Compare commits
70 Commits
master
...
to-models-
Author | SHA1 | Date | |
---|---|---|---|
c845924c20 | |||
2941e8e865 | |||
4e3e490b92 | |||
aad4fafcba | |||
9e005e9b07 | |||
7e45c104be | |||
d2650e6979 | |||
2d799d13e2 | |||
2fa3ada445 | |||
787fe23202 | |||
5a893e1c15 | |||
2b29f7b0f5 | |||
122f55e615 | |||
c0cace843d | |||
5c68ef00ac | |||
3782791323 | |||
ac6c7c5985 | |||
8b0305ab6b | |||
be4b04dbb3 | |||
e652919b8e | |||
ef391b81aa | |||
ad5506bff1 | |||
31931b7b26 | |||
be6d704020 | |||
117110dd91 | |||
c582ffe53d | |||
51b1921e05 | |||
50457f19e6 | |||
54f7e1edfd | |||
1562a938a1 | |||
00800ba6ee | |||
b9e00eb8a5 | |||
566ce7df50 | |||
70c26561e1 | |||
4fef633090 | |||
ae351f7678 | |||
3efae534f7 | |||
adca310424 | |||
e8e4801c92 | |||
9bdc520bbc | |||
9bd08f8de8 | |||
5f94f4a4cd | |||
a2a1e74be0 | |||
99eac99db2 | |||
70e1349d32 | |||
ada6e95d75 | |||
4dcbaed8ee | |||
0bb2b02daa | |||
df6916dbe8 | |||
0a874da5fc | |||
c74b1eb9d8 | |||
bda003989e | |||
5411ac5c88 | |||
1c317f9205 | |||
701e45364c | |||
fd1a9f4f77 | |||
f9b8071df9 | |||
48fb3ff5ad | |||
4777909543 | |||
2ae9196540 | |||
851ae28460 | |||
7c604237b3 | |||
1c7ce22fd5 | |||
9d3d552e93 | |||
d6deb5af26 | |||
e3f3c498fe | |||
20781d11fd | |||
ecd72e8cad | |||
b2183fba24 | |||
3c4d04e7c9 |
3
.clang-format
Normal file
3
.clang-format
Normal file
@ -0,0 +1,3 @@
|
||||
BasedOnStyle: Microsoft
|
||||
IndentWidth: 4
|
||||
ReflowComments: false
|
@ -1,12 +1,9 @@
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayType,
|
||||
NDArrayValue, RangeValue, UntypedArrayLikeAccessor,
|
||||
},
|
||||
expr::{destructure_range, gen_call},
|
||||
irrt::call_ndarray_calc_size,
|
||||
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
|
||||
expr::gen_call,
|
||||
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject, ndarray::NDArrayObject, range::RangeObject},
|
||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
@ -20,7 +17,7 @@ use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
module::Linkage,
|
||||
types::{BasicType, IntType},
|
||||
types::IntType,
|
||||
values::{BasicValueEnum, PointerValue, StructValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
@ -456,58 +453,41 @@ fn format_rpc_arg<'ctx>(
|
||||
// NAC3: NDArray = { usize, usize*, T* }
|
||||
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
||||
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let ndarray = AnyObject { ty: arg_ty, value: arg };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
||||
let llvm_arg_ty =
|
||||
NDArrayType::new(generator, ctx.ctx, ctx.get_llvm_type(generator, elem_ty));
|
||||
let llvm_arg = NDArrayValue::from_ptr_val(arg.into_pointer_value(), llvm_usize, None);
|
||||
let dtype = ctx.get_llvm_type(generator, ndarray.dtype);
|
||||
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
||||
|
||||
let llvm_usize_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let llvm_pdata_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
llvm_arg_ty.element_type().ptr_type(AddressSpace::default()).size_of(),
|
||||
llvm_usize,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
// `ndarray.data` is possibly not contiguous. We need to force it to be continuous,
|
||||
// and we might have to copy the whole ndarray.
|
||||
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
|
||||
|
||||
let dims_buf_sz =
|
||||
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx);
|
||||
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
|
||||
|
||||
let buffer_size =
|
||||
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
|
||||
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx);
|
||||
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
|
||||
|
||||
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
|
||||
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
|
||||
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
|
||||
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata);
|
||||
|
||||
let ppdata = generator.gen_var_alloc(ctx, llvm_arg_ty.element_type(), None).unwrap();
|
||||
ctx.builder.build_store(ppdata, llvm_arg.data().base_ptr(ctx, generator)).unwrap();
|
||||
// buf = { data: void*, shape: [size_t; ndims]; }
|
||||
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value);
|
||||
let buf_data = buf;
|
||||
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value);
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
buffer.base_ptr(ctx, generator),
|
||||
ppdata,
|
||||
llvm_pdata_sizeof,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
// Write to `buf->data`
|
||||
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any>
|
||||
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte));
|
||||
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value);
|
||||
|
||||
let pbuffer_dims_begin =
|
||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
pbuffer_dims_begin,
|
||||
llvm_arg.dim_sizes().base_ptr(ctx, generator),
|
||||
dims_buf_sz,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
// Write to `buf->shape`
|
||||
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte));
|
||||
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value);
|
||||
|
||||
buffer.base_ptr(ctx, generator)
|
||||
buf.value
|
||||
}
|
||||
|
||||
_ => {
|
||||
@ -1034,14 +1014,16 @@ fn polymorphic_print<'ctx>(
|
||||
args.extend(&[str_len.into(), str_data.into()]);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
||||
let elem_ty = *params.iter().next().unwrap().1;
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
|
||||
fmt.push('[');
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||
let len = val.load_size(ctx, None);
|
||||
let list = AnyObject { ty, value };
|
||||
let list = ListObject::from_object(generator, ctx, list);
|
||||
|
||||
let items = list.instance.get(generator, ctx, |f| f.items);
|
||||
|
||||
let len = list.instance.get(generator, ctx, |f| f.len).value;
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
|
||||
@ -1052,12 +1034,12 @@ fn polymorphic_print<'ctx>(
|
||||
llvm_usize.const_zero(),
|
||||
(len, false),
|
||||
|generator, ctx, _, i| {
|
||||
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
|
||||
let item = items.get_index(generator, ctx, i).value;
|
||||
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(elem_ty, elem.into())],
|
||||
&[(list.item_type, item.into())],
|
||||
"",
|
||||
None,
|
||||
true,
|
||||
@ -1091,56 +1073,46 @@ fn polymorphic_print<'ctx>(
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
|
||||
fmt.push_str("array([");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
let ndarray = AnyObject { ty, value };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(len, false),
|
||||
|generator, ctx, _, i| {
|
||||
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
|
||||
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(elem_ty, elem.into())],
|
||||
"",
|
||||
None,
|
||||
true,
|
||||
as_rtio,
|
||||
)?;
|
||||
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
|
||||
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||
let i = hdl.get_index(generator, ctx);
|
||||
let scalar = hdl.get_scalar(generator, ctx);
|
||||
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, i, last, "")
|
||||
.unwrap())
|
||||
},
|
||||
|generator, ctx| {
|
||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||
// if (i != 0) { puts(", "); }
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
let not_first = i.compare(ctx, IntPredicate::NE, num_0);
|
||||
Ok(not_first.value)
|
||||
},
|
||||
|generator, ctx| {
|
||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||
Ok(())
|
||||
},
|
||||
|_, _| Ok(()),
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, _| Ok(()),
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
// Print element
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(scalar.ty, scalar.value.into())],
|
||||
"",
|
||||
None,
|
||||
true,
|
||||
as_rtio,
|
||||
)?;
|
||||
Ok(())
|
||||
})?;
|
||||
|
||||
fmt.push_str(")]");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
@ -1150,9 +1122,13 @@ fn polymorphic_print<'ctx>(
|
||||
fmt.push_str("range(");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
|
||||
let range = AnyObject { ty, value };
|
||||
let range = RangeObject::from_object(generator, ctx, range);
|
||||
|
||||
let (start, stop, step) = destructure_range(ctx, val);
|
||||
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||
let start = start.value;
|
||||
let stop = stop.value;
|
||||
let step = step.value;
|
||||
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
|
@ -33,6 +33,7 @@ use inkwell::{
|
||||
OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
||||
use nac3core::toplevel::builtins::get_exn_constructor;
|
||||
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
||||
@ -557,6 +558,11 @@ impl Nac3 {
|
||||
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
|
||||
.unwrap();
|
||||
|
||||
// Process IRRT
|
||||
let context = inkwell::context::Context::create();
|
||||
let irrt = load_irrt(&context);
|
||||
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||
|
||||
let fun_signature =
|
||||
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
||||
let mut store = ConcreteTypeStore::new();
|
||||
@ -727,7 +733,7 @@ impl Nac3 {
|
||||
membuffer.lock().push(buffer);
|
||||
});
|
||||
|
||||
let context = inkwell::context::Context::create();
|
||||
// Link all modules into `main`.
|
||||
let buffers = membuffers.lock();
|
||||
let main = context
|
||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||
@ -756,8 +762,7 @@ impl Nac3 {
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
main.link_in_module(load_irrt(&context))
|
||||
.map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||
|
||||
let mut function_iter = main.get_first_function();
|
||||
while let Some(func) = function_iter {
|
||||
|
@ -1,14 +1,15 @@
|
||||
use crate::PrimitivePythonId;
|
||||
use inkwell::{
|
||||
module::Linkage,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::BasicValueEnum,
|
||||
types::BasicType,
|
||||
values::{BasicValue, BasicValueEnum},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
classes::{NDArrayType, ProxyType},
|
||||
model::*,
|
||||
object::ndarray::{make_contiguous_strides, NDArray},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
||||
@ -26,7 +27,7 @@ use nac3parser::ast::{self, StrRef};
|
||||
use parking_lot::{Mutex, RwLock};
|
||||
use pyo3::{
|
||||
types::{PyDict, PyTuple},
|
||||
PyAny, PyObject, PyResult, Python,
|
||||
PyAny, PyErr, PyObject, PyResult, Python,
|
||||
};
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
@ -1086,15 +1087,12 @@ impl InnerResolver {
|
||||
let (ndarray_dtype, ndarray_ndims) =
|
||||
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
|
||||
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
|
||||
|
||||
let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
|
||||
{
|
||||
if self.global_value_ids.read().contains_key(&id) {
|
||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||
ctx.module.add_global(
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
Struct(NDArray).get_type(generator, ctx.ctx),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
)
|
||||
@ -1114,100 +1112,138 @@ impl InnerResolver {
|
||||
} else {
|
||||
todo!("Unpacking literal of more than one element unimplemented")
|
||||
};
|
||||
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
|
||||
let Ok(ndims) = u64::try_from(ndarray_ndims) else {
|
||||
unreachable!("Expected u64 value for ndarray_ndims")
|
||||
};
|
||||
|
||||
// Obtain the shape of the ndarray
|
||||
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
||||
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
|
||||
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
|
||||
assert_eq!(shape_tuple.len(), ndims as usize);
|
||||
|
||||
// The Rust type inferencer cannot figure this out
|
||||
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, elem)| {
|
||||
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
|
||||
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
|
||||
)
|
||||
let value = self
|
||||
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})?
|
||||
.unwrap();
|
||||
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap();
|
||||
Ok(value)
|
||||
})
|
||||
.collect();
|
||||
let shape_values = shape_values?.unwrap();
|
||||
let shape_values = llvm_usize.const_array(
|
||||
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
|
||||
);
|
||||
let shape_values = shape_values?;
|
||||
|
||||
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
|
||||
let shape_u64s = shape_values
|
||||
.iter()
|
||||
.map(|dim| {
|
||||
assert!(dim.value.is_const());
|
||||
dim.value.get_zero_extended_constant().unwrap()
|
||||
})
|
||||
.collect_vec();
|
||||
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values);
|
||||
|
||||
// create a global for ndarray.shape and initialize it using the shape
|
||||
let shape_global = ctx.module.add_global(
|
||||
llvm_usize.array_type(ndarray_ndims as u32),
|
||||
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".shape"),
|
||||
);
|
||||
shape_global.set_initializer(&shape_values);
|
||||
shape_global.set_initializer(&shape_values.value);
|
||||
|
||||
// Obtain the (flattened) elements of the ndarray
|
||||
let sz: usize = obj.getattr("size")?.extract()?;
|
||||
let data: Result<Option<Vec<_>>, _> = (0..sz)
|
||||
let data_values: Vec<Instance<'ctx, Any>> = (0..sz)
|
||||
.map(|i| {
|
||||
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
||||
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})
|
||||
let value = self
|
||||
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!(
|
||||
"Error getting element {i}: {e}"
|
||||
))
|
||||
})?
|
||||
.unwrap();
|
||||
|
||||
let value = dtype.check_value(generator, ctx.ctx, value).unwrap();
|
||||
Ok(value)
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
let data = data?.unwrap().into_iter();
|
||||
let data = match ndarray_dtype_llvm_ty {
|
||||
BasicTypeEnum::ArrayType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::FloatType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::IntType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::PointerType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::StructType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::VectorType(_) => unreachable!(),
|
||||
};
|
||||
.try_collect()?;
|
||||
let data = dtype.const_array(generator, ctx.ctx, &data_values);
|
||||
|
||||
// create a global for ndarray.data and initialize it using the elements
|
||||
//
|
||||
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
|
||||
// We will have to cast it to an `u8*` later.
|
||||
let data_global = ctx.module.add_global(
|
||||
ndarray_dtype_llvm_ty.array_type(sz as u32),
|
||||
Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".data"),
|
||||
);
|
||||
data_global.set_initializer(&data);
|
||||
data_global.set_initializer(&data.value);
|
||||
|
||||
// Get the constant itemsize.
|
||||
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap();
|
||||
let itemsize = itemsize.get_zero_extended_constant().unwrap();
|
||||
|
||||
// Create the strides needed for ndarray.strides
|
||||
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
|
||||
let strides = strides
|
||||
.into_iter()
|
||||
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride))
|
||||
.collect_vec();
|
||||
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
|
||||
|
||||
// create a global for ndarray.strides and initialize it
|
||||
let strides_global = ctx.module.add_global(
|
||||
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".strides"),
|
||||
);
|
||||
strides_global.set_initializer(&strides.value);
|
||||
|
||||
// create a global for the ndarray object and initialize it
|
||||
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
|
||||
llvm_usize.const_int(ndarray_ndims, false).into(),
|
||||
shape_global
|
||||
.as_pointer_value()
|
||||
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
|
||||
.into(),
|
||||
data_global
|
||||
.as_pointer_value()
|
||||
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
|
||||
.into(),
|
||||
]);
|
||||
// We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
|
||||
|
||||
let ndarray = ctx.module.add_global(
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
// NOTE: data_global is an array of dtype, we want a `u8*`.
|
||||
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
|
||||
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
|
||||
|
||||
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize);
|
||||
|
||||
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims as u64);
|
||||
|
||||
let ndarray_shape =
|
||||
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
|
||||
|
||||
let ndarray_strides =
|
||||
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap();
|
||||
|
||||
let ndarray = Struct(NDArray).const_struct(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
&[
|
||||
ndarray_data.value.as_basic_value_enum(),
|
||||
ndarray_itemsize.value.as_basic_value_enum(),
|
||||
ndarray_ndims.value.as_basic_value_enum(),
|
||||
ndarray_shape.value.as_basic_value_enum(),
|
||||
ndarray_strides.value.as_basic_value_enum(),
|
||||
],
|
||||
);
|
||||
|
||||
let ndarray_global = ctx.module.add_global(
|
||||
Struct(NDArray).get_type(generator, ctx.ctx),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
);
|
||||
ndarray.set_initializer(&value);
|
||||
ndarray_global.set_initializer(&ndarray.value);
|
||||
|
||||
Ok(Some(ndarray.as_pointer_value().into()))
|
||||
Ok(Some(ndarray_global.as_pointer_value().into()))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
||||
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
||||
|
@ -8,37 +8,50 @@ use std::{
|
||||
};
|
||||
|
||||
fn main() {
|
||||
const FILE: &str = "src/codegen/irrt/irrt.cpp";
|
||||
// Define relevant directories
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
let irrt_dir = Path::new("irrt");
|
||||
|
||||
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||
|
||||
/*
|
||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
||||
*/
|
||||
let flags: &[&str] = &[
|
||||
let mut flags: Vec<&str> = vec![
|
||||
"--target=wasm32",
|
||||
FILE,
|
||||
"-x",
|
||||
"c++",
|
||||
"-fno-discard-value-names",
|
||||
"-fno-exceptions",
|
||||
"-fno-rtti",
|
||||
match env::var("PROFILE").as_deref() {
|
||||
Ok("debug") => "-O0",
|
||||
Ok("release") => "-O3",
|
||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||
},
|
||||
"-emit-llvm",
|
||||
"-S",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-o",
|
||||
"-",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
println!("cargo:rerun-if-changed={FILE}");
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_path = Path::new(&out_dir);
|
||||
match env::var("PROFILE").as_deref() {
|
||||
Ok("debug") => {
|
||||
flags.push("-O0");
|
||||
flags.push("-DIRRT_DEBUG_ASSERT");
|
||||
}
|
||||
Ok("release") => {
|
||||
flags.push("-O3");
|
||||
}
|
||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||
}
|
||||
|
||||
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
|
||||
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||
|
||||
// Compile IRRT and capture the LLVM IR output
|
||||
let output = Command::new("clang-irrt")
|
||||
.args(flags)
|
||||
.output()
|
||||
@ -52,7 +65,17 @@ fn main() {
|
||||
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
||||
let mut filtered_output = String::with_capacity(output.len());
|
||||
|
||||
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
|
||||
// Filter out irrelevant IR
|
||||
//
|
||||
// Regex:
|
||||
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
|
||||
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
|
||||
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
|
||||
// - `(?m:^@.+?=.+$)` captures global constants
|
||||
let regex_filter = Regex::new(
|
||||
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
|
||||
)
|
||||
.unwrap();
|
||||
for f in regex_filter.captures_iter(&output) {
|
||||
assert_eq!(f.len(), 1);
|
||||
filtered_output.push_str(&f[0]);
|
||||
@ -63,18 +86,24 @@ fn main() {
|
||||
.unwrap()
|
||||
.replace_all(&filtered_output, "");
|
||||
|
||||
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
|
||||
if env::var("DEBUG_DUMP_IRRT").is_ok() {
|
||||
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
|
||||
// For debugging
|
||||
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
|
||||
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
|
||||
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
|
||||
if env::var(DEBUG_DUMP_IRRT).is_ok() {
|
||||
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
|
||||
file.write_all(output.as_bytes()).unwrap();
|
||||
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
|
||||
|
||||
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
|
||||
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||
}
|
||||
|
||||
// Assemble the emitted and filtered IR to .bc
|
||||
// That .bc will be integrated into nac3core's codegen
|
||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
||||
.stdin(Stdio::piped())
|
||||
.arg("-o")
|
||||
.arg(out_path.join("irrt.bc"))
|
||||
.arg(out_dir.join("irrt.bc"))
|
||||
.spawn()
|
||||
.unwrap();
|
||||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||
|
15
nac3core/irrt/irrt.cpp
Normal file
15
nac3core/irrt/irrt.cpp
Normal file
@ -0,0 +1,15 @@
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
#include <irrt/ndarray/array.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/broadcast.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/ndarray/indexing.hpp>
|
||||
#include <irrt/ndarray/iter.hpp>
|
||||
#include <irrt/ndarray/matmul.hpp>
|
||||
#include <irrt/ndarray/reshape.hpp>
|
||||
#include <irrt/ndarray/transpose.hpp>
|
||||
#include <irrt/original.hpp>
|
||||
#include <irrt/slice.hpp>
|
9
nac3core/irrt/irrt/cslice.hpp
Normal file
9
nac3core/irrt/irrt/cslice.hpp
Normal file
@ -0,0 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
template <typename SizeT> struct CSlice
|
||||
{
|
||||
uint8_t *base;
|
||||
SizeT len;
|
||||
};
|
20
nac3core/irrt/irrt/cstr_util.hpp
Normal file
20
nac3core/irrt/irrt/cstr_util.hpp
Normal file
@ -0,0 +1,20 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
namespace cstr
|
||||
{
|
||||
/**
|
||||
* @brief Implementation of `strlen()`.
