
ExprKind::Name { id, .. } => {
if !self.defined_identifiers.contains_key(id) {
self.defined_identifiers.insert(*id, IdentifierInfo::default());
if !self.defined_identifiers.contains(id) {
self.defined_identifiers.insert(*id);
}
Ok(())
}
@ -784,8 +730,8 @@ impl<'a> Inferencer<'a> {
let mut defined_identifiers = self.defined_identifiers.clone();
for arg in &args.args {
let name = &arg.node.arg;
if !defined_identifiers.contains_key(name) {
defined_identifiers.insert(*name, IdentifierInfo::default());
if !defined_identifiers.contains(name) {
defined_identifiers.insert(*name);
}
}
let fn_args: Vec<_> = args
@ -1235,6 +1181,45 @@ impl<'a> Inferencer<'a> {
}));
}
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
let ndarray = self.fold_expr(args.remove(0))?;
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
let ret_ty = TypeEnum::TTuple {
ty: iter::repeat(self.primitives.int32).take(ndims as usize).collect_vec(),
is_vararg_ctx: false,
};
let ret_ty = self.unifier.add_ty(ret_ty);
let func_ty = TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "a".into(),
default_value: None,
ty: ndarray.custom.unwrap(),
is_vararg: false,
}],
ret: ret_ty,
vars: VarMap::new(),
});
let func_ty = self.unifier.add_ty(func_ty);
return Ok(Some(Located {
location,
custom: Some(ret_ty),
node: ExprKind::Call {
func: Box::new(Located {
custom: Some(func_ty),
location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx },
}),
args: vec![ndarray],
keywords: vec![],
},
}));
}
if id == &"np_dot".into() {
let arg0 = self.fold_expr(args.remove(0))?;
let arg1 = self.fold_expr(args.remove(0))?;
@ -1602,29 +1587,36 @@ impl<'a> Inferencer<'a> {
}
// 2-argument ndarray n-dimensional creation functions
if id == &"np_full".into() && args.len() == 2 {
// Parse arguments
let shape_expr = args.remove(0);
let (ndims, shape) =
self.fold_numpy_function_call_shape_argument(*id, 0, shape_expr)?; // Special handling for `shape`
let ExprKind::List { elts, .. } = &args[0].node else {
return report_error(
format!(
"Expected List literal for first argument of {id}, got {}",
args[0].node.name()
)
.as_str(),
args[0].location,
);
};
let fill_value = self.fold_expr(args.remove(0))?;
let ndims = elts.len() as u64;
// Build the return type
let dtype = fill_value.custom.unwrap();
let arg0 = self.fold_expr(args.remove(0))?;
let arg1 = self.fold_expr(args.remove(0))?;
let ty = arg1.custom.unwrap();
let ndims = self.unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None);
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(dtype), Some(ndims));
let ret = make_ndarray_ty(self.unifier, self.primitives, Some(ty), Some(ndims));
let custom = self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg {
name: "shape".into(),
ty: shape.custom.unwrap(),
ty: arg0.custom.unwrap(),
default_value: None,
is_vararg: false,
},
FuncArg {
name: "fill_value".into(),
ty: fill_value.custom.unwrap(),
ty: arg1.custom.unwrap(),
default_value: None,
is_vararg: false,
},
@ -1642,7 +1634,7 @@ impl<'a> Inferencer<'a> {
location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx },
}),
args: vec![shape, fill_value],
args: vec![arg0, arg1],
keywords: vec![],
},
}));
@ -1719,86 +1711,6 @@ impl<'a> Inferencer<'a> {
Ok(None)
}
/// Checks whether a class method is calling parent function
/// Returns [`None`] if its not a call to parent method, otherwise
/// returns a new `func` with class name replaced by `self` and method resolved to its `DefinitionID`
///
/// e.g. A.f1(self, ...) returns Some(self.{DefintionID(f1)})
fn check_overriding(&mut self, func: &ast::Expr<()>, args: &[ast::Expr<()>]) -> OverrideResult {