|
||||
*/
|
||||
uint32_t length(const char *str)
|
||||
{
|
||||
uint32_t length = 0;
|
||||
while (*str != '\0')
|
||||
{
|
||||
length++;
|
||||
str++;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
} // namespace cstr
|
21
nac3core/irrt/irrt/debug.hpp
Normal file
21
nac3core/irrt/irrt/debug.hpp
Normal file
@ -0,0 +1,21 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||
#else
|
||||
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||
#endif
|
||||
|
||||
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
|
||||
raise_exception(SizeT, EXN_ASSERTION_ERROR, \
|
||||
"IRRT debug assert failed: " msg, param1, param2, param3);
|
||||
|
||||
#define debug_assert_eq(SizeT, lhs, rhs) \
|
||||
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) { \
|
||||
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
|
||||
}
|
||||
|
||||
#define debug_assert(SizeT, expr) \
|
||||
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) { \
|
||||
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
|
||||
}
|
80
nac3core/irrt/irrt/exception.hpp
Normal file
80
nac3core/irrt/irrt/exception.hpp
Normal file
@ -0,0 +1,80 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/cslice.hpp>
|
||||
#include <irrt/cstr_util.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
/**
|
||||
* @brief The int type of ARTIQ exception IDs.
|
||||
*/
|
||||
typedef int32_t ExceptionId;
|
||||
|
||||
/*
|
||||
* Set of exceptions C++ IRRT can use.
|
||||
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
|
||||
*/
|
||||
extern "C"
|
||||
{
|
||||
ExceptionId EXN_INDEX_ERROR;
|
||||
ExceptionId EXN_VALUE_ERROR;
|
||||
ExceptionId EXN_ASSERTION_ERROR;
|
||||
ExceptionId EXN_TYPE_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Extern function to `__nac3_raise`
|
||||
*
|
||||
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||
*/
|
||||
extern "C" void __nac3_raise(void *err);
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief NAC3's Exception struct
|
||||
*/
|
||||
template <typename SizeT> struct Exception
|
||||
{
|
||||
ExceptionId id;
|
||||
CSlice<SizeT> filename;
|
||||
int32_t line;
|
||||
int32_t column;
|
||||
CSlice<SizeT> function;
|
||||
CSlice<SizeT> msg;
|
||||
int64_t params[3];
|
||||
};
|
||||
|
||||
const int64_t NO_PARAM = 0;
|
||||
|
||||
template <typename SizeT>
|
||||
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
|
||||
int64_t param0, int64_t param1, int64_t param2)
|
||||
{
|
||||
Exception<SizeT> e = {
|
||||
.id = id,
|
||||
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
|
||||
.line = line,
|
||||
.column = 0,
|
||||
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
|
||||
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
|
||||
};
|
||||
e.params[0] = param0;
|
||||
e.params[1] = param1;
|
||||
e.params[2] = param2;
|
||||
__nac3_raise((void *)&e);
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||
* @param SizeT The runtime `size_t` type.
|
||||
* @param id The ID of the exception to raise.
|
||||
* @param msg A global constant C-string of the error message.
|
||||
*
|
||||
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
|
||||
* `NO_PARAM` to indicate they are unused.
|
||||
*/
|
||||
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
|
||||
} // namespace
|
8
nac3core/irrt/irrt/int_types.hpp
Normal file
8
nac3core/irrt/irrt/int_types.hpp
Normal file
@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
19
nac3core/irrt/irrt/list.hpp
Normal file
19
nac3core/irrt/irrt/list.hpp
Normal file
@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief A list in NAC3.
|
||||
*
|
||||
* The `items` field is opaque. You must rely on external contexts to
|
||||
* know how to interpret it.
|
||||
*/
|
||||
template <typename SizeT> struct List
|
||||
{
|
||||
uint8_t *items;
|
||||
SizeT len;
|
||||
};
|
||||
} // namespace
|
14
nac3core/irrt/irrt/math_util.hpp
Normal file
14
nac3core/irrt/irrt/math_util.hpp
Normal file
@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T> const T &max(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T> const T &min(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? b : a;
|
||||
}
|
||||
} // namespace
|
130
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
130
nac3core/irrt/irrt/ndarray/array.hpp
Normal file
@ -0,0 +1,130 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace array
|
||||
{
|
||||
template <typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||
{
|
||||
if (shape[axis] == -1)
|
||||
{
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len)
|
||||
{
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims)
|
||||
{
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
}
|
||||
else
|
||||
{
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++)
|
||||
{
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||
{
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||
{
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL)
|
||||
{
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray))
|
||||
{
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims)
|
||||
{
|
||||
// `list` has type `list[ItemType]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
}
|
||||
else
|
||||
{
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++)
|
||||
{
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||
{
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace array
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
|
||||
{
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
|
||||
{
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
|
||||
{
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
|
||||
{
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
380
nac3core/irrt/irrt/ndarray/basic.hpp
Normal file
380
nac3core/irrt/irrt/ndarray/basic.hpp
Normal file
@ -0,0 +1,380 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace basic
|
||||
{
|
||||
/**
|
||||
* @brief Asserts that `shape` does not contain negative dimensions.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape to check on
|
||||
*/
|
||||
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
|
||||
{
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
if (shape[axis] < 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"negative dimensions are not allowed; axis {0} "
|
||||
"has dimension {1}",
|
||||
axis, shape[axis], NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
|
||||
*
|
||||
* This function throws error messages for output shape mismatches.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
|
||||
const SizeT *output_shape)
|
||||
{
|
||||
if (ndarray_ndims != output_ndims)
|
||||
{
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||
output_ndims, ndarray_ndims, NO_PARAM);
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
|
||||
{
|
||||
if (ndarray_shape[axis] != output_shape[axis])
|
||||
{
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"Mismatched dimensions on axis {0}, output has "
|
||||
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||
axis, output_shape[axis], ndarray_shape[axis]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of elements of an ndarray given its shape.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape of the ndarray
|
||||
*/
|
||||
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
|
||||
{
|
||||
SizeT size = 1;
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
size *= shape[axis];
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||
*
|
||||
* @param ndims Number of elements in `shape` and `indices`
|
||||
* @param shape The shape of the ndarray
|
||||
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||
* @param nth The index of the element of interest.
|
||||
*/
|
||||
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
|
||||
{
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
SizeT axis = ndims - i - 1;
|
||||
SizeT dim = shape[axis];
|
||||
|
||||
indices[axis] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an `ndarray`
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.size`
|
||||
*/
|
||||
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return of the number of its content of an `ndarray`.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||
*/
|
||||
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
return size(ndarray) * ndarray->itemsize;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.__len__`.
|
||||
*
|
||||
* @param dst_length The returned result
|
||||
*/
|
||||
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
// numpy prohibits `__len__` on unsized objects
|
||||
if (ndarray->ndims == 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
else
|
||||
{
|
||||
return ndarray->shape[0];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||
*
|
||||
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
*/
|
||||
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
// Other references:
|
||||
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
|
||||
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||
//
|
||||
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||
// the following must hold:
|
||||
//
|
||||
// strides[-1] == itemsize
|
||||
// strides[i] == shape[i+1] * strides[i + 1]
|
||||
// [...]
|
||||
// According to these rules, a 0- or 1-dimensional array is either both
|
||||
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||
// there are exceptions for arrays with zero or one item, in the first
|
||||
// case the check is relaxed up to and including the first dimension
|
||||
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||
// can be true for all dimensions and both flags are set.
|
||||
|
||||
if (ndarray->ndims == 0)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 1; i < ndarray->ndims; i++)
|
||||
{
|
||||
SizeT axis_i = ndarray->ndims - i - 1;
|
||||
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the element indexed by `indices`.
|
||||
*/
|
||||
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
|
||||
{
|
||||
uint8_t *element = ndarray->data;
|
||||
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||
element += indices[dim_i] * ndarray->strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convenience function. Like `get_pelement_by_indices` but
|
||||
* reinterprets the element pointer.
|
||||
*/
|
||||
template <typename SizeT, typename T> T *get_ptr(const NDArray<SizeT> *ndarray, const SizeT *indices)
|
||||
{
|
||||
return (T *)get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
|
||||
{
|
||||
uint8_t *element = ndarray->data;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++)
|
||||
{
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
SizeT dim = ndarray->shape[axis];
|
||||
element += ndarray->strides[axis] * (nth % dim);
|
||||
nth /= dim;
|
||||
}
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update the strides of an ndarray given an ndarray `shape`
|
||||
* and assuming that the ndarray is fully c-contagious.
|
||||
*
|
||||
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||
*/
|
||||
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
|
||||
{
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++)
|
||||
{
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||
stride_product *= ndarray->shape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set an element in `ndarray`.
|
||||
*
|
||||
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||
*/
|
||||
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
|
||||
{
|
||||
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||
*
|
||||
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||
*/
|
||||
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||
{
|
||||
// TODO: Make this faster with memcpy
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||
|
||||
for (SizeT i = 0; i < size(src_ndarray); i++)
|
||||
{
|
||||
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
||||
}
|
||||
}
|
||||
} // namespace basic
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::basic;
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
|
||||
{
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
|
||||
{
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
|
||||
int32_t output_ndims, const int32_t *output_shape)
|
||||
{
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
|
||||
int64_t output_ndims, const int64_t *output_shape)
|
||||
{
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
|
||||
{
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
|
||||
{
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
|
||||
{
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
|
||||
{
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
|
||||
{
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
|
||||
{
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
188
nac3core/irrt/irrt/ndarray/broadcast.hpp
Normal file
188
nac3core/irrt/irrt/ndarray/broadcast.hpp
Normal file
@ -0,0 +1,188 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename SizeT> struct ShapeEntry
|
||||
{
|
||||
SizeT ndims;
|
||||
SizeT *shape;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace broadcast
|
||||
{
|
||||
/**
|
||||
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||
*
|
||||
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
*/
|
||||
template <typename SizeT>
|
||||
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
|
||||
{
|
||||
if (src_ndims > target_ndims)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 0; i < src_ndims; i++)
|
||||
{
|
||||
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||
if (!(src_dim == 1 || target_dim == src_dim))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||
*
|
||||
* @param num_shapes Number of entries in `shapes`
|
||||
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||
* @param dst_ndims The length of `dst_shape`.
|
||||
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||
* of `np.broadcast_shapes` and write it here.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
|
||||
{
|
||||
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
|
||||
{
|
||||
dst_shape[dst_axis] = 1;
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
SizeT max_ndims_found = 0;
|
||||
#endif
|
||||
|
||||
for (SizeT i = 0; i < num_shapes; i++)
|
||||
{
|
||||
ShapeEntry<SizeT> entry = shapes[i];
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||
#endif
|
||||
|
||||
for (SizeT j = 0; j < entry.ndims; j++)
|
||||
{
|
||||
SizeT entry_axis = entry.ndims - j - 1;
|
||||
SizeT dst_axis = dst_ndims - j - 1;
|
||||
|
||||
SizeT entry_dim = entry.shape[entry_axis];
|
||||
SizeT dst_dim = dst_shape[dst_axis];
|
||||
|
||||
if (dst_dim == 1)
|
||||
{
|
||||
dst_shape[dst_axis] = entry_dim;
|
||||
}
|
||||
else if (entry_dim == 1 || entry_dim == dst_dim)
|
||||
{
|
||||
// Do nothing
|
||||
}
|
||||
else
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"shape mismatch: objects cannot be broadcast "
|
||||
"to a single shape.",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||
*
|
||||
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||
* and return the result by modifying `dst_ndarray`.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is unchanged.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||
*/
|
||||
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||
{
|
||||
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||
src_ndarray->shape))
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
|
||||
{
|
||||
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
|
||||
{
|
||||
// Freeze the steps in-place
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace broadcast
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::broadcast;
|
||||
|
||||
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
|
||||
{
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
|
||||
{
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
|
||||
int32_t *dst_shape)
|
||||
{
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
|
||||
int64_t *dst_shape)
|
||||
{
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
}
|
47
nac3core/irrt/irrt/ndarray/def.hpp
Normal file
47
nac3core/irrt/irrt/ndarray/def.hpp
Normal file
@ -0,0 +1,47 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief The NDArray object
|
||||
*
|
||||
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||
*/
|
||||
template <typename SizeT> struct NDArray
|
||||
{
|
||||
/**
|
||||
* @brief The underlying data this `ndarray` is pointing to.
|
||||
*
|
||||
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
|
||||
*/
|
||||
uint8_t *data;
|
||||
|
||||
/**
|
||||
* @brief The number of bytes of a single element in `data`.
|
||||
*/
|
||||
SizeT itemsize;
|
||||
|
||||
/**
|
||||
* @brief The number of dimensions of this shape.
|
||||
*/
|
||||
SizeT ndims;
|
||||
|
||||
/**
|
||||
* @brief The NDArray shape, with length equal to `ndims`.
|
||||
*
|
||||
* Note that it may contain 0.
|
||||
*/
|
||||
SizeT *shape;
|
||||
|
||||
/**
|
||||
* @brief Array strides, with length equal to `ndims`
|
||||
*
|
||||
* The stride values are in units of bytes, not number of elements.
|
||||
*
|
||||
* Note that `strides` can have negative values.
|
||||
*/
|
||||
SizeT *strides;
|
||||
};
|
||||
} // namespace
|
242
nac3core/irrt/irrt/ndarray/indexing.hpp
Normal file
242
nac3core/irrt/irrt/ndarray/indexing.hpp
Normal file
@ -0,0 +1,242 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef uint8_t NDIndexType;
|
||||
|
||||
/**
|
||||
* @brief A single element index
|
||||
*
|
||||
* `data` points to a `int32_t`.
|
||||
*/
|
||||
|
||||
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||
/**
|
||||
* @brief A slice index
|
||||
*
|
||||
* `data` points to a `Slice<int32_t>`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||
|
||||
/**
|
||||
* @brief `np.newaxis` / `None`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||
|
||||
/**
|
||||
* @brief `Ellipsis` / `...`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||
|
||||
/**
|
||||
* @brief An index used in ndarray indexing
|
||||
*/
|
||||
struct NDIndex
|
||||
{
|
||||
/**
|
||||
* @brief Enum tag to specify the type of index.
|
||||
*
|
||||
* Please see comments of each enum constant.
|
||||
*/
|
||||
NDIndexType type;
|
||||
|
||||
/**
|
||||
* @brief The accompanying data associated with `type`.
|
||||
*
|
||||
* Please see comments of each enum constant.
|
||||
*/
|
||||
uint8_t *data;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace indexing
|
||||
{
|
||||
/**
|
||||
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
*
|
||||
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
|
||||
*
|
||||
* This function also does proper assertions on `indices` to check for out of bounds access.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||
* indexing `src_ndarray` with `indices`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||
*
|
||||
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||
* @param src_ndarray The NDArray to be indexed.
|
||||
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||
{
|
||||
// Validate `indices`.
|
||||
|
||||
// Expected value of `dst_ndarray->ndims`.
|
||||
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||
SizeT num_indexed = 0;
|
||||
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
|
||||
SizeT num_ellipsis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_indices; i++)
|
||||
{
|
||||
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
|
||||
{
|
||||
expected_dst_ndims--;
|
||||
num_indexed++;
|
||||
}
|
||||
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
|
||||
{
|
||||
num_indexed++;
|
||||
}
|
||||
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
|
||||
{
|
||||
expected_dst_ndims++;
|
||||
}
|
||||
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
|
||||
{
|
||||
num_ellipsis++;
|
||||
if (num_ellipsis > 1)
|
||||
{
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||
|
||||
if (src_ndarray->ndims - num_indexed < 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"too many indices for array: array is {0}-dimensional, "
|
||||
"but {1} were indexed",
|
||||
src_ndarray->ndims, num_indices, NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
SizeT src_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (int32_t i = 0; i < num_indices; i++)
|
||||
{
|
||||
const NDIndex *index = &indices[i];
|
||||
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
|
||||
{
|
||||
SizeT input = (SizeT) * ((int32_t *)index->data);
|
||||
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
|
||||
|
||||
if (k == -1)
|
||||
{
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"index {0} is out of bounds for axis {1} "
|
||||
"with size {2}",
|
||||
input, src_axis, src_ndarray->shape[src_axis]);
|
||||
}
|
||||
|
||||
dst_ndarray->data += k * src_ndarray->strides[src_axis];
|
||||
|
||||
src_axis++;
|
||||
}
|
||||
else if (index->type == ND_INDEX_TYPE_SLICE)
|
||||
{
|
||||
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
|
||||
|
||||
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||
|
||||
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
|
||||
{
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
dst_ndarray->shape[dst_axis] = 1;
|
||||
|
||||
dst_axis++;
|
||||
}
|
||||
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
|
||||
{
|
||||
// The number of ':' entries this '...' implies.
|
||||
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||
|
||||
for (SizeT j = 0; j < ellipsis_size; j++)
|
||||
{
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
|
||||
{
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||
}
|
||||
} // namespace indexing
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::indexing;
|
||||
|
||||
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
|
||||
NDArray<int32_t> *dst_ndarray)
|
||||
{
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
|
||||
NDArray<int64_t> *dst_ndarray)
|
||||
{
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
142
nac3core/irrt/irrt/ndarray/iter.hpp
Normal file
142
nac3core/irrt/irrt/ndarray/iter.hpp
Normal file
@ -0,0 +1,142 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief Helper struct to enumerate through all indices under a shape.
|
||||
*
|
||||
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
|
||||
* - `[0, 0]`
|
||||
* - `[0, 1]`
|
||||
* - `[1, 0]`
|
||||
* - `[1, 1]`
|
||||
* - `[2, 0]`
|
||||
* - `[2, 1]`
|
||||
* - end.
|
||||
*
|
||||
* Interesting cases:
|
||||
* - If ndims == 0, there is one enumeration.
|
||||
* - If shape contains zeroes, there are no enumerations.
|
||||
*/
|
||||
template <typename SizeT> struct NDIter
|
||||
{
|
||||
SizeT ndims;
|
||||
SizeT *shape;
|
||||
SizeT *strides;
|
||||
|
||||
/**
|
||||
* @brief The current indices.
|
||||
*
|
||||
* Must be allocated by the caller.
|
||||
*/
|
||||
SizeT *indices;
|
||||
|
||||
/**
|
||||
* @brief The nth (0-based) index of the current indices.
|
||||
*/
|
||||
SizeT nth;
|
||||
|
||||
/**
|
||||
* @brief Pointer to the current element.
|
||||
*/
|
||||
uint8_t *element;
|
||||
|
||||
/**
|
||||
* @brief The product of shape.
|
||||
*/
|
||||
SizeT size;
|
||||
|
||||
// TODO:: There is something called backstrides to speedup iteration.
|
||||
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||
// Maybe LLVM is clever and knows how to optimize.
|
||||
|
||||
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
|
||||
{
|
||||
this->ndims = ndims;
|
||||
this->shape = shape;
|
||||
this->strides = strides;
|
||||
|
||||
this->indices = indices;
|
||||
this->element = element;
|
||||
|
||||
// Compute size and backstrides
|
||||
this->size = 1;
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
this->size *= shape[i];
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
indices[axis] = 0;
|
||||
nth = 0;
|
||||
}
|
||||
|
||||
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
|
||||
{
|
||||
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
|
||||
}
|
||||
|
||||
bool has_next()
|
||||
{
|
||||
return nth < size;
|
||||
}
|
||||
|
||||
void next()
|
||||
{
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
SizeT axis = ndims - i - 1;
|
||||
indices[axis]++;
|
||||
if (indices[axis] >= shape[axis])
|
||||
{
|
||||
indices[axis] = 0;
|
||||
|
||||
// TODO: Can be optimized with backstrides.
|
||||
element -= strides[axis] * (shape[axis] - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
element += strides[axis];
|
||||
break;
|
||||
}
|
||||
}
|
||||
nth++;
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
|
||||
{
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
|
||||
{
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
|
||||
{
|
||||
return iter->has_next();
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
|
||||
{
|
||||
return iter->has_next();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next(NDIter<int32_t> *iter)
|
||||
{
|
||||
iter->next();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next64(NDIter<int64_t> *iter)
|
||||
{
|
||||
iter->next();
|
||||
}
|
||||
}
|
92
nac3core/irrt/irrt/ndarray/matmul.hpp
Normal file
92
nac3core/irrt/irrt/ndarray/matmul.hpp
Normal file
@ -0,0 +1,92 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/broadcast.hpp>
|
||||
#include <irrt/ndarray/iter.hpp>
|
||||
|
||||
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace matmul
|
||||
{
|
||||
|
||||
/**
|
||||
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||
*
|
||||
* Example:
|
||||
* Suppose `a_shape == [1, 97, 4, 2]`
|
||||
* and `b_shape == [99, 98, 1, 2, 5]`,
|
||||
*
|
||||
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||
* ^^^^^^^^^^ ^^^^
|
||||
* (broadcasted) (4x2 @ 2x5 => 4x5)
|
||||
*
|
||||
* @param a_ndims Length of `a_shape`.
|
||||
* @param a_shape Shape of `a`.
|
||||
* @param b_ndims Length of `b_shape`.
|
||||
* @param b_shape Shape of `b`.
|
||||
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
|
||||
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
|
||||
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
|
||||
{
|
||||
debug_assert(SizeT, a_ndims >= 2);
|
||||
debug_assert(SizeT, b_ndims >= 2);
|
||||
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||
|
||||
// Check that a and b are compatible for matmul
|
||||
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
|
||||
{
|
||||
// This is a custom error message. Different from NumPy.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
|
||||
}
|
||||
|
||||
const SizeT num_entries = 2;
|
||||
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
|
||||
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||
|
||||
// TODO: Optimize this
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
|
||||
|
||||
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
}
|
||||
} // namespace matmul
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::matmul;
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
|
||||
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
|
||||
int32_t *dst_shape)
|
||||
{
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
|
||||
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
|
||||
int64_t *dst_shape)
|
||||
{
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
}
|
125
nac3core/irrt/irrt/ndarray/reshape.hpp
Normal file
125
nac3core/irrt/irrt/ndarray/reshape.hpp
Normal file
@ -0,0 +1,125 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace reshape
|
||||
{
|
||||
/**
|
||||
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||
*
|
||||
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||
* modified to contain the resolved dimension.
|
||||
*
|
||||
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||
*
|
||||
* @param size The `.size` of `<ndarray>`
|
||||
* @param new_ndims Number of elements in `new_shape`
|
||||
* @param new_shape Target shape to reshape to
|
||||
*/
|
||||
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
|
||||
{
|
||||
// Is there a -1 in `new_shape`?
|
||||
bool neg1_exists = false;
|
||||
// Location of -1, only initialized if `neg1_exists` is true
|
||||
SizeT neg1_axis_i;
|
||||
// The computed ndarray size of `new_shape`
|
||||
SizeT new_size = 1;
|
||||
|
||||
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
|
||||
{
|
||||
SizeT dim = new_shape[axis_i];
|
||||
if (dim < 0)
|
||||
{
|
||||
if (dim == -1)
|
||||
{
|
||||
if (neg1_exists)
|
||||
{
|
||||
// Multiple `-1` found. Throw an error.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
else
|
||||
{
|
||||
neg1_exists = true;
|
||||
neg1_axis_i = axis_i;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// TODO: What? In `np.reshape` any negative dimensions is
|
||||
// treated like its `-1`.
|
||||
//
|
||||
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||
//
|
||||
// It is not documented by numpy.
|
||||
// Throw an error for now...
|
||||
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
new_size *= dim;
|
||||
}
|
||||
}
|
||||
|
||||
bool can_reshape;
|
||||
if (neg1_exists)
|
||||
{
|
||||
// Let `x` be the unknown dimension
|
||||
// Solve `x * <new_size> = <size>`
|
||||
if (new_size == 0 && size == 0)
|
||||
{
|
||||
// `x` has infinitely many solutions
|
||||
can_reshape = false;
|
||||
}
|
||||
else if (new_size == 0 && size != 0)
|
||||
{
|
||||
// `x` has no solutions
|
||||
can_reshape = false;
|
||||
}
|
||||
else if (size % new_size != 0)
|
||||
{
|
||||
// `x` has no integer solutions
|
||||
can_reshape = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
can_reshape = true;
|
||||
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
can_reshape = (new_size == size);
|
||||
}
|
||||
|
||||
if (!can_reshape)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
} // namespace reshape
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
|
||||
{
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
|
||||
{
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
}
|
155
nac3core/irrt/irrt/ndarray/transpose.hpp
Normal file
155
nac3core/irrt/irrt/ndarray/transpose.hpp
Normal file
@ -0,0 +1,155 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
/*
|
||||
* Notes on `np.transpose(<array>, <axes>)`
|
||||
*
|
||||
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||
* but it is not documented in numpy.
|
||||
*
|
||||
* Supporting it for now.
|
||||
*/
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace transpose
|
||||
{
|
||||
/**
|
||||
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||
*
|
||||
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||
* is specified but the user, use this function to do assertions on it.
|
||||
*
|
||||
* @param ndims The number of dimensions of `<array>`
|
||||
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||
* @param axes The user specified `<axes>`.
|
||||
*/
|
||||
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
|
||||
{
|
||||
if (ndims != num_axes)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
// TODO: Optimize this
|
||||
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims);
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
axe_specified[i] = false;
|
||||
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||
if (axis == -1)
|
||||
{
|
||||
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (axe_specified[axis])
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
axe_specified[axis] = true;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||
*
|
||||
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||
*
|
||||
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||
*
|
||||
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged
|
||||
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||
*
|
||||
* @param src_ndarray The NDArray to build a transpose view on
|
||||
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
|
||||
{
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||
const auto ndims = src_ndarray->ndims;
|
||||
|
||||
if (axes != nullptr)
|
||||
assert_transpose_axes(ndims, num_axes, axes);
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||
if (axes == nullptr)
|
||||
{
|
||||
// `np.transpose(<array>, axes=None)`
|
||||
|
||||
/*
|
||||
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||
* is reversing the order of strides and shape.
|
||||
*
|
||||
* This is a fast implementation to handle this special (but very common) case.
|
||||
*/
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// `np.transpose(<array>, <axes>)`
|
||||
|
||||
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace transpose
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::transpose;
|
||||
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
|
||||
const int32_t *axes)
|
||||
{
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
|
||||
int64_t num_axes, const int64_t *axes)
|
||||
{
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
}
|
215
nac3core/irrt/irrt/original.hpp
Normal file
215
nac3core/irrt/irrt/original.hpp
Normal file
@ -0,0 +1,215 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace
|
||||
{
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T> T __nac3_int_exp_impl(T base, T exp)
|
||||
{
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do
|
||||
{
|
||||
if (exp & 1)
|
||||
{
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) \
|
||||
{ \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
|
||||
{
|
||||
if (i < 0)
|
||||
{
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else if (i > len)
|
||||
{
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
|
||||
{
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0)
|
||||
{
|
||||
return ((diff - 1) / step) + 1;
|
||||
}
|
||||
else if (diff < 0 && step < 0)
|
||||
{
|
||||
return ((diff + 1) / step) + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
|
||||
SliceIndex src_arr_len, const SliceIndex size)
|
||||
{
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0)
|
||||
return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1)
|
||||
{
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0)
|
||||
{
|
||||
/* dropping */
|
||||
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||
max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca)
|
||||
{
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
|
||||
{
|
||||
/* for constant optimization */
|
||||
if (size == 1)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
}
|
||||
else if (size == 4)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
}
|
||||
else if (size == 8)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x)
|
||||
{
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x)
|
||||
{
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z)
|
||||
{
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z))
|
||||
{
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
} // extern "C"
|
224
nac3core/irrt/irrt/slice.hpp
Normal file
224
nac3core/irrt/irrt/slice.hpp
Normal file
@ -0,0 +1,224 @@
|
||||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace range
|
||||
{
|
||||
template <typename T> T len(T start, T stop, T step)
|
||||
{
|
||||
// Reference: https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
|
||||
if (step > 0 && start < stop)
|
||||
return 1 + (stop - 1 - start) / step;
|
||||
else if (step < 0 && start > stop)
|
||||
return 1 + (start - 1 - stop) / (-step);
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
} // namespace range
|
||||
|
||||
/**
|
||||
* @brief A Python range.
|
||||
*/
|
||||
template <typename T> struct Range
|
||||
{
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
|
||||
/**
|
||||
* @brief Calculate the `len()` of this range.
|
||||
*/
|
||||
template <typename SizeT> T len()
|
||||
{
|
||||
debug_assert(SizeT, step != 0);
|
||||
return range::len(start, stop, step);
|
||||
}
|
||||
};
|
||||
|
||||
namespace slice
|
||||
{
|
||||
/**
|
||||
* @brief Resolve a slice index under a given length like Python indexing.
|
||||
*
|
||||
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
|
||||
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
|
||||
*
|
||||
* If `length` is 0, 0 is returned for any value of `index`.
|
||||
*
|
||||
* If `index` is out of bounds, clamps the returned value between `0` and
|
||||
* `length - 1` (inclusive).
|
||||
*
|
||||
*/
|
||||
template <typename T> T resolve_index_in_length_clamped(T length, T index)
|
||||
{
|
||||
if (index < 0)
|
||||
{
|
||||
return max<T>(length + index, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return min<T>(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `resolve_index_in_length_clamped`, but returns `-1` if `index` is out of bounds.
|
||||
*/
|
||||
template <typename T> T resolve_index_in_length(T length, T index)
|
||||
{
|
||||
T resolved = index < 0 ? length + index : index;
|
||||
if (0 <= resolved && resolved < length)
|
||||
{
|
||||
return resolved;
|
||||
}
|
||||
else
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve a slice as a range.
|
||||
*
|
||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||
*/
|
||||
template <typename T>
|
||||
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
|
||||
T *range_start, T *range_stop, T *range_step)
|
||||
{
|
||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
*range_step = step_defined ? step : 1;
|
||||
bool step_is_negative = *range_step < 0;
|
||||
|
||||
T lower, upper;
|
||||
if (step_is_negative)
|
||||
{
|
||||
lower = -1;
|
||||
upper = length - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
lower = 0;
|
||||
upper = length;
|
||||
}
|
||||
|
||||
if (start_defined)
|
||||
{
|
||||
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
|
||||
}
|
||||
else
|
||||
{
|
||||
*range_start = step_is_negative ? upper : lower;
|
||||
}
|
||||
|
||||
if (stop_defined)
|
||||
{
|
||||
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
|
||||
}
|
||||
else
|
||||
{
|
||||
*range_stop = step_is_negative ? lower : upper;
|
||||
}
|
||||
}
|
||||
} // namespace slice
|
||||
|
||||
/**
|
||||
* @brief A Python-like slice with **unresolved** indices.
|
||||
*/
|
||||
template <typename T> struct Slice
|
||||
{
|
||||
bool start_defined;
|
||||
T start;
|
||||
|
||||
bool stop_defined;
|
||||
T stop;
|
||||
|
||||
bool step_defined;
|
||||
T step;
|
||||
|
||||
Slice()
|
||||
{
|
||||
this->reset();
|
||||
}
|
||||
|
||||
void reset()
|
||||
{
|
||||
this->start_defined = false;
|
||||
this->stop_defined = false;
|
||||
this->step_defined = false;
|
||||
}
|
||||
|
||||
void set_start(T start)
|
||||
{
|
||||
this->start_defined = true;
|
||||
this->start = start;
|
||||
}
|
||||
|
||||
void set_stop(T stop)
|
||||
{
|
||||
this->stop_defined = true;
|
||||
this->stop = stop;
|
||||
}
|
||||
|
||||
void set_step(T step)
|
||||
{
|
||||
this->step_defined = true;
|
||||
this->step = step;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve this slice as a range.
|
||||
*
|
||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||
*/
|
||||
template <typename SizeT> Range<T> indices(T length)
|
||||
{
|
||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
debug_assert(SizeT, length >= 0);
|
||||
|
||||
Range<T> result;
|
||||
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
|
||||
&result.stop, &result.step);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `.indices()` but with assertions.
|
||||
*/
|
||||
template <typename SizeT> Range<T> indices_checked(T length)
|
||||
{
|
||||
// TODO: Switch to `SizeT length`
|
||||
|
||||
if (length < 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (this->step_defined && this->step == 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
return this->indices<SizeT>(length);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
int32_t __nac3_range_len_i32(int32_t start, int32_t stop, int32_t step)
|
||||
{
|
||||
range::len<int32_t>(start, stop, step);
|
||||
}
|
||||
|
||||
int32_t __nac3_range_len_i3264(int32_t start, int32_t stop, int32_t step)
|
||||
{
|
||||
range::len<int64_t>(start, stop, step);
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,414 +0,0 @@
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
const T& max(const T& a, const T& b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T& min(const T& a, const T& b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(
|
||||
const SizeT* list_data,
|
||||
SizeT list_len,
|
||||
SizeT begin_idx,
|
||||
SizeT end_idx
|
||||
) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(
|
||||
SizeT index,
|
||||
const SizeT* dims,
|
||||
SizeT num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(
|
||||
const SizeT* dims,
|
||||
SizeT num_dims,
|
||||
const NDIndex* indices,
|
||||
SizeT num_indices
|
||||
) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(
|
||||
const SizeT* lhs_dims,
|
||||
SizeT lhs_ndims,
|
||||
const SizeT* rhs_dims,
|
||||
SizeT rhs_ndims,
|
||||
SizeT* out_dims
|
||||
) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(
|
||||
const SizeT* src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx
|
||||
) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) {\
|
||||
return __nac3_int_exp_impl(base, exp);\
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t)
|
||||
DEF_nac3_int_exp_(int64_t)
|
||||
DEF_nac3_int_exp_(uint32_t)
|
||||
DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(
|
||||
const SliceIndex start,
|
||||
const SliceIndex end,
|
||||
const SliceIndex step
|
||||
) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
uint8_t* dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
uint8_t* src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(
|
||||
const uint32_t* list_data,
|
||||
uint32_t list_len,
|
||||
uint32_t begin_idx,
|
||||
uint32_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(
|
||||
const uint64_t* list_data,
|
||||
uint64_t list_len,
|
||||
uint64_t begin_idx,
|
||||
uint64_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(
|
||||
uint32_t index,
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(
|
||||
uint64_t index,
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint32_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint64_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(
|
||||
const uint32_t* lhs_dims,
|
||||
uint32_t lhs_ndims,
|
||||
const uint32_t* rhs_dims,
|
||||
uint32_t rhs_ndims,
|
||||
uint32_t* out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(
|
||||
const uint64_t* lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t* rhs_dims,
|
||||
uint64_t rhs_ndims,
|
||||
uint64_t* out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(
|
||||
const uint32_t* src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(
|
||||
const uint64_t* src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
} // extern "C"
|
@ -1,21 +1,21 @@
|
||||
use crate::typecheck::typedef::Type;
|
||||
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||
|
||||
use super::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
|
||||
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
model::*,
|
||||
object::{
|
||||
list::List,
|
||||
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
|
||||
},
|
||||
llvm_intrinsics, CodeGenContext, CodeGenerator,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::codegen::classes::TypedArrayLikeAccessor;
|
||||
use crate::codegen::stmt::gen_for_callback_incrementing;
|
||||
use function::CallFunction;
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
@ -326,12 +326,11 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: ListValue<'ctx>,
|
||||
dest_arr: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: ListValue<'ctx>,
|
||||
src_arr: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let size_ty = generator.get_size_type(ctx.ctx);
|
||||
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
|
||||
@ -357,16 +356,14 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
|
||||
|
||||
let dest_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
|
||||
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
|
||||
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
|
||||
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
|
||||
dest_arr.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte)).value;
|
||||
let src_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
|
||||
let src_len = src_arr.load_size(ctx, Some("src.len"));
|
||||
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
|
||||
src_arr.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte)).value;
|
||||
|
||||
let dest_len = dest_arr.get(generator, ctx, |f| f.len).truncate(generator, ctx, Int32).value;
|
||||
let src_len = src_arr.get(generator, ctx, |f| f.len).truncate(generator, ctx, Int32).value;
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
@ -462,8 +459,10 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
|
||||
dest_arr.store_size(ctx, generator, new_len);
|
||||
|
||||
let new_len = Int(SizeT).z_extend_or_bit_cast(generator, ctx, new_len);
|
||||
dest_arr.set(ctx, |f| f.len, new_len);
|
||||
|
||||
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
||||
@ -563,369 +562,339 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||
/// calculated total size.
|
||||
///
|
||||
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||
/// or [`None`] if starting from the first dimension and ending at the last dimension
|
||||
/// respectively.
|
||||
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dims: &Dims,
|
||||
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dims: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_size",
|
||||
64 => "__nac3_ndarray_calc_size64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
let ndarray_calc_size_fn =
|
||||
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||
});
|
||||
|
||||
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_size_fn,
|
||||
&[
|
||||
dims.base_ptr(ctx, generator).into(),
|
||||
dims.size(ctx, generator).into(),
|
||||
begin.into(),
|
||||
end.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
|
||||
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
|
||||
#[must_use]
|
||||
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'_, '_>,
|
||||
name: &str,
|
||||
) -> String {
|
||||
let mut name = name.to_owned();
|
||||
match generator.get_size_type(ctx.ctx).get_bit_width() {
|
||||
32 => {}
|
||||
64 => name.push_str("64"),
|
||||
bit_width => {
|
||||
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||
}
|
||||
}
|
||||
name
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||
/// containing `i32` indices of the flattened index.
|
||||
///
|
||||
/// * `index` - The index to compute the multidimensional index for.