// `self` must be first argument for call to parent method
if let Some(Located { node: ExprKind::Name { id, .. }, .. }) = &args.first() {
if *id != "self".into() {
return Ok(None);
}
} else {
return Ok(None);
}
let Located {
node: ExprKind::Attribute { value, attr: method_name, ctx }, location, ..
} = func
else {
return Ok(None);
};
let ExprKind::Name { id: class_name, ctx: class_ctx } = &value.node else {
return Ok(None);
};
let zelf = &self.fold_expr(args[0].clone())?;
// Check whether the method belongs to class ancestors
let def_id = self.unifier.get_ty(zelf.custom.unwrap());
let TypeEnum::TObj { obj_id, .. } = def_id.as_ref() else { unreachable!() };
let defs = self.top_level.definitions.read();
let res = {
if let TopLevelDef::Class { ancestors, .. } = &*defs[obj_id.0].read() {
let res = ancestors.iter().find_map(|f| {
let TypeAnnotation::CustomClass { id, .. } = f else { unreachable!() };
let TopLevelDef::Class { name, methods, .. } = &*defs[id.0].read() else {
unreachable!()
};
// Class names are stored as `__module__.class`
let name = name.to_string();
let (_, name) = name.rsplit_once('.').unwrap();
if name == class_name.to_string() {
return methods.iter().find_map(|f| {
if f.0 == *method_name {
return Some(*f);
}
None
});
}
None
});
res
} else {
None
}
};
match res {
Some(r) => {
let mut new_func = func.clone();
let mut new_value = value.clone();
new_value.node = ExprKind::Name { id: "self".into(), ctx: *class_ctx };
new_func.node =
ExprKind::Attribute { value: new_value.clone(), attr: *method_name, ctx: *ctx };
let mut new_func = self.fold_expr(new_func)?;
let ExprKind::Attribute { value, .. } = new_func.node else { unreachable!() };
new_func.node =
ExprKind::Attribute { value, attr: r.2 .0.to_string().into(), ctx: *ctx };
new_func.custom = Some(r.1);
Ok(Some(new_func))
}
None => report_error(
format!("Ancestor method [{class_name}.{method_name}] should be defined with same decorator as its overridden version").as_str(),
*location,
),
}
}
fn fold_call(
&mut self,
location: Location,
@ -1812,20 +1724,8 @@ impl<'a> Inferencer<'a> {
return Ok(spec_call_func);
}
// Check for call to parent method
let override_res = self.check_overriding(&func, &args)?;
let is_override = override_res.is_some();
let func = if is_override { override_res.unwrap() } else { self.fold_expr(func)? };
let func = Box::new(func);
let mut args =
args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
// TODO: Handle passing of self to functions to allow runtime lookup of functions to be called
// Currently removing `self` and using compile time function definitions
if is_override {
args.remove(0);
}
let func = Box::new(self.fold_expr(func)?);
let args = args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
let keywords = keywords
.into_iter()
.map(|v| fold::fold_keyword(self, v))
@ -2685,22 +2585,4 @@ impl<'a> Inferencer<'a> {
self.constrain(body.custom.unwrap(), orelse.custom.unwrap(), &body.location)?;
Ok(body.custom.unwrap())
}
/// Determines whether the given `id` refers to a global symbol.
///
/// Returns `Some(true)` if `id` refers to a global variable, `Some(false)` if `id` refers to a
/// class/function, and `None` if `id` refers to a local symbol.
pub(super) fn is_id_global(&self, id: Ident) -> Option<bool> {
self.top_level
.definitions
.read()
.iter()
.map(|def| match *def.read() {
TopLevelDef::Class { name, .. } => (name, false),
TopLevelDef::Function { simple_name, .. } => (simple_name, false),
TopLevelDef::Variable { simple_name, .. } => (simple_name, true),
})
.find(|(global, _)| global == &id)
.map(|(_, has_explicit_prop)| has_explicit_prop)
}
}

View File

@ -1,19 +1,17 @@
use std::iter::zip;
use indexmap::IndexMap;
use indoc::indoc;
use parking_lot::RwLock;
use test_case::test_case;
use nac3parser::{ast::FileName, parser::parse_program};
use super::super::{magic_methods::with_fields, typedef::*};
use super::*;
use crate::{
codegen::{CodeGenContext, CodeGenerator},
codegen::CodeGenContext,
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, DefinitionId, TopLevelDef},
typecheck::{magic_methods::with_fields, typedef::*},
};
use indexmap::IndexMap;
use indoc::indoc;
use nac3parser::ast::FileName;
use nac3parser::parser::parse_program;
use parking_lot::RwLock;
use std::iter::zip;
use test_case::test_case;
struct Resolver {
id_to_type: HashMap<StrRef, Type>,
@ -43,7 +41,6 @@ impl SymbolResolver for Resolver {
&self,
_: StrRef,
_: &mut CodeGenContext<'ctx, '_>,
_: &mut dyn CodeGenerator,
) -> Option<ValueEnum<'ctx>> {
unimplemented!()
}
@ -520,7 +517,7 @@ impl TestEnvironment {
primitives: &mut self.primitives,
virtual_checks: &mut self.virtual_checks,
calls: &mut self.calls,
defined_identifiers: HashMap::default(),
defined_identifiers: HashSet::default(),
in_handler: false,
}
}
@ -596,9 +593,8 @@ fn test_basic(source: &str, mapping: &HashMap<&str, &str>, virtuals: &[(&str, &s
println!("source:\n{source}");
let mut env = TestEnvironment::new();
let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashMap<_, _> =
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
defined_identifiers.insert("virtual".into());
let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap();
@ -743,9 +739,8 @@ fn test_primitive_magic_methods(source: &str, mapping: &HashMap<&str, &str>) {
println!("source:\n{source}");
let mut env = TestEnvironment::basic_test_env();
let id_to_name = std::mem::take(&mut env.id_to_name);
let mut defined_identifiers: HashMap<_, _> =
env.identifier_mapping.keys().copied().map(|id| (id, IdentifierInfo::default())).collect();
defined_identifiers.insert("virtual".into(), IdentifierInfo::default());
let mut defined_identifiers: HashSet<_> = env.identifier_mapping.keys().copied().collect();
defined_identifiers.insert("virtual".into());
let mut inferencer = env.get_inferencer();
inferencer.defined_identifiers.clone_from(&defined_identifiers);
let statements = parse_program(source, FileName::default()).unwrap();

View File

@ -1,28 +1,21 @@
use std::{
borrow::Cow,
cell::RefCell,
collections::{HashMap, HashSet},
fmt::{self, Display},
iter::{repeat, zip},
rc::Rc,
sync::{Arc, Mutex},
};
use super::magic_methods::{Binop, HasOpInfo};
use super::type_error::{TypeError, TypeErrorKind};
use super::unification_table::{UnificationKey, UnificationTable};
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef;
use crate::toplevel::{DefinitionId, TopLevelContext, TopLevelDef};
use crate::typecheck::magic_methods::OpInfo;
use crate::typecheck::type_inferencer::PrimitiveStore;
use indexmap::IndexMap;
use itertools::{repeat_n, Itertools};
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
use super::{
magic_methods::{Binop, HasOpInfo, OpInfo},
type_error::{TypeError, TypeErrorKind},
type_inferencer::PrimitiveStore,
unification_table::{UnificationKey, UnificationTable},
};
use crate::{
symbol_resolver::SymbolValue,
toplevel::{helper::PrimDef, DefinitionId, TopLevelContext, TopLevelDef},
};
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt::{self, Display};
use std::iter::{repeat, zip};
use std::rc::Rc;
use std::sync::{Arc, Mutex};
use std::{borrow::Cow, collections::HashSet};
#[cfg(test)]
mod test;
@ -677,8 +670,8 @@ impl Unifier {
let num_args = posargs.len() + kwargs.len();
// Now we check the arguments against the parameters,
// and depending on what `call_info` is, we might change how `unify_call()` behaves
// to improve user error messages when type checking fails.
// and depending on what `call_info` is, we might change how the behavior `unify_call()`
// in hopes to improve user error messages when type checking fails.
match operator_info {
Some(OperatorInfo::IsBinaryOp { self_type, operator }) => {
// The call is written in the form of (say) `a + b`.

View File

@ -1,12 +1,10 @@
use std::collections::HashMap;
use super::super::magic_methods::with_fields;
use super::*;
use indoc::indoc;
use itertools::Itertools;
use std::collections::HashMap;
use test_case::test_case;
use super::*;
use crate::typecheck::magic_methods::with_fields;
impl Unifier {
/// Check whether two types are equal.
fn eq(&mut self, a: Type, b: Type) -> bool {

View File

@ -21,12 +21,13 @@
clippy::wildcard_imports
)]
use std::{collections::HashMap, mem, ptr, slice, str};
use byteorder::{ByteOrder, LittleEndian};
use dwarf::*;
use elf::*;
use std::collections::HashMap;
use std::{mem, ptr, slice, str};
extern crate byteorder;
use byteorder::{ByteOrder, LittleEndian};
mod dwarf;
mod elf;