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
|
||||
pub fn setup_irrt_exceptions<'ctx>(
|
||||
ctx: &'ctx Context,
|
||||
module: &Module<'ctx>,
|
||||
symbol_resolver: &dyn SymbolResolver,
|
||||
) {
|
||||
let exn_id_type = ctx.i32_type();
|
||||
|
||||
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_nd_indices",
|
||||
64 => "__nac3_ndarray_calc_nd_indices64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_nd_indices_fn =
|
||||
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_void.fn_type(
|
||||
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
let errors = &[
|
||||
("EXN_INDEX_ERROR", "0:IndexError"),
|
||||
("EXN_VALUE_ERROR", "0:ValueError"),
|
||||
("EXN_ASSERTION_ERROR", "0:AssertionError"),
|
||||
("EXN_TYPE_ERROR", "0:TypeError"),
|
||||
];
|
||||
|
||||
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||
for (irrt_name, symbol_name) in errors {
|
||||
let exn_id = symbol_resolver.get_string_id(symbol_name);
|
||||
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
|
||||
|
||||
let global = module.get_global(irrt_name).unwrap_or_else(|| {
|
||||
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_nd_indices_fn,
|
||||
&[
|
||||
index.into(),
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
global.set_initializer(&exn_id);
|
||||
}
|
||||
}
|
||||
|
||||
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Indices,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Indices: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
debug_assert_eq!(
|
||||
IntType::try_from(indices.element_type(ctx, generator))
|
||||
.map(IntType::get_bit_width)
|
||||
.unwrap_or_default(),
|
||||
llvm_i32.get_bit_width(),
|
||||
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
debug_assert_eq!(
|
||||
indices.size(ctx, generator).get_type().get_bit_width(),
|
||||
llvm_usize.get_bit_width(),
|
||||
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
|
||||
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_flatten_index",
|
||||
64 => "__nac3_ndarray_flatten_index64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_flatten_index_fn =
|
||||
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_call(
|
||||
ndarray_flatten_index_fn,
|
||||
&[
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
indices.size(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
index
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
/// multidimensional index.
|
||||
///
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||
pub fn call_nac3_range_len_i32<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Index,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Index: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||
start: Instance<'ctx, Int<Int32>>,
|
||||
stop: Instance<'ctx, Int<Int32>>,
|
||||
step: Instance<'ctx, Int<Int32>>,
|
||||
) -> Instance<'ctx, Int<Int32>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_range_len_i32");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(start)
|
||||
.arg(stop)
|
||||
.arg(step)
|
||||
.returning_auto("range_len")
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||
/// dimension and size of each dimension of the resultant `ndarray`.
|
||||
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
lhs: NDArrayValue<'ctx>,
|
||||
rhs: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast",
|
||||
64 => "__nac3_ndarray_calc_broadcast64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
ndims: Instance<'ctx, Int<SizeT>>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(min_ndims, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||
(
|
||||
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
)
|
||||
};
|
||||
|
||||
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||
let lhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let rhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||
|
||||
let lhs_eq_rhs = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||
.unwrap();
|
||||
|
||||
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
is_compatible,
|
||||
"0:ValueError",
|
||||
"operands could not be broadcast together",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[
|
||||
lhs_dims.into(),
|
||||
lhs_ndims.into(),
|
||||
rhs_dims.into(),
|
||||
rhs_ndims.into(),
|
||||
out_dims.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
out_dims,
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
"__nac3_ndarray_util_assert_shape_no_negative",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||
/// array `broadcast_idx`.
|
||||
pub fn call_ndarray_calc_broadcast_index<
|
||||
'ctx,
|
||||
G: CodeGenerator + ?Sized,
|
||||
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||
>(
|
||||
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
array: NDArrayValue<'ctx>,
|
||||
broadcast_idx: &BroadcastIdx,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||
|
||||
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
||||
let array_ndims = array.load_ndims(ctx);
|
||||
let broadcast_idx_ptr = unsafe {
|
||||
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
output_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_util_assert_output_shape_same",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(ndarray_ndims)
|
||||
.arg(ndarray_shape)
|
||||
.arg(output_ndims)
|
||||
.arg(output_shape)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
index: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
let name =
|
||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name =
|
||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
|
||||
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
|
||||
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
|
||||
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
|
||||
}
|
||||
|
||||
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
|
||||
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
num_indices: Instance<'ctx, Int<SizeT>>,
|
||||
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(num_indices)
|
||||
.arg(indices)
|
||||
.arg(src_ndarray)
|
||||
.arg(dst_ndarray)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||
ndims: Instance<'ctx, Int<SizeT>>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_set_and_validate_list_shape",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_write_list_to_array",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
size: Instance<'ctx, Int<SizeT>>,
|
||||
new_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(size)
|
||||
.arg(new_ndims)
|
||||
.arg(new_shape)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
|
||||
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
num_shape_entries: Instance<'ctx, Int<SizeT>>,
|
||||
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
|
||||
dst_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(num_shape_entries)
|
||||
.arg(shape_entries)
|
||||
.arg(dst_ndims)
|
||||
.arg(dst_shape)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
num_axes: Instance<'ctx, Int<SizeT>>,
|
||||
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(src_ndarray)
|
||||
.arg(dst_ndarray)
|
||||
.arg(num_axes)
|
||||
.arg(axes)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
a_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
b_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
final_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name =
|
||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(a_ndims)
|
||||
.arg(a_shape)
|
||||
.arg(b_ndims)
|
||||
.arg(b_shape)
|
||||
.arg(final_ndims)
|
||||
.arg(new_a_shape)
|
||||
.arg(new_b_shape)
|
||||
.arg(dst_shape)
|
||||
.returning_void();
|
||||
}
|
||||
|
@ -1,7 +1,6 @@
|
||||
use crate::{
|
||||
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||
symbol_resolver::{StaticValue, SymbolResolver},
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
||||
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
|
||||
typecheck::{
|
||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
@ -24,7 +23,9 @@ use inkwell::{
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use model::*;
|
||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||
use object::{list::List, ndarray::NDArray, range::Range};
|
||||
use parking_lot::{Condvar, Mutex};
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::{
|
||||
@ -41,7 +42,9 @@ pub mod extern_fns;
|
||||
mod generator;
|
||||
pub mod irrt;
|
||||
pub mod llvm_intrinsics;
|
||||
pub mod model;
|
||||
pub mod numpy;
|
||||
pub mod object;
|
||||
pub mod stmt;
|
||||
|
||||
#[cfg(test)]
|
||||
@ -484,17 +487,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
type_cache,
|
||||
*params.iter().next().unwrap().1,
|
||||
);
|
||||
|
||||
ListType::new(generator, ctx, element_type).as_base_type().into()
|
||||
let item = Any(element_type);
|
||||
Ptr(Struct(List { item })).get_type(generator, ctx).as_basic_type_enum()
|
||||
}
|
||||
|
||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
||||
let element_type = get_llvm_type(
|
||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
@ -722,7 +720,7 @@ pub fn gen_func_impl<
|
||||
Some(t) => t.as_basic_type_enum(),
|
||||
}
|
||||
}),
|
||||
(primitives.range, RangeType::new(context).as_base_type().into()),
|
||||
(primitives.range, Ptr(Range::<Int32>::default()).get_type(generator, context).into()),
|
||||
(primitives.exception, {
|
||||
let name = "Exception";
|
||||
if let Some(t) = module.get_struct_type(name) {
|
||||
|
42
nac3core/src/codegen/model/any.rs
Normal file
42
nac3core/src/codegen/model/any.rs
Normal file
@ -0,0 +1,42 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::BasicValueEnum,
|
||||
};
|
||||
|
||||
use crate::codegen::CodeGenerator;
|
||||
|
||||
use super::*;
|
||||
|
||||
/// A [`Model`] of any [`BasicTypeEnum`].
|
||||
///
|
||||
/// Use this when you cannot know the type beforehand or cannot be abstracted with [`Model`].
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
|
||||
|
||||
impl<'ctx> Model<'ctx> for Any<'ctx> {
|
||||
type Value = BasicValueEnum<'ctx>;
|
||||
type Type = BasicTypeEnum<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> Self::Type {
|
||||
self.0
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &mut G,
|
||||
_ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
if ty == self.0 {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
|
||||
}
|
||||
}
|
||||
}
|
140
nac3core/src/codegen/model/array.rs
Normal file
140
nac3core/src/codegen/model/array.rs
Normal file
@ -0,0 +1,140 @@
|
||||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{ArrayType, BasicType, BasicTypeEnum},
|
||||
values::{ArrayValue, IntValue},
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait LenKind: fmt::Debug + Clone + Copy {
|
||||
fn get_length(&self) -> u32;
|
||||
}
|
||||
|
||||
/// A statically known length.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Len<const N: u32>;
|
||||
|
||||
/// A dynamically known length.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyLen(pub u32);
|
||||
|
||||
impl<const N: u32> LenKind for Len<N> {
|
||||
fn get_length(&self) -> u32 {
|
||||
N
|
||||
}
|
||||
}
|
||||
|
||||
impl LenKind for AnyLen {
|
||||
fn get_length(&self) -> u32 {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// A Model for an [`ArrayType`].
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Array<Len, Item> {
|
||||
/// Length of this array.
|
||||
pub len: Len,
|
||||
/// [`Model`] of an array item.
|
||||
pub item: Item,
|
||||
}
|
||||
|
||||
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
|
||||
type Value = ArrayValue<'ctx>;
|
||||
type Type = ArrayType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.item.get_type(generator, ctx).array_type(self.len.get_length())
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let BasicTypeEnum::ArrayType(ty) = ty else {
|
||||
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
if ty.len() != self.len.get_length() {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
|
||||
ty.len(),
|
||||
self.len.get_length()
|
||||
)));
|
||||
}
|
||||
|
||||
self.item
|
||||
.check_type(generator, ctx, ty.get_element_type())
|
||||
.map_err(|err| err.under_context("an ArrayType"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
|
||||
/// Get the pointer to the `i`-th (0-based) array element.
|
||||
pub fn gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Item>> {
|
||||
let zero = ctx.ctx.i32_type().const_zero();
|
||||
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
|
||||
|
||||
Ptr(self.model.0.item).believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Like `gep` but `i` is a constant.
|
||||
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
|
||||
assert!(
|
||||
i < u64::from(self.model.0.len.get_length()),
|
||||
"Index {i} is out of bounds. Array length = {}",
|
||||
self.model.0.len.get_length()
|
||||
);
|
||||
|
||||
let i = ctx.ctx.i32_type().const_int(i, false);
|
||||
self.gep(ctx, i)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||
pub fn get<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.gep(ctx, i).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Like `get` but `i` is a constant.
|
||||
pub fn get_const<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: u64,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.gep_const(ctx, i).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||
pub fn set(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: IntValue<'ctx>,
|
||||
value: Instance<'ctx, Item>,
|
||||
) {
|
||||
self.gep(ctx, i).store(ctx, value);
|
||||
}
|
||||
|
||||
/// Like `set` but `i` is a constant.
|
||||
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
|
||||
self.gep_const(ctx, i).store(ctx, value);
|
||||
}
|
||||
}
|
156
nac3core/src/codegen/model/core.rs
Normal file
156
nac3core/src/codegen/model/core.rs
Normal file
@ -0,0 +1,156 @@
|
||||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::*, values::*};
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::*;
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelError(pub String);
|
||||
|
||||
impl ModelError {
|
||||
pub(super) fn under_context(mut self, context: &str) -> Self {
|
||||
self.0.push_str(" ... in ");
|
||||
self.0.push_str(context);
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
|
||||
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
|
||||
type Type: BasicType<'ctx>;
|
||||
|
||||
/// Return the [`BasicType`] of this model.
|
||||
#[must_use]
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
|
||||
|
||||
fn sizeof<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntValue<'ctx> {
|
||||
self.get_type(generator, ctx).size_of().unwrap()
|
||||
}
|
||||
|
||||
/// Check if a [`BasicType`] is the same type of this model.
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError>;
|
||||
|
||||
/// Create an instance from a value with [`Instance::model`] being this model.
|
||||
///
|
||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
|
||||
#[must_use]
|
||||
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
|
||||
Instance { model: *self, value }
|
||||
}
|
||||
|
||||
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
|
||||
/// Wrap it into an [`Instance`] if it is.
|
||||
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
value: V,
|
||||
) -> Result<Instance<'ctx, Self>, ModelError> {
|
||||
let value = value.as_basic_value_enum();
|
||||
self.check_type(generator, ctx, value.get_type())
|
||||
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
|
||||
|
||||
let Ok(value) = Self::Value::try_from(value) else {
|
||||
unreachable!("check_type() has bad implementation")
|
||||
};
|
||||
Ok(self.believe_value(value))
|
||||
}
|
||||
|
||||
// Allocate a value on the stack and return its pointer.
|
||||
fn alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Self>> {
|
||||
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
Ptr(*self).believe_value(p)
|
||||
}
|
||||
|
||||
// Allocate an array on the stack and return its pointer.
|
||||
fn array_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Self>> {
|
||||
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
|
||||
Ptr(*self).believe_value(p)
|
||||
}
|
||||
|
||||
fn var_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&str>,
|
||||
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
||||
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||
let p = generator.gen_var_alloc(ctx, ty, name)?;
|
||||
Ok(Ptr(*self).believe_value(p))
|
||||
}
|
||||
|
||||
fn array_var_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
||||
// TODO: Remove ArraySliceValue
|
||||
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
|
||||
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
|
||||
}
|
||||
|
||||
fn const_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
values: &[Instance<'ctx, Self>],
|
||||
) -> Instance<'ctx, Array<AnyLen, Self>> {
|
||||
macro_rules! make {
|
||||
($t:expr, $into_value:expr) => {
|
||||
$t.const_array(
|
||||
&values
|
||||
.iter()
|
||||
.map(|x| $into_value(x.value.as_basic_value_enum()))
|
||||
.collect_vec(),
|
||||
)
|
||||
};
|
||||
}
|
||||
|
||||
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
|
||||
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
|
||||
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
|
||||
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
|
||||
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
|
||||
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
|
||||
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
|
||||
};
|
||||
|
||||
Array { len: AnyLen(values.len() as u32), item: *self }
|
||||
.check_value(generator, ctx, value)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Instance<'ctx, M: Model<'ctx>> {
|
||||
/// The model of this instance.
|
||||
pub model: M,
|
||||
/// The value of this instance.
|
||||
///
|
||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
|
||||
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
|
||||
pub value: M::Value,
|
||||
}
|
87
nac3core/src/codegen/model/float.rs
Normal file
87
nac3core/src/codegen/model/float.rs
Normal file
@ -0,0 +1,87 @@
|
||||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::FloatType, values::FloatValue};
|
||||
|
||||
use crate::codegen::CodeGenerator;
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float32;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float64;
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for Float32 {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
ctx.f32_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for Float64 {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
ctx.f64_type()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float<N>(pub N);
|
||||
|
||||
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
|
||||
type Value = FloatValue<'ctx>;
|
||||
type Type = FloatType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_float_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = FloatType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let exp_ty = self.0.get_float_type(generator, ctx);
|
||||
|
||||
// TODO: Inkwell does not have get_bit_width for FloatType?
|
||||
// TODO: Quick hack for now, but does this actually work?
|
||||
if ty != exp_ty {
|
||||
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
106
nac3core/src/codegen/model/function.rs
Normal file
106
nac3core/src/codegen/model/function.rs
Normal file
@ -0,0 +1,106 @@
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
|
||||
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Arg<'ctx> {
|
||||
ty: BasicMetadataTypeEnum<'ctx>,
|
||||
val: BasicMetadataValueEnum<'ctx>,
|
||||
}
|
||||
|
||||
/// A structure to construct & call an LLVM function.
|
||||
///
|
||||
/// This is a helper to reduce IRRT Inkwell function call boilerplate
|
||||
// TODO: Remove the lifetimes somehow? There are 4 of them.
|
||||
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
|
||||
generator: &'d mut G,
|
||||
ctx: &'b CodeGenContext<'ctx, 'a>,
|
||||
/// Function name
|
||||
name: &'c str,
|
||||
/// Call arguments
|
||||
args: Vec<Arg<'ctx>>,
|
||||
/// LLVM function Attributes
|
||||
attrs: Vec<&'static str>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
|
||||
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
|
||||
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
|
||||
}
|
||||
|
||||
/// Push a list of LLVM function attributes to the function declaration.
|
||||
#[must_use]
|
||||
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
|
||||
self.attrs = attrs;
|
||||
self
|
||||
}
|
||||
|
||||
/// Push a call argument to the function call.
|
||||
#[allow(clippy::needless_pass_by_value)]
|
||||
#[must_use]
|
||||
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
|
||||
let arg = Arg {
|
||||
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
|
||||
val: arg.value.as_basic_value_enum().into(),
|
||||
};
|
||||
self.args.push(arg);
|
||||
self
|
||||
}
|
||||
|
||||
/// Call the function and expect the function to return a value of type of `return_model`.
|
||||
#[must_use]
|
||||
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
|
||||
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
|
||||
|
||||
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
|
||||
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
|
||||
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
|
||||
ret
|
||||
}
|
||||
|
||||
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
|
||||
#[must_use]
|
||||
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
|
||||
self.returning(name, M::default())
|
||||
}
|
||||
|
||||
/// Call the function and expect the function to return a void-type.
|
||||
pub fn returning_void(self) {
|
||||
let ret_ty = self.ctx.ctx.void_type();
|
||||
|
||||
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
|
||||
}
|
||||
|
||||
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
|
||||
where
|
||||
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
|
||||
{
|
||||
// Get the LLVM function.
|
||||
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
|
||||
// Declare the function if it doesn't exist.
|
||||
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
|
||||
|
||||
let func_type = make_fn_type(&tys);
|
||||
let func = self.ctx.module.add_function(self.name, func_type, None);
|
||||
|
||||
for attr in &self.attrs {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
|
||||
func
|
||||
});
|
||||
|
||||
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
|
||||
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
|
||||
}
|
||||
}
|
349
nac3core/src/codegen/model/int.rs
Normal file
349
nac3core/src/codegen/model/int.rs
Normal file
@ -0,0 +1,349 @@
|
||||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, IntType},
|
||||
values::IntValue,
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Bool;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Byte;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int32;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int64;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct SizeT;
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Bool {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.bool_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Byte {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i8_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Int32 {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i32_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Int64 {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i64_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for SizeT {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
generator.get_size_type(ctx)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int<N>(pub N);
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
|
||||
type Value = IntValue<'ctx>;
|
||||
type Type = IntType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_int_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = IntType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let exp_ty = self.0.get_int_type(generator, ctx);
|
||||
if ty.get_bit_width() != exp_ty.get_bit_width() {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting IntType to have {} bit(s), but got {} bit(s)",
|
||||
exp_ty.get_bit_width(),
|
||||
ty.get_bit_width()
|
||||
)));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Int<N> {
|
||||
pub fn const_int<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
value: u64,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = self.get_type(generator, ctx).const_int(value, false);
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn const_0<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = self.get_type(generator, ctx).const_zero();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn const_1<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
self.const_int(generator, ctx, 1)
|
||||
}
|
||||
|
||||
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = self.get_type(generator, ctx).const_all_ones();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn s_extend<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value =
|
||||
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn z_extend<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value =
|
||||
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn truncate<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value =
|
||||
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl Int<Bool> {
|
||||
#[must_use]
|
||||
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
self.const_int(generator, ctx, 0)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
self.const_int(generator, ctx, 1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
|
||||
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).s_extend(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).z_extend(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).truncate(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn compare(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
op: IntPredicate,
|
||||
other: Self,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
|
||||
Int(Bool).believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn not(&self, ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
let value = ctx.builder.build_not(self.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
}
|
17
nac3core/src/codegen/model/mod.rs
Normal file
17
nac3core/src/codegen/model/mod.rs
Normal file
@ -0,0 +1,17 @@
|
||||
mod any;
|
||||
mod array;
|
||||
mod core;
|
||||
mod float;
|
||||
pub mod function;
|
||||
mod int;
|
||||
mod ptr;
|
||||
mod structure;
|
||||
pub mod util;
|
||||
|
||||
pub use any::*;
|
||||
pub use array::*;
|
||||
pub use core::*;
|
||||
pub use float::*;
|
||||
pub use int::*;
|
||||
pub use ptr::*;
|
||||
pub use structure::*;
|
192
nac3core/src/codegen/model/ptr.rs
Normal file
192
nac3core/src/codegen/model/ptr.rs
Normal file
@ -0,0 +1,192 @@
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Ptr<Item>(pub Item);
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
|
||||
type Value = PointerValue<'ctx>;
|
||||
type Type = PointerType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = PointerType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let elem_ty = ty.get_element_type();
|
||||
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
|
||||
)));
|
||||
};
|
||||
|
||||
// TODO: inkwell `get_element_type()` will be deprecated.
|
||||
// Remove the check for `get_element_type()` when the time comes.
|
||||
self.0
|
||||
.check_type(generator, ctx, elem_ty)
|
||||
.map_err(|err| err.under_context("a PointerType"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> Ptr<Element> {
|
||||
/// Return a ***constant*** nullptr.
|
||||
pub fn nullptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Ptr<Element>> {
|
||||
let ptr = self.get_type(generator, ctx).const_null();
|
||||
self.believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
|
||||
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Element>> {
|
||||
let t = self.get_type(generator, ctx.ctx);
|
||||
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
|
||||
self.believe_value(ptr)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
|
||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
|
||||
#[must_use]
|
||||
pub fn offset(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
offset: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Item>> {
|
||||
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
|
||||
self.model.believe_value(p)
|
||||
}
|
||||
|
||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
|
||||
#[must_use]
|
||||
pub fn offset_const(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
offset: u64,
|
||||
) -> Instance<'ctx, Ptr<Item>> {
|
||||
let offset = ctx.ctx.i32_type().const_int(offset, false);
|
||||
self.offset(ctx, offset)
|
||||
}
|
||||
|
||||
pub fn set_index(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
value: Instance<'ctx, Item>,
|
||||
) {
|
||||
self.offset(ctx, index).store(ctx, value);
|
||||
}
|
||||
|
||||
pub fn set_index_const(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: u64,
|
||||
value: Instance<'ctx, Item>,
|
||||
) {
|
||||
self.offset_const(ctx, index).store(ctx, value);
|
||||
}
|
||||
|
||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.offset(ctx, index).load(generator, ctx)
|
||||
}
|
||||
|
||||
pub fn get_index_const<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: u64,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.offset_const(ctx, index).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Load the value with [`inkwell::builder::Builder::build_load`].
|
||||
pub fn load<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Item> {
|
||||
let value = ctx.builder.build_load(self.value, "").unwrap();
|
||||
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
|
||||
}
|
||||
|
||||
/// Store a value with [`inkwell::builder::Builder::build_store`].
|
||||
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
|
||||
ctx.builder.build_store(self.value, value.value).unwrap();
|
||||
}
|
||||
|
||||
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
|
||||
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
new_item: NewItem,
|
||||
) -> Instance<'ctx, Ptr<NewItem>> {
|
||||
Ptr(new_item).pointer_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
||||
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_is_null(self.value, "").unwrap();
|
||||
Int(Bool).believe_value(value)
|
||||
}
|
||||
|
||||
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
|
||||
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
|
||||
Int(Bool).believe_value(value)
|
||||
}
|
||||
|
||||
pub fn copy_from<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
source: Self,
|
||||
num_items: IntValue<'ctx>,
|
||||
) {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// Force extend `num_items` and `itemsize` so their types would match.
|
||||
let itemsize = self.model.sizeof(generator, ctx.ctx);
|
||||
let itemsize =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(itemsize, llvm_usize, "").unwrap();
|
||||
let num_items =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(num_items, llvm_usize, "").unwrap();
|
||||
|
||||
let totalsize = ctx.builder.build_int_mul(itemsize, num_items, "totalsize").unwrap();
|
||||
|
||||
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
|
||||
call_memcpy_generic(ctx, self.value, source.value, totalsize, is_volatile);
|
||||
}
|
||||
}
|
261
nac3core/src/codegen/model/structure.rs
Normal file
261
nac3core/src/codegen/model/structure.rs
Normal file
@ -0,0 +1,261 @@
|
||||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, StructType},
|
||||
values::{BasicValueEnum, StructValue},
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
|
||||
pub trait FieldTraversal<'ctx> {
|
||||
/// Output type of [`FieldTraversal::add`].
|
||||
type Out<M>;
|
||||
|
||||
/// Traverse through the type of a declared field and do something with it.
|
||||
///
|
||||
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
|
||||
/// * `model` - The [`Model`] representing the LLVM type of this field.
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
|
||||
|
||||
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
|
||||
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
|
||||
self.add(name, M::default())
|
||||
}
|
||||
}
|
||||
|
||||
/// Descriptor of an LLVM struct field.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GepField<M> {
|
||||
/// The GEP index of this field. This is the index to use with `build_gep`.
|
||||
pub gep_index: u64,
|
||||
/// The cosmetic name of this field.
|
||||
pub name: &'static str,
|
||||
/// The [`Model`] of this field's type.
|
||||
pub model: M,
|
||||
}
|
||||
|
||||
/// A traversal to get the GEP index of fields.
|
||||
pub struct GepFieldTraversal {
|
||||
/// The current GEP index.
|
||||
gep_index_counter: u64,
|
||||
}
|
||||
|
||||
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
|
||||
type Out<M> = GepField<M>;
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||
let gep_index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
Self::Out { gep_index, name, model }
|
||||
}
|
||||
}
|
||||
|
||||
/// A traversal to collect the field types of a struct.
|
||||
///
|
||||
/// This is used to collect the field types for [`Context::struct_type`].
|
||||
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||
generator: &'a G,
|
||||
ctx: &'ctx Context,
|
||||
/// The collected field types so far, in order.
|
||||
field_types: Vec<BasicTypeEnum<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
|
||||
type Out<M> = (); // Checking types return nothing.
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
|
||||
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
|
||||
self.field_types.push(t);
|
||||
}
|
||||
}
|
||||
|
||||
/// A traversal to check the types of a field for debug assertions.
|
||||
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||
generator: &'a mut G,
|
||||
ctx: &'ctx Context,
|
||||
/// The current GEP index, so we can tell the index of the field we are checking
|
||||
/// and report the GEP index.
|
||||
index: u32,
|
||||
/// The [`StructType`] to check.
|
||||
scrutinee: StructType<'ctx>,
|
||||
/// A list of collected errors so far.
|
||||
errors: Vec<ModelError>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
|
||||
for CheckTypeFieldTraversal<'ctx, 'a, G>
|
||||
{
|
||||
type Out<M> = (); // Checking types return nothing.
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||
let i = self.index;
|
||||
self.index += 1;
|
||||
|
||||
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
|
||||
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
|
||||
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
|
||||
}
|
||||
} // Otherwise, it will be caught by Struct's `check_type`.
|
||||
}
|
||||
}
|
||||
|
||||
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
type Fields<F: FieldTraversal<'ctx>>;
|
||||
|
||||
/// Traverse map through all fields of this [`StructKind`].
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
|
||||
|
||||
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
|
||||
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
|
||||
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
|
||||
}
|
||||
|
||||
/// Get the LLVM [`StructType`] of this [`StructKind`].
|
||||
fn get_struct_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> StructType<'ctx> {
|
||||
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
|
||||
self.traverse_fields(&mut traversal);
|
||||
|
||||
ctx.struct_type(&traversal.field_types, false)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Struct<S>(pub S);
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
|
||||
/// Create a constant struct value.
|
||||
///
|
||||
/// This function also validates `fields` and panic when there is something wrong.
|
||||
pub fn const_struct<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
fields: &[BasicValueEnum<'ctx>],
|
||||
) -> Instance<'ctx, Self> {
|
||||
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
|
||||
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
|
||||
// and if you try doing that Rust would force you put lifetimes everywhere.
|
||||
let val = ctx.const_struct(fields, false);
|
||||
self.check_value(generator, ctx, val).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
|
||||
type Value = StructValue<'ctx>;
|
||||
type Type = StructType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_struct_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = StructType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let mut traversal =
|
||||
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
|
||||
self.0.traverse_fields(&mut traversal);
|
||||
|
||||
let exp_num_fields = traversal.index;
|
||||
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
|
||||
if exp_num_fields != got_num_fields {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
|
||||
)));
|
||||
}
|
||||
|
||||
if !traversal.errors.is_empty() {
|
||||
return Err(traversal.errors[0].clone()); // TODO: Return other errors as well
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
|
||||
/// Get a field with [`StructValue::get_field_at_index`].
|
||||
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
let field = get_field(self.model.0.fields());
|
||||
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
|
||||
field.model.check_value(generator, ctx, val).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
|
||||
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
|
||||
pub fn gep<M, GetField>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, Ptr<M>>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
let field = get_field(self.model.0 .0.fields());
|
||||
let llvm_i32 = ctx.ctx.i32_type(); // i64 would segfault
|
||||
|
||||
let ptr = unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
self.value,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
|
||||
field.name,
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
Ptr(field.model).believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
self.gep(ctx, get_field).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||
pub fn set<M, GetField>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
value: Instance<'ctx, M>,
|
||||
) where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
self.gep(ctx, get_field).store(ctx, value);
|
||||
}
|
||||
}
|
40
nac3core/src/codegen/model/util.rs
Normal file
40
nac3core/src/codegen/model/util.rs
Normal file
@ -0,0 +1,40 @@
|
||||
use crate::codegen::{
|
||||
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
|
||||
pub fn gen_for_model<'ctx, 'a, G, F, N>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
start: Instance<'ctx, Int<N>>,
|
||||
stop: Instance<'ctx, Int<N>>,
|
||||
step: Instance<'ctx, Int<N>>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
Instance<'ctx, Int<N>>,
|
||||
) -> Result<(), String>,
|
||||
N: IntKind<'ctx> + Default,
|
||||
{
|
||||
let int_model = Int(N::default());
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
start.value,
|
||||
(stop.value, false),
|
||||
|g, ctx, hooks, i| {
|
||||
let i = int_model.believe_value(i);
|
||||
body(g, ctx, hooks, i)
|
||||
},
|
||||
step.value,
|
||||
)
|
||||
}
|
File diff suppressed because it is too large
Load Diff
12
nac3core/src/codegen/object/any.rs
Normal file
12
nac3core/src/codegen/object/any.rs
Normal file
@ -0,0 +1,12 @@
|
||||
use inkwell::values::BasicValueEnum;
|
||||
|
||||
use crate::typecheck::typedef::Type;
|
||||
|
||||
/// An NAC3 LLVM Python object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyObject<'ctx> {
|
||||
/// Typechecker type of the object.
|
||||
pub ty: Type,
|
||||
/// LLVM value of the object.
|
||||
pub value: BasicValueEnum<'ctx>,
|
||||
}
|
150
nac3core/src/codegen/object/list.rs
Normal file
150
nac3core/src/codegen/object/list.rs
Normal file
@ -0,0 +1,150 @@
|
||||
use inkwell::types::BasicType;
|
||||
|
||||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::any::AnyObject;
|
||||
|
||||
/// Fields of [`List`]
|
||||
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||
/// Array pointer to content
|
||||
pub items: F::Out<Ptr<Item>>,
|
||||
/// Number of items in the array
|
||||
pub len: F::Out<Int<SizeT>>,
|
||||
}
|
||||
|
||||
/// A list in NAC3.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct List<Item> {
|
||||
/// Model of the list items
|
||||
pub item: Item,
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
items: traversal.add("items", Ptr(self.item)),
|
||||
len: traversal.add_auto("len"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A NAC3 Python List object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ListObject<'ctx> {
|
||||
/// Typechecker type of the list items. Could be [`TypeEnum::TVar`] if unresolved (like
|
||||
/// in the case of empty lists and the typechecker does not have enough hints).
|
||||
pub item_type: Type,
|
||||
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ListObject<'ctx> {
|
||||
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> Self {
|
||||
assert!(matches!(
|
||||
&*ctx.unifier.get_ty(object.ty),
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap()
|
||||
));
|
||||
|
||||
// Check typechecker type and extract `item_type`
|
||||
let item_type = match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
|
||||
}
|
||||
_ => {
|
||||
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
|
||||
}
|
||||
};
|
||||
|
||||
// If `item_type` is unresolved, the list's ptr will default to `size_t*`
|
||||
// as a placeholder because there are no opaque pointers in LLVM 14.
|
||||
let item_type_llvm = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty(item_type) {
|
||||
generator.get_size_type(ctx.ctx).as_basic_type_enum()
|
||||
} else {
|
||||
ctx.get_llvm_type(generator, item_type)
|
||||
};
|
||||
|
||||
let plist = Ptr(Struct(List { item: Any(item_type_llvm) }));
|
||||
|
||||
// Create object
|
||||
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
ListObject { item_type, instance: value }
|
||||
}
|
||||
|
||||
/// Get the `len()` of this list.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
self.instance.get(generator, ctx, |f| f.len)
|
||||
}
|
||||
|
||||
/// Get the `items` field as an opaque pointer.
|
||||
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
self.instance.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte))
|
||||
}
|
||||
|
||||
/// Get the value of this [`ListObject`] as a list with opaque items.
|
||||
///
|
||||
/// This function allocates on the stack to create the list, but the
|
||||
/// reference to the `items` is preserved.
|
||||
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
|
||||
let opaque_list = Struct(List { item: Int(Byte) }).alloca(generator, ctx);
|
||||
|
||||
// Copy items pointer
|
||||
let items = self.get_opaque_items_ptr(generator, ctx);
|
||||
opaque_list.set(ctx, |f| f.items, items);
|
||||
|
||||
// Copy len
|
||||
let len = self.instance.get(generator, ctx, |f| f.len);
|
||||
opaque_list.set(ctx, |f| f.len, len);
|
||||
|
||||
opaque_list
|
||||
}
|
||||
|
||||
/// Allocate a list on the stack given its `item_type` and `len`.
|
||||
///
|
||||
/// The returned list's content will be:
|
||||
/// - `items`: allocated with an array of length `len` with uninitialized values.
|
||||
/// - `len`: set to `len`.
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
item_type: Type,
|
||||
len: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Self {
|
||||
// If `item_type` is unresolved, the list's ptr will default to `size_t*`
|
||||
// as a placeholder because there are no opaque pointers in LLVM 14.
|
||||
let item_type_llvm = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty(item_type) {
|
||||
generator.get_size_type(ctx.ctx).as_basic_type_enum()
|
||||
} else {
|
||||
ctx.get_llvm_type(generator, item_type)
|
||||
};
|
||||
let items = Any(item_type_llvm).array_alloca(generator, ctx, len.value);
|
||||
|
||||
let instance = Struct(List { item: Any(item_type_llvm) }).alloca(generator, ctx);
|
||||
instance.set(ctx, |f| f.items, items);
|
||||
instance.set(ctx, |f| f.len, len);
|
||||
|
||||
ListObject { item_type, instance }
|
||||
}
|
||||
}
|
5
nac3core/src/codegen/object/mod.rs
Normal file
5
nac3core/src/codegen/object/mod.rs
Normal file
@ -0,0 +1,5 @@
|
||||
pub mod any;
|
||||
pub mod list;
|
||||
pub mod ndarray;
|
||||
pub mod range;
|
||||
pub mod tuple;
|
178
nac3core/src/codegen/object/ndarray/array.rs
Normal file
178
nac3core/src/codegen/object/ndarray/array.rs
Normal file
@ -0,0 +1,178 @@
|
||||
use super::NDArrayObject;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_array_set_and_validate_list_shape,
|
||||
call_nac3_ndarray_array_write_list_to_array,
|
||||
},
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject},
|
||||
stmt::gen_if_else_expr_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
fn get_list_object_dtype_and_ndims<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> (Type, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
||||
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
||||
let ndims = ndims + 1; // To count `list` itself.
|
||||
|
||||
(dtype, ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
fn make_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
let list_value = list.get_opaque_list_ptr(generator, ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||
generator, ctx, list_value, ndims, shape,
|
||||
);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
// Copy all contents from the list.
|
||||
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
fn make_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
// np_array without copying is only possible `list` is not nested.
|
||||
//
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
//
|
||||
// If `list` is `list[list[T]]` or worse, copy.