View File

@ -8,15 +8,15 @@ license = "MIT"
edition = "2021"
[build-dependencies]
lalrpop = "0.22"
lalrpop = "0.20"
[dependencies]
nac3ast = { path = "../nac3ast" }
lalrpop-util = "0.22"
lalrpop-util = "0.20"
log = "0.4"
unic-emoji-char = "0.9"
unic-ucd-ident = "0.9"
unicode_names2 = "1.3"
unicode_names2 = "1.2"
phf = { version = "0.11", features = ["macros"] }
ahash = "0.8"

View File

@ -1,10 +1,8 @@
use crate::{
ast::{Ident, Location},
error::*,
token::Tok,
};
use crate::ast::Ident;
use crate::ast::Location;
use crate::error::*;
use crate::token::Tok;
use lalrpop_util::ParseError;
use nac3ast::*;
pub fn make_config_comment(

View File

@ -1,11 +1,12 @@
//! Define internal parse error types
//! The goal is to provide a matching and a safe error API, maksing errors from LALR
use std::error::Error;
use std::fmt;
use lalrpop_util::ParseError as LalrpopError;
use crate::{ast::Location, token::Tok};
use crate::ast::Location;
use crate::token::Tok;
use std::error::Error;
use std::fmt;
/// Represents an error during lexical scanning.
#[derive(Debug, PartialEq)]

View File

@ -1,11 +1,12 @@
use std::{iter, mem, str};
use std::iter;
use std::mem;
use std::str;
use crate::ast::{Constant, ConversionFlag, Expr, ExprKind, Location};
use crate::error::{FStringError, FStringErrorType, ParseError};
use crate::parser::parse_expression;
use self::FStringErrorType::*;
use crate::{
ast::{Constant, ConversionFlag, Expr, ExprKind, Location},
error::{FStringError, FStringErrorType, ParseError},
parser::parse_expression,
};
struct FStringParser<'a> {
chars: iter::Peekable<str::Chars<'a>>,

View File

@ -1,11 +1,8 @@
use ahash::RandomState;
use std::collections::HashSet;
use ahash::RandomState;
use crate::{
ast,
error::{LexicalError, LexicalErrorType},
};
use crate::ast;
use crate::error::{LexicalError, LexicalErrorType};
pub struct ArgumentList {
pub args: Vec<ast::Expr>,

View File

@ -1,16 +1,16 @@
//! This module takes care of lexing python source text.
//!
//! This means source code is translated into separate tokens.
use std::{char, cmp::Ordering, num::IntErrorKind, str::FromStr};
use unic_emoji_char::is_emoji_presentation;
use unic_ucd_ident::{is_xid_continue, is_xid_start};
pub use super::token::Tok;
use crate::{
ast::{FileName, Location},
error::{LexicalError, LexicalErrorType},
};
use crate::ast::{FileName, Location};
use crate::error::{LexicalError, LexicalErrorType};
use std::char;
use std::cmp::Ordering;
use std::num::IntErrorKind;
use std::str::FromStr;
use unic_emoji_char::is_emoji_presentation;
use unic_ucd_ident::{is_xid_continue, is_xid_start};
#[derive(Clone, Copy, PartialEq, Debug, Default)]
struct IndentationLevel {

View File

@ -5,16 +5,14 @@
//! parse a whole program, a single statement, or a single
//! expression.
use nac3ast::Location;
use std::iter;
use nac3ast::Location;
use crate::ast::{self, FileName};
use crate::error::ParseError;
use crate::lexer;
pub use crate::mode::Mode;
use crate::{
ast::{self, FileName},
error::ParseError,
lexer, python,
};
use crate::python;
/*
* Parse python code.

View File

@ -1,8 +1,7 @@
//! Different token definitions.
//! Loosely based on token.h from CPython source:
use std::fmt::{self, Write};
use crate::ast;
use std::fmt::{self, Write};
/// Python source code can be tokenized in a sequence of these tokens.
#[derive(Clone, Debug, PartialEq)]

View File

@ -9,8 +9,14 @@ no-escape-analysis = ["nac3core/no-escape-analysis"]
[dependencies]
parking_lot = "0.12"
nac3parser = { path = "../nac3parser" }
nac3core = { path = "../nac3core" }
[dependencies.clap]
version = "4.5"
features = ["derive"]
[dependencies.inkwell]
version = "0.4"
default-features = false
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]

Some files were not shown because too many files have changed in this diff Show More