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
|
||||
|
||||
// Set data
|
||||
let data = list.get_opaque_items_ptr(generator, ctx);
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
// ndarray->shape[0] = list->len;
|
||||
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
let list_len = list.instance.get(generator, ctx, |f| f.len);
|
||||
shape.set_index_const(ctx, 0, list_len);
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.set_strides_contiguous(generator, ctx);
|
||||
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, copy
|
||||
NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list)
|
||||
}
|
||||
}
|
||||
|
||||
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray =
|
||||
NDArrayObject::make_np_array_list_try_no_copy_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
||||
}
|
||||
|
||||
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_val,
|
||||
ndarray.dtype,
|
||||
ndarray.ndims,
|
||||
)
|
||||
}
|
||||
|
||||
/// Create a new ndarray like `np.array()`.
|
||||
///
|
||||
/// NOTE: The `ndmin` argument is not here. You may want to
|
||||
/// do [`NDArrayObject::atleast_nd`] to achieve that.
|
||||
pub fn make_np_array<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
||||
}
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
135
nac3core/src/codegen/object/ndarray/broadcast.rs
Normal file
135
nac3core/src/codegen/object/ndarray/broadcast.rs
Normal file
@ -0,0 +1,135 @@
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`ShapeEntry`]
|
||||
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
}
|
||||
|
||||
/// An IRRT structure used in broadcasting.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct ShapeEntry;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create a broadcast view on this ndarray with a target shape.
|
||||
///
|
||||
/// The input shape will be checked to make sure that it contains no negative values.
|
||||
///
|
||||
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||
/// The caller has to figure this out for this function.
|
||||
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||
#[must_use]
|
||||
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target_ndims: u64,
|
||||
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
|
||||
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
||||
|
||||
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
||||
broadcast_ndarray
|
||||
}
|
||||
}
|
||||
/// A result produced by [`broadcast_all_ndarrays`]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BroadcastAllResult<'ctx> {
|
||||
/// The statically known `ndims` of the broadcast result.
|
||||
pub ndims: u64,
|
||||
/// The broadcasting shape.
|
||||
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
/// Broadcasted views on the inputs.
|
||||
///
|
||||
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||
/// is the same as the input.
|
||||
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
||||
}
|
||||
|
||||
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
|
||||
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
|
||||
broadcast_ndims: u64,
|
||||
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
|
||||
let num_shape_entries =
|
||||
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
|
||||
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
|
||||
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
|
||||
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
|
||||
|
||||
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
|
||||
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
||||
|
||||
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
||||
}
|
||||
|
||||
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
|
||||
call_nac3_ndarray_broadcast_shapes(
|
||||
generator,
|
||||
ctx,
|
||||
num_shape_entries,
|
||||
shape_entries,
|
||||
broadcast_ndims,
|
||||
broadcast_shape,
|
||||
);
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
|
||||
/// containing all the information of the result of the broadcast operation.
|
||||
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarrays: &[Self],
|
||||
) -> BroadcastAllResult<'ctx> {
|
||||
assert!(!ndarrays.is_empty());
|
||||
|
||||
// Infer the broadcast output ndims.
|
||||
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
||||
|
||||
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
|
||||
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
|
||||
|
||||
let shape_entries = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
|
||||
.collect_vec();
|
||||
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
||||
|
||||
// Broadcast all the inputs to shape `dst_shape`.
|
||||
let broadcast_ndarrays: Vec<_> = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
BroadcastAllResult {
|
||||
ndims: broadcast_ndims_int,
|
||||
shape: broadcast_shape,
|
||||
ndarrays: broadcast_ndarrays,
|
||||
}
|
||||
}
|
||||
}
|
134
nac3core/src/codegen/object/ndarray/contiguous.rs
Normal file
134
nac3core/src/codegen/object/ndarray/contiguous.rs
Normal file
@ -0,0 +1,134 @@
|
||||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`ContiguousNDArray`]
|
||||
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub data: F::Out<Ptr<Item>>,
|
||||
}
|
||||
|
||||
/// An ndarray without strides and non-opaque `data` field in NAC3.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ContiguousNDArray<M> {
|
||||
/// [`Model`] of the items.
|
||||
pub item: M,
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
ndims: traversal.add_auto("ndims"),
|
||||
shape: traversal.add_auto("shape"),
|
||||
data: traversal.add("data", Ptr(self.item)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
|
||||
///
|
||||
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
||||
///
|
||||
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
|
||||
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
|
||||
///
|
||||
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
|
||||
/// will share memory with this ndarray.
|
||||
///
|
||||
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
|
||||
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
|
||||
/// if you don't care/cannot know the [`Model`] in advance.
|
||||
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
item_model: Item,
|
||||
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
|
||||
// Sanity check on `self.dtype` and `item_model`.
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||
|
||||
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||
|
||||
// Allocate and setup the resulting [`ContiguousNDArray`].
|
||||
let result = cdarray_model.alloca(generator, ctx);
|
||||
|
||||
// Set ndims and shape.
|
||||
let ndims = self.ndims_llvm(generator, ctx.ctx);
|
||||
result.set(ctx, |f| f.ndims, ndims);
|
||||
|
||||
let shape = self.instance.get(generator, ctx, |f| f.shape);
|
||||
result.set(ctx, |f| f.shape, shape);
|
||||
|
||||
let is_contiguous = self.is_c_contiguous(generator, ctx);
|
||||
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
|
||||
|
||||
// Inserting into then_bb; This ndarray is contiguous.
|
||||
ctx.builder.position_at_end(then_bb);
|
||||
let data = self.instance.get(generator, ctx, |f| f.data);
|
||||
let data = data.pointer_cast(generator, ctx, item_model);
|
||||
result.set(ctx, |f| f.data, data);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
|
||||
// `make_copy` produces an ndarray with contiguous `data`.
|
||||
ctx.builder.position_at_end(else_bb);
|
||||
let copied_ndarray = self.make_copy(generator, ctx);
|
||||
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
|
||||
let data = data.pointer_cast(generator, ctx, item_model);
|
||||
result.set(ctx, |f| f.data, data);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Reposition to end_bb for continuation
|
||||
ctx.builder.position_at_end(end_bb);
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
|
||||
///
|
||||
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
|
||||
/// same memory as the [`ContiguousNDArray`].
|
||||
///
|
||||
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
|
||||
/// the fact that the information should be contained within the [`ContiguousNDArray`].
|
||||
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||
|
||||
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
|
||||
|
||||
// Allocate the resulting ndarray.
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
||||
|
||||
// Copy shape and update strides
|
||||
let shape = carray.get(generator, ctx, |f| f.shape);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.set_strides_contiguous(generator, ctx);
|
||||
|
||||
// Share data
|
||||
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
ndarray
|
||||
}
|
||||
}
|
176
nac3core/src/codegen/object/ndarray/factory.rs
Normal file
176
nac3core/src/codegen/object/ndarray/factory.rs
Normal file
@ -0,0 +1,176 @@
|
||||
use inkwell::{values::BasicValueEnum, IntPredicate};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
|
||||
CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the one value in `np.ones()` of a `dtype`.
|
||||
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create an ndarray like `np.empty`.
|
||||
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
// Validate `shape`
|
||||
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.full`.
|
||||
pub fn make_np_full<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
|
||||
ndarray.fill(generator, ctx, fill_value);
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.zero`.
|
||||
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.ones`.
|
||||
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.eye`.
|
||||
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
nrows: Instance<'ctx, Int<SizeT>>,
|
||||
ncols: Instance<'ctx, Int<SizeT>>,
|
||||
offset: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Self {
|
||||
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||
|
||||
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
|
||||
|
||||
// Create data and make the matrix like look np.eye()
|
||||
ndarray.create_data(generator, ctx);
|
||||
ndarray
|
||||
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||
// and this loop would not execute.
|
||||
|
||||
// Load up `row_i` and `col_i` from indices.
|
||||
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
|
||||
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
|
||||
|
||||
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
|
||||
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
|
||||
|
||||
let p = nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.identity`.
|
||||
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
size: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Self {
|
||||
// Convenient implementation
|
||||
let offset = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
|
||||
}
|
||||
}
|
295
nac3core/src/codegen/object/ndarray/indexing.rs
Normal file
295
nac3core/src/codegen/object/ndarray/indexing.rs
Normal file
@ -0,0 +1,295 @@
|
||||
use crate::codegen::{irrt::call_nac3_ndarray_index, model::*, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
pub type NDIndexType = Byte;
|
||||
|
||||
/// Fields of [`NDIndex`]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
|
||||
pub data: F::Out<Ptr<Int<Byte>>>,
|
||||
}
|
||||
|
||||
/// An IRRT representation of an ndarray subscript index.
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
pub struct NDIndex;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDIndex {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
|
||||
}
|
||||
}
|
||||
|
||||
/// Fields of [`Slice`]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
|
||||
pub start_defined: F::Out<Int<Bool>>,
|
||||
pub start: F::Out<Int<N>>,
|
||||
pub stop_defined: F::Out<Int<Bool>>,
|
||||
pub stop: F::Out<Int<N>>,
|
||||
pub step_defined: F::Out<Int<Bool>>,
|
||||
pub step: F::Out<Int<N>>,
|
||||
}
|
||||
|
||||
/// An IRRT representation of an (unresolved) slice.
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
pub struct Slice<N> {
|
||||
int_kind: N,
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
|
||||
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
start_defined: traversal.add_auto("start_defined"),
|
||||
start: traversal.add("start", Int(self.int_kind)),
|
||||
stop_defined: traversal.add_auto("stop_defined"),
|
||||
stop: traversal.add("stop", Int(self.int_kind)),
|
||||
step_defined: traversal.add_auto("step_defined"),
|
||||
step: traversal.add("step", Int(self.int_kind)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience structure to prepare a [`Slice`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
|
||||
pub start: Option<Instance<'ctx, Int<N>>>,
|
||||
pub stop: Option<Instance<'ctx, Int<N>>>,
|
||||
pub step: Option<Instance<'ctx, Int<N>>>,
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
|
||||
/// Write the contents to an LLVM [`Slice`].
|
||||
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
|
||||
) {
|
||||
let false_ = Int(Bool).const_false(generator, ctx.ctx);
|
||||
let true_ = Int(Bool).const_true(generator, ctx.ctx);
|
||||
|
||||
match self.start {
|
||||
Some(start) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
|
||||
}
|
||||
|
||||
match self.stop {
|
||||
Some(stop) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
|
||||
}
|
||||
|
||||
match self.step {
|
||||
Some(step) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A convenience enum to prepare an [`NDIndex`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum RustNDIndex<'ctx> {
|
||||
SingleElement(Instance<'ctx, Int<Int32>>), // TODO: To be SizeT
|
||||
Slice(RustSlice<'ctx, Int32>),
|
||||
NewAxis,
|
||||
Ellipsis,
|
||||
}
|
||||
|
||||
impl<'ctx> RustNDIndex<'ctx> {
|
||||
/// Get the value to set `NDIndex::type` for this variant.
|
||||
fn get_type_id(&self) -> u64 {
|
||||
// Defined in IRRT, must be in sync
|
||||
match self {
|
||||
RustNDIndex::SingleElement(_) => 0,
|
||||
RustNDIndex::Slice(_) => 1,
|
||||
RustNDIndex::NewAxis => 2,
|
||||
RustNDIndex::Ellipsis => 3,
|
||||
}
|
||||
}
|
||||
|
||||
/// Write the contents to an LLVM [`NDIndex`].
|
||||
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
||||
) {
|
||||
// Set `dst_ndindex_ptr->type`
|
||||
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
|
||||
ctx,
|
||||
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
|
||||
);
|
||||
|
||||
// Set `dst_ndindex_ptr->data`
|
||||
match self {
|
||||
RustNDIndex::SingleElement(in_index) => {
|
||||
let index_ptr = Int(Int32).alloca(generator, ctx);
|
||||
index_ptr.store(ctx, *in_index);
|
||||
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.data)
|
||||
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
||||
}
|
||||
RustNDIndex::Slice(in_rust_slice) => {
|
||||
let user_slice_ptr = Struct(Slice { int_kind: Int32 }).alloca(generator, ctx);
|
||||
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
|
||||
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.data)
|
||||
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
||||
}
|
||||
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
|
||||
pub fn alloca_ndindices<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
in_ndindices: &[RustNDIndex<'ctx>],
|
||||
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
|
||||
let ndindex_model = Struct(NDIndex);
|
||||
|
||||
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
|
||||
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
|
||||
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
|
||||
let pndindex = ndindices.offset_const(ctx, i as u64);
|
||||
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
|
||||
}
|
||||
|
||||
(num_ndindices, ndindices)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Get the ndims [`Type`] after indexing with a given slice.
|
||||
#[must_use]
|
||||
pub fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
|
||||
let mut ndims = self.ndims;
|
||||
for index in indices {
|
||||
match index {
|
||||
RustNDIndex::SingleElement(_) => {
|
||||
ndims -= 1; // Single elements decrements ndims
|
||||
}
|
||||
RustNDIndex::NewAxis => {
|
||||
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
||||
}
|
||||
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
||||
}
|
||||
}
|
||||
ndims
|
||||
}
|
||||
|
||||
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||
///
|
||||
/// This function behaves like NumPy's ndarray indexing, but if the indices index
|
||||
/// into a single element, an unsized ndarray is returned.
|
||||
#[must_use]
|
||||
pub fn index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: &[RustNDIndex<'ctx>],
|
||||
) -> Self {
|
||||
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
|
||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
|
||||
|
||||
let (num_indices, indices) = RustNDIndex::alloca_ndindices(generator, ctx, indices);
|
||||
call_nac3_ndarray_index(
|
||||
generator,
|
||||
ctx,
|
||||
num_indices,
|
||||
indices,
|
||||
self.instance,
|
||||
dst_ndarray.instance,
|
||||
);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
}
|
||||
|
||||
pub mod util {
|
||||
use itertools::Itertools;
|
||||
use nac3parser::ast::{Expr, ExprKind};
|
||||
|
||||
use crate::{
|
||||
codegen::{expr::gen_slice, model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::{RustNDIndex, RustSlice};
|
||||
|
||||
/// Generate LLVM code to transform an ndarray subscript expression to
|
||||
/// its list of [`RustNDIndex`]
|
||||
///
|
||||
/// i.e.,
|
||||
/// ```python
|
||||
/// my_ndarray[::3, 1, :2:]
|
||||
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
||||
/// ```
|
||||
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
subscript: &Expr<Option<Type>>,
|
||||
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||
|
||||
// Annoying notes about `slice`
|
||||
// - `my_array[5]`
|
||||
// - slice is a `Constant`
|
||||
// - `my_array[:5]`
|
||||
// - slice is a `Slice`
|
||||
// - `my_array[:]`
|
||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||
// - `my_array[:, :]`
|
||||
// - slice is now a `Tuple` of two `Slice`-s
|
||||
//
|
||||
// In summary:
|
||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||
//
|
||||
// So we first "flatten" out the slice expression
|
||||
let index_exprs = match &subscript.node {
|
||||
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
||||
_ => vec![subscript],
|
||||
};
|
||||
|
||||
// Process all index expressions
|
||||
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
||||
for index_expr in index_exprs {
|
||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
||||
// Handle slices
|
||||
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
|
||||
RustNDIndex::Slice(RustSlice { start: lower, stop: upper, step })
|
||||
} else {
|
||||
// Treat and handle everything else as a single element index.
|
||||
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
||||
)?;
|
||||
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
|
||||
|
||||
RustNDIndex::SingleElement(index)
|
||||
};
|
||||
rust_ndindices.push(ndindex);
|
||||
}
|
||||
Ok(rust_ndindices)
|
||||
}
|
||||
}
|
220
nac3core/src/codegen/object/ndarray/map.rs
Normal file
220
nac3core/src/codegen/object/ndarray/map.rs
Normal file
@ -0,0 +1,220 @@
|
||||
use inkwell::values::BasicValueEnum;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
object::ndarray::{AnyObject, NDArrayObject},
|
||||
stmt::gen_for_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
|
||||
///
|
||||
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
|
||||
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
|
||||
///
|
||||
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
|
||||
pub fn broadcast_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarrays: &[Self],
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Broadcast inputs
|
||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
|
||||
|
||||
let out_ndarray = match out {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// Create a new ndarray based on the broadcast shape.
|
||||
let result_ndarray =
|
||||
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
|
||||
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
|
||||
result_ndarray.create_data(generator, ctx);
|
||||
result_ndarray
|
||||
}
|
||||
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||
// Use an existing ndarray.
|
||||
|
||||
// Check that its shape is compatible with the broadcast shape.
|
||||
result_ndarray.assert_can_be_written_by_out(
|
||||
generator,
|
||||
ctx,
|
||||
broadcast_result.ndims,
|
||||
broadcast_result.shape,
|
||||
);
|
||||
result_ndarray
|
||||
}
|
||||
};
|
||||
|
||||
// Map element-wise and store results into `mapped_ndarray`.
|
||||
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("broadcast_starmap"),
|
||||
|generator, ctx| {
|
||||
// Create NDIters for all broadcasted input ndarrays.
|
||||
let other_nditers = broadcast_result
|
||||
.ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
|
||||
.collect_vec();
|
||||
Ok((nditer, other_nditers))
|
||||
},
|
||||
|generator, ctx, (out_nditer, _in_nditers)| {
|
||||
// We can simply use `out_nditer`'s `has_next()`.
|
||||
// `in_nditers`' `has_next()`s should return the same value.
|
||||
Ok(out_nditer.has_next(generator, ctx).value)
|
||||
},
|
||||
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||
// and write to `out_ndarray`.
|
||||
|
||||
let in_scalars = in_nditers
|
||||
.iter()
|
||||
.map(|nditer| nditer.get_scalar(generator, ctx).value)
|
||||
.collect_vec();
|
||||
|
||||
let result = mapping(generator, ctx, &in_scalars)?;
|
||||
|
||||
let p = out_nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|generator, ctx, (out_nditer, in_nditers)| {
|
||||
// Advance all iterators
|
||||
out_nditer.next(generator, ctx);
|
||||
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(out_ndarray)
|
||||
}
|
||||
|
||||
/// Map through this ndarray with an elementwise function.
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: Mapping,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
NDArrayObject::broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
out,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
|
||||
///
|
||||
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
|
||||
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
|
||||
///
|
||||
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
|
||||
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
||||
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
|
||||
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
|
||||
///
|
||||
/// ## Details:
|
||||
///
|
||||
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
||||
///
|
||||
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
|
||||
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
|
||||
/// with dtype `ret_dtype`.
|
||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
inputs: &[ScalarOrNDArray<'ctx>],
|
||||
ret_dtype: Type,
|
||||
mapping: MappingFn,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Check if all inputs are Scalars
|
||||
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
|
||||
|
||||
if let Some(scalars) = all_scalars {
|
||||
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
|
||||
let value = mapping(generator, ctx, &scalars)?;
|
||||
|
||||
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
|
||||
} else {
|
||||
// Promote all input to ndarrays and map through them.
|
||||
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
||||
let ndarray = NDArrayObject::broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&inputs,
|
||||
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||
mapping,
|
||||
)?;
|
||||
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||
}
|
||||
}
|
||||
|
||||
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
|
||||
///
|
||||
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
|
||||
///
|
||||
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
|
||||
/// returned as a [`ScalarOrNDArray::NDArray`].
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ret_dtype: Type,
|
||||
mapping: Mapping,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
ScalarOrNDArray::broadcasting_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
ret_dtype,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
207
nac3core/src/codegen/object/ndarray/matmul.rs
Normal file
207
nac3core/src/codegen/object/ndarray/matmul.rs
Normal file
@ -0,0 +1,207 @@
|
||||
use std::cmp::max;
|
||||
|
||||
use nac3parser::ast::Operator;
|
||||
use util::gen_for_model;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
|
||||
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::{magic_methods::Binop, typedef::Type},
|
||||
};
|
||||
|
||||
use super::{NDArrayObject, NDArrayOut};
|
||||
|
||||
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
|
||||
///
|
||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dst_dtype: Type,
|
||||
in_a: NDArrayObject<'ctx>,
|
||||
in_b: NDArrayObject<'ctx>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
assert!(in_a.ndims >= 2);
|
||||
assert!(in_b.ndims >= 2);
|
||||
|
||||
// Deduce ndims of the result of matmul.
|
||||
let ndims_int = max(in_a.ndims, in_b.ndims);
|
||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||
|
||||
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
|
||||
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
|
||||
|
||||
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
|
||||
// destination ndarray to store the result of matmul.
|
||||
let (a, b, dst) = {
|
||||
let in_a_ndims = in_a.ndims_llvm(generator, ctx.ctx);
|
||||
let in_a_shape = in_a.instance.get(generator, ctx, |f| f.shape);
|
||||
let in_b_ndims = in_b.ndims_llvm(generator, ctx.ctx);
|
||||
let in_b_shape = in_b.instance.get(generator, ctx, |f| f.shape);
|
||||
let a_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
let b_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
|
||||
// Matmul dimension compatibility is checked here.
|
||||
call_nac3_ndarray_matmul_calculate_shapes(
|
||||
generator, ctx, in_a_ndims, in_a_shape, in_b_ndims, in_b_shape, ndims, a_shape,
|
||||
b_shape, dst_shape,
|
||||
);
|
||||
|
||||
let a = in_a.broadcast_to(generator, ctx, ndims_int, a_shape);
|
||||
let b = in_b.broadcast_to(generator, ctx, ndims_int, b_shape);
|
||||
|
||||
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
|
||||
dst.copy_shape_from_array(generator, ctx, dst_shape);
|
||||
dst.create_data(generator, ctx);
|
||||
|
||||
(a, b, dst)
|
||||
};
|
||||
|
||||
let len =
|
||||
a.instance.get(generator, ctx, |f| f.shape).get_index_const(generator, ctx, ndims_int - 1);
|
||||
|
||||
let at_row = ndims_int - 2;
|
||||
let at_col = ndims_int - 1;
|
||||
|
||||
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
|
||||
let dst_zero = dst_dtype_llvm.const_zero();
|
||||
|
||||
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||
let pdst_ij = hdl.get_pointer(generator, ctx);
|
||||
|
||||
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
|
||||
|
||||
let indices = hdl.get_indices();
|
||||
let i = indices.get_index_const(generator, ctx, at_row);
|
||||
let j = indices.get_index_const(generator, ctx, at_col);
|
||||
|
||||
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
|
||||
// `indices` is modified to index into `a` and `b`, and restored.
|
||||
indices.set_index_const(ctx, at_row, i);
|
||||
indices.set_index_const(ctx, at_col, k);
|
||||
let a_ik = a.get_scalar_by_indices(generator, ctx, indices);
|
||||
|
||||
indices.set_index_const(ctx, at_row, k);
|
||||
indices.set_index_const(ctx, at_col, j);
|
||||
let b_kj = b.get_scalar_by_indices(generator, ctx, indices);
|
||||
|
||||
// Restore `indices`.
|
||||
indices.set_index_const(ctx, at_row, i);
|
||||
indices.set_index_const(ctx, at_col, j);
|
||||
|
||||
// x = a_[...]ik * b_[...]kj
|
||||
let x = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(a.dtype), a_ik.value),
|
||||
Binop::normal(Operator::Mult),
|
||||
(&Some(b.dtype), b_kj.value),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||
|
||||
// dst_[...]ij += x
|
||||
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
|
||||
let dst_ij = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(dst_dtype), dst_ij),
|
||||
Binop::normal(Operator::Add),
|
||||
(&Some(dst_dtype), x),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
dst
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Perform `np.matmul` according to the rules in
|
||||
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
|
||||
///
|
||||
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
|
||||
/// to handle when the output could be a scalar.
|
||||
///
|
||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||
pub fn matmul<G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
a: Self,
|
||||
b: Self,
|
||||
out: NDArrayOut<'ctx>,
|
||||
) -> Self {
|
||||
// Sanity check, but type inference should prevent this.
|
||||
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
|
||||
|
||||
/*
|
||||
If both arguments are 2-D they are multiplied like conventional matrices.
|
||||
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
|
||||
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
|
||||
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
|
||||
*/
|
||||
|
||||
let new_a = if a.ndims == 1 {
|
||||
// Prepend 1 to its dimensions
|
||||
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
|
||||
} else {
|
||||
a
|
||||
};
|
||||
|
||||
let new_b = if b.ndims == 1 {
|
||||
// Append 1 to its dimensions
|
||||
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
|
||||
} else {
|
||||
b
|
||||
};
|
||||
|
||||
// NOTE: `result` will always be a newly allocated ndarray.
|
||||
// Current implementation cannot do in-place matrix muliplication.
|
||||
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
|
||||
|
||||
// Postprocessing on the result to remove prepended/appended axes.
|
||||
let mut postindices = vec![];
|
||||
let zero = Int(Int32).const_0(generator, ctx.ctx);
|
||||
|
||||
if a.ndims == 1 {
|
||||
// Remove the prepended 1
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if b.ndims == 1 {
|
||||
// Remove the appended 1
|
||||
postindices.push(RustNDIndex::Ellipsis);
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if !postindices.is_empty() {
|
||||
result = result.index(generator, ctx, &postindices);
|
||||
}
|
||||
|
||||
match out {
|
||||
NDArrayOut::NewNDArray { .. } => result,
|
||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
||||
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
|
||||
out_ndarray.assert_can_be_written_by_out(
|
||||
generator,
|
||||
ctx,
|
||||
result.ndims,
|
||||
result_shape,
|
||||
);
|
||||
|
||||
out_ndarray.copy_data_from(generator, ctx, result);
|
||||
out_ndarray
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
671
nac3core/src/codegen/object/ndarray/mod.rs
Normal file
671
nac3core/src/codegen/object/ndarray/mod.rs
Normal file
@ -0,0 +1,671 @@
|
||||
pub mod array;
|
||||
pub mod broadcast;
|
||||
pub mod contiguous;
|
||||
pub mod factory;
|
||||
pub mod indexing;
|
||||
pub mod map;
|
||||
pub mod matmul;
|
||||
pub mod nditer;
|
||||
pub mod shape_util;
|
||||
pub mod view;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::BasicType,
|
||||
values::{BasicValue, BasicValueEnum, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
|
||||
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
|
||||
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
|
||||
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
|
||||
call_nac3_ndarray_util_assert_output_shape_same,
|
||||
},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::{
|
||||
helper::{create_ndims, extract_ndims},
|
||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||
},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::{any::AnyObject, tuple::TupleObject};
|
||||
|
||||
/// Fields of [`NDArray`]
|
||||
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub data: F::Out<Ptr<Int<Byte>>>,
|
||||
pub itemsize: F::Out<Int<SizeT>>,
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub strides: F::Out<Ptr<Int<SizeT>>>,
|
||||
}
|
||||
|
||||
/// A strided ndarray in NAC3.
|
||||
///
|
||||
/// See IRRT implementation for details about its fields.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct NDArray;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDArray {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
data: traversal.add_auto("data"),
|
||||
itemsize: traversal.add_auto("itemsize"),
|
||||
ndims: traversal.add_auto("ndims"),
|
||||
shape: traversal.add_auto("shape"),
|
||||
strides: traversal.add_auto("strides"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A NAC3 Python ndarray object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NDArrayObject<'ctx> {
|
||||
pub dtype: Type,
|
||||
pub ndims: u64,
|
||||
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
||||
}
|
||||
|
||||
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
||||
/// `dtype` and `ndims`.
|
||||
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: V,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
|
||||
NDArrayObject { dtype, ndims, instance: value }
|
||||
}
|
||||
|
||||
/// Get this ndarray's `ndims` as an LLVM constant.
|
||||
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
Int(SizeT).const_int(generator, ctx, self.ndims)
|
||||
}
|
||||
|
||||
/// Get the typechecker ndarray type of this [`NDArrayObject`].
|
||||
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
|
||||
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
|
||||
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
|
||||
}
|
||||
|
||||
/// Forget that this is an ndarray and convert into an [`AnyObject`].
|
||||
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||
let ty = self.get_type(ctx);
|
||||
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
|
||||
}
|
||||
|
||||
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
|
||||
///
|
||||
/// `shape` and `strides` will be automatically allocated on the stack.
|
||||
//e
|
||||
/// The returned ndarray's content will be:
|
||||
/// - `data`: set to `nullptr`.
|
||||
/// - `itemsize`: set to the `sizeof()` of `dtype`.
|
||||
/// - `ndims`: set to the value of `ndims`.
|
||||
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let ndarray = Struct(NDArray).alloca(generator, ctx);
|
||||
|
||||
let data = Ptr(Int(Byte)).nullptr(generator, ctx.ctx);
|
||||
ndarray.set(ctx, |f| f.data, data);
|
||||
|
||||
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
|
||||
let itemsize = Int(SizeT).s_extend_or_bit_cast(generator, ctx, itemsize);
|
||||
ndarray.set(ctx, |f| f.itemsize, itemsize);
|
||||
|
||||
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||
ndarray.set(ctx, |f| f.ndims, ndims_val);
|
||||
|
||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
||||
ndarray.set(ctx, |f| f.shape, shape);
|
||||
|
||||
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
||||
ndarray.set(ctx, |f| f.strides, strides);
|
||||
|
||||
NDArrayObject { dtype, ndims, instance: ndarray }
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &[u64],
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
||||
|
||||
// Write shape
|
||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
|
||||
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &[Instance<'ctx, Int<SizeT>>],
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
||||
|
||||
// Write shape
|
||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||
///
|
||||
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||
///
|
||||
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||
pub fn create_data<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
let nbytes = self.nbytes(generator, ctx);
|
||||
|
||||
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
|
||||
self.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
self.set_strides_contiguous(generator, ctx);
|
||||
}
|
||||
|
||||
/// Copy shape dimensions from an array.
|
||||
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
||||
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
|
||||
}
|
||||
|
||||
/// Copy shape dimensions from an ndarray.
|
||||
/// Panics if `ndims` mismatches.
|
||||
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||
}
|
||||
|
||||
/// Copy strides dimensions from an array.
|
||||
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
||||
self.instance
|
||||
.get(generator, ctx, |f| f.strides)
|
||||
.copy_from(generator, ctx, strides, num_items);
|
||||
}
|
||||
|
||||
/// Copy strides dimensions from an ndarray.
|
||||
/// Panics if `ndims` mismatches.
|
||||
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
|
||||
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||
}
|
||||
|
||||
/// Get the `np.size()` of this ndarray.
|
||||
pub fn size<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
call_nac3_ndarray_size(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the `ndarray.nbytes` of this ndarray.
|
||||
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the `len()` of this ndarray.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
call_nac3_ndarray_len(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Check if this ndarray is C-contiguous.
|
||||
///
|
||||
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
||||
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the pointer to the n-th (0-based) element.
|
||||
///
|
||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Instance<'ctx, Int<SizeT>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||
|
||||
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the n-th (0-based) scalar.
|
||||
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Instance<'ctx, Int<SizeT>>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let ptr = self.get_nth_pelement(generator, ctx, nth);
|
||||
let value = ctx.builder.build_load(ptr, "").unwrap();
|
||||
AnyObject { ty: self.dtype, value }
|
||||
}
|
||||
|
||||
/// Get the pointer to the element indexed by `indices`.
|
||||
///
|
||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||
|
||||
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the scalar indexed by `indices`.
|
||||
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
|
||||
let value = ctx.builder.build_load(ptr, "").unwrap();
|
||||
AnyObject { ty: self.dtype, value }
|
||||
}
|
||||
|
||||
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
||||
///
|
||||
/// Update the ndarray's strides to make the ndarray contiguous.
|
||||
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
|
||||
self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
|
||||
}
|
||||
|
||||
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
|
||||
///
|
||||
/// The new ndarray will own its data and will be C-contiguous.
|
||||
#[must_use]
|
||||
pub fn make_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Self {
|
||||
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
||||
|
||||
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
|
||||
clone.copy_shape_from_array(generator, ctx, shape);
|
||||
clone.create_data(generator, ctx);
|
||||
clone.copy_data_from(generator, ctx, *self);
|
||||
clone
|
||||
}
|
||||
|
||||
/// Copy data from another ndarray.
|
||||
///
|
||||
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
||||
/// do not matter. The copying order is determined by how their flattened views look.
|
||||
///
|
||||
/// Panics if the `dtype`s of ndarrays are different.
|
||||
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
|
||||
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
|
||||
}
|
||||
|
||||
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
||||
#[must_use]
|
||||
pub fn is_unsized(&self) -> bool {
|
||||
self.ndims == 0
|
||||
}
|
||||
|
||||
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
|
||||
/// Otherwise, do nothing and return the ndarray itself.
|
||||
pub fn split_unsized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
if self.is_unsized() {
|
||||
// NOTE: `np.size(self) == 0` here is never possible.
|
||||
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
let value = self.get_nth_scalar(generator, ctx, zero).value;
|
||||
|
||||
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
|
||||
} else {
|
||||
ScalarOrNDArray::NDArray(*self)
|
||||
}
|
||||
}
|
||||
|
||||
/// Fill the ndarray with a scalar.
|
||||
///
|
||||
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
|
||||
pub fn fill<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
let p = nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
|
||||
///
|
||||
/// The returned integers in the tuple are in int32.
|
||||
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleObject<'ctx> {
|
||||
// TODO: Return a tuple of SizeT
|
||||
|
||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||
|
||||
for i in 0..self.ndims {
|
||||
let dim = self
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.shape)
|
||||
.get_index_const(generator, ctx, i)
|
||||
.truncate(generator, ctx, Int32);
|
||||
|
||||
objects.push(AnyObject {
|
||||
ty: ctx.primitives.int32,
|
||||
value: dim.value.as_basic_value_enum(),
|
||||
});
|
||||
}
|
||||
|
||||
TupleObject::from_objects(generator, ctx, objects)
|
||||
}
|
||||
|
||||
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
|
||||
///
|
||||
/// The returned integers in the tuple are in int32.
|
||||
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleObject<'ctx> {
|
||||
// TODO: Return a tuple of SizeT.
|
||||
|
||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||
|
||||
for i in 0..self.ndims {
|
||||
let dim = self
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.strides)
|
||||
.get_index_const(generator, ctx, i)
|
||||
.truncate(generator, ctx, Int32);
|
||||
|
||||
objects.push(AnyObject {
|
||||
ty: ctx.primitives.int32,
|
||||
value: dim.value.as_basic_value_enum(),
|
||||
});
|
||||
}
|
||||
|
||||
TupleObject::from_objects(generator, ctx, objects)
|
||||
}
|
||||
|
||||
/// Create an unsized ndarray to contain `object`.
|
||||
pub fn make_unsized<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
// We have to put the value on the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
|
||||
ctx.builder.build_store(data, object.value).unwrap();
|
||||
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
ndarray
|
||||
}
|
||||
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
||||
///
|
||||
/// Raise an exception if the shapes do not match.
|
||||
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
out_ndims: u64,
|
||||
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
|
||||
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
|
||||
|
||||
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
|
||||
let output_shape = out_shape;
|
||||
|
||||
call_nac3_ndarray_util_assert_output_shape_same(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_ndims,
|
||||
ndarray_shape,
|
||||
output_ndims,
|
||||
output_shape,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum ScalarOrNDArray<'ctx> {
|
||||
Scalar(AnyObject<'ctx>),
|
||||
NDArray(NDArrayObject<'ctx>),
|
||||
}
|
||||
|
||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
|
||||
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
ScalarOrNDArray::Scalar(_scalar) => Err(()),
|
||||
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Split on `object` either into a scalar or an ndarray.
|
||||
///
|
||||
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
|
||||
///
|
||||
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
|
||||
pub fn split_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
ScalarOrNDArray::NDArray(ndarray)
|
||||
}
|
||||
_ => ScalarOrNDArray::Scalar(object),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
|
||||
#[must_use]
|
||||
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.value,
|
||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
|
||||
/// - If this is an ndarray, the ndarray is returned.
|
||||
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
|
||||
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
|
||||
#[must_use]
|
||||
pub fn get_dtype(&self) -> Type {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An helper enum specifying how a function should produce its output.
|
||||
///
|
||||
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
|
||||
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
|
||||
/// create a new ndarray and store the result in it.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum NDArrayOut<'ctx> {
|
||||
/// Tell a function should create a new ndarray with the expected element type `dtype`.
|
||||
NewNDArray { dtype: Type },
|
||||
/// Tell a function to write the result to `ndarray`.
|
||||
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayOut<'ctx> {
|
||||
/// Get the dtype of this output.
|
||||
#[must_use]
|
||||
pub fn get_dtype(&self) -> Type {
|
||||
match self {
|
||||
NDArrayOut::NewNDArray { dtype } => *dtype,
|
||||
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
|
||||
///
|
||||
/// This function is used generating strides for globally defined contiguous ndarrays.
|
||||
#[must_use]
|
||||
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
|
||||
let mut strides = Vec::with_capacity(ndims as usize);
|
||||
let mut stride_product = 1u64;
|
||||
for i in 0..ndims {
|
||||
let axis = ndims - i - 1;
|
||||
strides[axis as usize] = stride_product * itemsize;
|
||||
stride_product *= shape[axis as usize];
|
||||
}
|
||||
strides
|
||||
}
|
168
nac3core/src/codegen/object/ndarray/nditer.rs
Normal file
168
nac3core/src/codegen/object/ndarray/nditer.rs
Normal file
@ -0,0 +1,168 @@
|
||||
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
|
||||
model::*,
|
||||
object::any::AnyObject,
|
||||
stmt::{gen_for_callback, BreakContinueHooks},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`NDIter`]
|
||||
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub strides: F::Out<Ptr<Int<SizeT>>>,
|
||||
|
||||
pub indices: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub nth: F::Out<Int<SizeT>>,
|
||||
pub element: F::Out<Ptr<Int<Byte>>>,
|
||||
|
||||
pub size: F::Out<Int<SizeT>>,
|
||||
}
|
||||
|
||||
/// An IRRT helper structure used to iterate through an ndarray.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct NDIter;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDIter {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
ndims: traversal.add_auto("ndims"),
|
||||
shape: traversal.add_auto("shape"),
|
||||
strides: traversal.add_auto("strides"),
|
||||
|
||||
indices: traversal.add_auto("indices"),
|
||||
nth: traversal.add_auto("nth"),
|
||||
element: traversal.add_auto("element"),
|
||||
|
||||
size: traversal.add_auto("size"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A helper structure containing extra details of an [`NDIter`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NDIterHandle<'ctx> {
|
||||
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
/// The ndarray this [`NDIter`] to iterating over.
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
/// The current indices of [`NDIter`].
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIterHandle<'ctx> {
|
||||
/// Allocate an [`NDIter`] that iterates through an ndarray.
|
||||
pub fn new<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
) -> Self {
|
||||
let nditer = Struct(NDIter).alloca(generator, ctx);
|
||||
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
||||
|
||||
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
||||
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
|
||||
|
||||
NDIterHandle { ndarray, instance: nditer, indices }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn has_next<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
call_nac3_nditer_has_next(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
pub fn next<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
call_nac3_nditer_next(generator, ctx, self.instance);
|
||||
}
|
||||
|
||||
/// Get pointer to the current element.
|
||||
#[must_use]
|
||||
pub fn get_pointer<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
|
||||
|
||||
let p = self.instance.get(generator, ctx, |f| f.element);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the value of the current element.
|
||||
#[must_use]
|
||||
pub fn get_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let p = self.get_pointer(generator, ctx);
|
||||
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||
AnyObject { ty: self.ndarray.dtype, value }
|
||||
}
|
||||
|
||||
/// Get the index of the current element.
|
||||
#[must_use]
|
||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
self.instance.get(generator, ctx, |f| f.nth)
|
||||
}
|
||||
|
||||
/// Get the indices of the current element.
|
||||
#[must_use]
|
||||
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
|
||||
self.indices
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Iterate through every element in the ndarray.
|
||||
///
|
||||
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
|
||||
pub fn foreach<'a, G, F>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
NDIterHandle<'ctx>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("ndarray_foreach"),
|
||||
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|
||||
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|
||||
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|
||||
|generator, ctx, nditer| {
|
||||
nditer.next(generator, ctx);
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
105
nac3core/src/codegen/object/ndarray/shape_util.rs
Normal file
105
nac3core/src/codegen/object/ndarray/shape_util.rs
Normal file
@ -0,0 +1,105 @@
|
||||
use util::gen_for_model;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::TypeEnum,
|
||||
};
|
||||
|
||||
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
|
||||
///
|
||||
/// * `sequence` - The `sequence` parameter.
|
||||
/// * `sequence_ty` - The typechecker type of `sequence`
|
||||
///
|
||||
/// The `sequence` argument type may only be one of the following:
|
||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
///
|
||||
/// All `int32` values will be sign-extended to `SizeT`.
|
||||
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
input_sequence: AnyObject<'ctx>,
|
||||
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
|
||||
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
let one = Int(SizeT).const_1(generator, ctx.ctx);
|
||||
|
||||
// The result `list` to return.
|
||||
match &*ctx.unifier.get_ty(input_sequence.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
// Check `input_sequence`
|
||||
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
|
||||
|
||||
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
|
||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||
|
||||
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
|
||||
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
|
||||
// Load the i-th int32 in the input sequence
|
||||
let int = input_sequence
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.items)
|
||||
.get_index(generator, ctx, i.value)
|
||||
.value
|
||||
.into_int_value();
|
||||
|
||||
// Cast to SizeT
|
||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
||||
|
||||
// Store
|
||||
result.set_index(ctx, i.value, int);
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
(len, result)
|
||||
}
|
||||
TypeEnum::TTuple { .. } => {
|
||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||
|
||||
let input_sequence = TupleObject::from_object(ctx, input_sequence);
|
||||
|
||||
let len = input_sequence.len(generator, ctx);
|
||||
|
||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||
|
||||
for i in 0..input_sequence.num_elements() {
|
||||
// Get the i-th element off of the tuple and load it into `result`.
|
||||
let int = input_sequence.index(ctx, i).value.into_int_value();
|
||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
||||
|
||||
result.set_index_const(ctx, i as u64, int);
|
||||
}
|
||||
|
||||
(len, result)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
let input_int = input_sequence.value.into_int_value();
|
||||
|
||||
let len = Int(SizeT).const_1(generator, ctx.ctx);
|
||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
|
||||
|
||||
// Storing into result[0]
|
||||
result.store(ctx, int);
|
||||
|
||||
(len, result)
|
||||
}
|
||||
_ => panic!(
|
||||
"encountered unknown sequence type: {}",
|
||||
ctx.unifier.stringify(input_sequence.ty)
|
||||
),
|
||||
}
|
||||
}
|
119
nac3core/src/codegen/object/ndarray/view.rs
Normal file
119
nac3core/src/codegen/object/ndarray/view.rs
Normal file
@ -0,0 +1,119 @@
|
||||
use crate::codegen::{
|
||||
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::{indexing::RustNDIndex, NDArrayObject};
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Make sure the ndarray is at least `ndmin`-dimensional.
|
||||
///
|
||||
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
|
||||
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
|
||||
#[must_use]
|
||||
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndmin: u64,
|
||||
) -> Self {
|
||||
if self.ndims < ndmin {
|
||||
// return this_ndarray[np.newaxis, np.newaxis, and more, ...]
|
||||
let mut indices = vec![];
|
||||
for _ in self.ndims..ndmin {
|
||||
indices.push(RustNDIndex::NewAxis);
|
||||
}
|
||||
indices.push(RustNDIndex::Ellipsis);
|
||||
self.index(generator, ctx, &indices)
|
||||
} else {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a reshaped view on this ndarray like `np.reshape()`.
|
||||
///
|
||||
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
|
||||
///
|
||||
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
|
||||
///
|
||||
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
|
||||
/// * `new_shape` - The target shape to do `np.reshape()`.
|
||||
#[must_use]
|
||||
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
new_ndims: u64,
|
||||
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
|
||||
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
|
||||
// without copying data. Look into how numpy does it.
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||
|
||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
|
||||
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
|
||||
|
||||
// Reolsve negative indices
|
||||
let size = self.size(generator, ctx);
|
||||
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
|
||||
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
|
||||
generator, ctx, size, dst_ndims, dst_shape,
|
||||
);
|
||||
|
||||
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
|
||||
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
|
||||
|
||||
// Inserting into then_bb: reshape is possible without copying
|
||||
ctx.builder.position_at_end(then_bb);
|
||||
dst_ndarray.set_strides_contiguous(generator, ctx);
|
||||
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Inserting into else_bb: reshape is impossible without copying
|
||||
ctx.builder.position_at_end(else_bb);
|
||||
dst_ndarray.create_data(generator, ctx);
|
||||
dst_ndarray.copy_data_from(generator, ctx, *self);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Reposition for continuation
|
||||
ctx.builder.position_at_end(end_bb);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
|
||||
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
|
||||
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
|
||||
#[must_use]
|
||||
pub fn transpose<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
|
||||
) -> Self {
|
||||
// Define models
|
||||
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
||||
|
||||
let num_axes = self.ndims_llvm(generator, ctx.ctx);
|
||||
|
||||
// `axes = nullptr` if `axes` is unspecified.
|
||||
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
|
||||
|
||||
call_nac3_ndarray_transpose(
|
||||
generator,
|
||||
ctx,
|
||||
self.instance,
|
||||
transposed_ndarray.instance,
|
||||
num_axes,
|
||||
axes,
|
||||
);
|
||||
|
||||
transposed_ndarray
|
||||
}
|
||||
}
|
70
nac3core/src/codegen/object/range.rs
Normal file
70
nac3core/src/codegen/object/range.rs
Normal file
@ -0,0 +1,70 @@
|
||||
use crate::codegen::{irrt::call_nac3_range_len_i32, model::*, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::any::AnyObject;
|
||||
|
||||
/// A range in NAC3.
|
||||
pub type Range<N> = Array<Len<3>, Int<N>>;
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Ptr<Range<N>>> {
|
||||
/// Get GEP to `range.start`.
|
||||
pub fn start(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||
self.gep_const(ctx, 0)
|
||||
}
|
||||
|
||||
/// Get GEP to `range.stop`.
|
||||
pub fn stop(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||
self.gep_const(ctx, 1)
|
||||
}
|
||||
|
||||
/// Get GEP to `range.step`.
|
||||
pub fn step(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||
self.gep_const(ctx, 2)
|
||||
}
|
||||
|
||||
/// Convenience function to get the load the `(start, stop, step)` of this range.
|
||||
#[allow(clippy::type_complexity)]
|
||||
pub fn destructure<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> (Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>) {
|
||||
let start = self.start(ctx).load(generator, ctx);
|
||||
let stop = self.stop(ctx).load(generator, ctx);
|
||||
let step = self.step(ctx).load(generator, ctx);
|
||||
(start, stop, step)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: `RangeObject` in the future will have range32, range64
|
||||
|
||||
/// A NAC3 Python range object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct RangeObject<'ctx> {
|
||||
pub instance: Instance<'ctx, Ptr<Range<Int32>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> RangeObject<'ctx> {
|
||||
/// Attempt to convert an [`AnyObject`] into a [`RangeObject`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> RangeObject<'ctx> {
|
||||
assert!(ctx.unifier.unioned(object.ty, ctx.primitives.range));
|
||||
|
||||
let instance = Ptr(Range::default()).check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
RangeObject { instance }
|
||||
}
|
||||
|
||||
/// Get the `len()` of this range.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<Int32>> {
|
||||
let start = self.instance.start(ctx).load(generator, ctx);
|
||||
let stop = self.instance.stop(ctx).load(generator, ctx);
|
||||
let step = self.instance.step(ctx).load(generator, ctx);
|
||||
call_nac3_range_len_i32(generator, ctx, start, stop, step)
|
||||
}
|
||||
}
|
101
nac3core/src/codegen/object/tuple.rs
Normal file
101
nac3core/src/codegen/object/tuple.rs
Normal file
@ -0,0 +1,101 @@
|
||||
use inkwell::values::StructValue;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::any::AnyObject;
|
||||
|
||||
/// A NAC3 tuple object.
|
||||
///
|
||||
/// NOTE: This struct has no copy trait.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TupleObject<'ctx> {
|
||||
/// The type of the tuple.
|
||||
pub tys: Vec<Type>,
|
||||
/// The underlying LLVM struct value of this tuple.
|
||||
pub value: StructValue<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> TupleObject<'ctx> {
|
||||
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
|
||||
// TODO: Keep `is_vararg_ctx` from TTuple?
|
||||
|
||||
assert!(matches!(&*ctx.unifier.get_ty(object.ty), TypeEnum::TTuple { .. }));
|
||||
|
||||
// Sanity check on object type.
|
||||
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
|
||||
panic!(
|
||||
"Expected type to be a TypeEnum::TTuple, got {}",
|
||||
ctx.unifier.stringify(object.ty)
|
||||
);
|
||||
};
|
||||
|
||||
// Check number of fields
|
||||
let value = object.value.into_struct_value();
|
||||
let value_num_fields = value.get_type().count_fields() as usize;
|
||||
assert!(
|
||||
value_num_fields == tys.len(),
|
||||
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
|
||||
tys.len(),
|
||||
value_num_fields
|
||||
);
|
||||
|
||||
TupleObject { tys: tys.clone(), value }
|
||||
}
|
||||
|
||||
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
|
||||
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
objects: I,
|
||||
) -> Self
|
||||
where
|
||||
I: IntoIterator<Item = AnyObject<'ctx>>,
|
||||
{
|
||||
let (values, tys): (Vec<_>, Vec<_>) =
|
||||
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
|
||||
|
||||
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
|
||||
|
||||
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
|
||||
for (i, val) in values.into_iter().enumerate() {
|
||||
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
|
||||
ctx.builder.build_store(pval, val).unwrap();
|
||||
}
|
||||
|
||||
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
|
||||
TupleObject { tys, value }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn num_elements(&self) -> usize {
|
||||
self.tys.len()
|
||||
}
|
||||
|
||||
/// Get the `len()` of this tuple.
|
||||
#[must_use]
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
|
||||
}
|
||||
|
||||
/// Get the `i`-th (0-based) object in this tuple.
|
||||
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
|
||||
assert!(
|
||||
i < self.num_elements(),
|
||||
"Tuple object with length {} have index {i}",
|
||||
self.num_elements()
|
||||
);
|
||||
|
||||
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
|
||||
let ty = self.tys[i];
|
||||
AnyObject { ty, value }
|
||||
}
|
||||
}
|
@ -1,15 +1,18 @@
|
||||
use super::{
|
||||
super::symbol_resolver::ValueEnum,
|
||||
expr::destructure_range,
|
||||
irrt::{handle_slice_indices, list_slice_assignment},
|
||||
object::{
|
||||
any::AnyObject,
|
||||
list::ListObject,
|
||||
ndarray::{
|
||||
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, ScalarOrNDArray,
|
||||
},
|
||||
range::RangeObject,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
||||
expr::gen_binop_expr,
|
||||
gen_in_range_check,
|
||||
},
|
||||
codegen::{classes::ArraySliceValue, expr::gen_binop_expr, gen_in_range_check, model::*},
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
@ -290,63 +293,56 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
let key_ty = key.custom.unwrap();
|
||||
|
||||
match &*ctx.unifier.get_ty(target_ty) {
|
||||
TypeEnum::TObj { obj_id, params: list_params, .. }
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle list item assignment
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let target_item_ty = iter_type_vars(list_params).next().unwrap().ty;
|
||||
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?
|
||||
.into_pointer_value();
|
||||
let target = ListValue::from_ptr_val(target, llvm_usize, None);
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||
|
||||
let target = AnyObject { ty: target_ty, value: target };
|
||||
let target = ListObject::from_object(generator, ctx, target);
|
||||
|
||||
let target_len = target.instance.get(generator, ctx, |f| f.len);
|
||||
let target_item_type_llvm = ctx.get_llvm_type(generator, target.item_type);
|
||||
|
||||
if let ExprKind::Slice { .. } = &key.node {
|
||||
// Handle assigning to a slice
|
||||
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
|
||||
let Some((start, end, step)) = handle_slice_indices(
|
||||
lower,
|
||||
upper,
|
||||
step,
|
||||
ctx,
|
||||
generator,
|
||||
target.load_size(ctx, None),
|
||||
)?
|
||||
let Some((start, end, step)) =
|
||||
handle_slice_indices(lower, upper, step, ctx, generator, target_len.value)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let value =
|
||||
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
|
||||
let value = ListValue::from_ptr_val(value, llvm_usize, None);
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
|
||||
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
|
||||
let Some(src_ind) = handle_slice_indices(
|
||||
&None,
|
||||
&None,
|
||||
&None,
|
||||
ctx,
|
||||
generator,
|
||||
value.load_size(ctx, None),
|
||||
)?
|
||||
let value = AnyObject { ty: value_ty, value };
|
||||
let value = ListObject::from_object(generator, ctx, value);
|
||||
|
||||
let value_len = value.instance.get(generator, ctx, |f| f.len);
|
||||
|
||||
let Some(src_ind) =
|
||||
handle_slice_indices(&None, &None, &None, ctx, generator, value_len.value)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
list_slice_assignment(
|
||||
generator,
|
||||
ctx,
|
||||
target_item_ty,
|
||||
target,
|
||||
target_item_type_llvm,
|
||||
target.instance,
|
||||
(start, end, step),
|
||||
value,
|
||||
value.instance,
|
||||
src_ind,
|
||||
);
|
||||
} else {
|
||||
// Handle assigning to an index
|
||||
let len = target.load_size(ctx, Some("len"));
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
let value =
|
||||
Any(target_item_type_llvm).check_value(generator, ctx.ctx, value).unwrap();
|
||||
|
||||
let index = generator
|
||||
.gen_expr(ctx, key)?
|
||||
@ -368,7 +364,8 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
"is_neg",
|
||||
)
|
||||
.unwrap();
|
||||
let adjusted = ctx.builder.build_int_add(index, len, "adjusted").unwrap();
|
||||
let adjusted =
|
||||
ctx.builder.build_int_add(index, target_len.value, "adjusted").unwrap();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_select(is_negative, adjusted, index, "index")
|
||||
@ -379,29 +376,70 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
// bigger than the length (for unsigned cmp)
|
||||
let bound_check = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
|
||||
.build_int_compare(IntPredicate::ULT, index, target_len.value, "inbound")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
bound_check,
|
||||
"0:IndexError",
|
||||
"index {0} out of bounds 0:{1}",
|
||||
[Some(index), Some(len), None],
|
||||
[Some(index), Some(target_len.value), None],
|
||||
key.location,
|
||||
);
|
||||
|
||||
// Write value to index on list
|
||||
let item_ptr =
|
||||
target.data().ptr_offset(ctx, generator, &index, Some("list_item_ptr"));
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
ctx.builder.build_store(item_ptr, value).unwrap();
|
||||
target
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.items)
|
||||
.offset(ctx, index)
|
||||
.store(ctx, value);
|
||||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle NDArray item assignment
|
||||
todo!("ndarray subscript assignment is not yet implemented");
|
||||
// Process target
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||
let target = AnyObject { value: target, ty: target_ty };
|
||||
|
||||
// Process key
|
||||
let key = gen_ndarray_subscript_ndindices(generator, ctx, key)?;
|
||||
|
||||
// Process value
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
let value = AnyObject { value, ty: value_ty };
|
||||
|
||||
/*
|
||||
Reference code:
|
||||
```python
|
||||
target = target[key]
|
||||
value = np.asarray(value)
|
||||
|
||||
shape = np.broadcast_shape((target, value))
|
||||
|
||||
target = np.broadcast_to(target, shape)
|
||||
value = np.broadcast_to(value, shape)
|
||||
|
||||
...and finally copy 1-1 from value to target.
|
||||
```
|
||||
*/
|
||||
|
||||
let target = NDArrayObject::from_object(generator, ctx, target);
|
||||
let target = target.index(generator, ctx, &key);
|
||||
|
||||
let value =
|
||||
ScalarOrNDArray::split_object(generator, ctx, value).to_ndarray(generator, ctx);
|
||||
|
||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
|
||||
|
||||
let target = broadcast_result.ndarrays[0];
|
||||
let value = broadcast_result.ndarrays[1];
|
||||
|
||||
target.copy_data_from(generator, ctx, value);
|
||||
}
|
||||
_ => {
|
||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||
@ -451,7 +489,14 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
let range = AnyObject { value: iter_val, ty: iter_ty };
|
||||
let range = RangeObject::from_object(generator, ctx, range);
|
||||
|
||||
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||
let start = start.value;
|
||||
let stop = stop.value;
|
||||
let step = step.value;
|
||||
|
||||
// Internal variable for loop; Cannot be assigned
|
||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||
@ -460,7 +505,6 @@ pub fn gen_for<G: CodeGenerator>(
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
|
||||
ctx.builder.build_store(i, start).unwrap();
|
||||
|
||||
|
@ -1,9 +1,7 @@
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||
concrete_type::ConcreteTypeStore,
|
||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
||||
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
concrete_type::ConcreteTypeStore, CodeGenContext, CodeGenLLVMOptions,
|
||||
CodeGenTargetMachineOptions, CodeGenTask, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
},
|
||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||
toplevel::{
|
||||
@ -436,35 +434,3 @@ fn test_simple_call() {
|
||||
registry.add_task(task);
|
||||
registry.wait_tasks_complete(handles);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_list_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_range_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
|
||||
let llvm_range = RangeType::new(&ctx);
|
||||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_ndarray_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
use std::iter::once;
|
||||
|
||||
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
|
||||
use helper::{debug_assert_prim_is_allowed, extract_ndims, make_exception_fields, PrimDefDetails};
|
||||
use indexmap::IndexMap;
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
@ -9,13 +9,19 @@ use inkwell::{
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
use numpy::unpack_ndarray_var_tys;
|
||||
use strum::IntoEnumIterator;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
builtin_fns,
|
||||
classes::{ProxyValue, RangeValue},
|
||||
model::*,
|
||||
numpy::*,
|
||||
object::{
|
||||
any::AnyObject,
|
||||
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||
range::RangeObject,
|
||||
},
|
||||
stmt::exn_constructor,
|
||||
},
|
||||
symbol_resolver::SymbolValue,
|
||||
@ -511,6 +517,14 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
| PrimDef::FunNpEye
|
||||
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
|
||||
|
||||
PrimDef::FunNpSize | PrimDef::FunNpShape | PrimDef::FunNpStrides => {
|
||||
self.build_ndarray_property_getter_function(prim)
|
||||
}
|
||||
|
||||
PrimDef::FunNpBroadcastTo | PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
||||
self.build_ndarray_view_function(prim)
|
||||
}
|
||||
|
||||
PrimDef::FunStr => self.build_str_function(),
|
||||
|
||||
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
|
||||
@ -576,10 +590,6 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
| PrimDef::FunNpHypot
|
||||
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
||||
|
||||
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
||||
self.build_np_sp_ndarray_function(prim)
|
||||
}
|
||||
|
||||
PrimDef::FunNpDot
|
||||
| PrimDef::FunNpLinalgCholesky
|
||||
| PrimDef::FunNpLinalgQr
|
||||
@ -707,9 +717,10 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
||||
|ctx, obj, _, args, generator| {
|
||||
let (zelf_ty, zelf) = obj.unwrap();
|
||||
let zelf =
|
||||
zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
|
||||
let zelf = RangeValue::from_ptr_val(zelf, Some("range"));
|
||||
let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?;
|
||||
|
||||
let zelf = AnyObject { ty: zelf_ty, value: zelf };
|
||||
let zelf = RangeObject::from_object(generator, ctx, zelf);
|
||||
|
||||
let mut start = None;
|
||||
let mut stop = None;
|
||||
@ -792,11 +803,14 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
});
|
||||
let start = start.unwrap_or_else(|| int32.const_zero());
|
||||
|
||||
zelf.store_start(ctx, start);
|
||||
zelf.store_end(ctx, stop);
|
||||
zelf.store_step(ctx, step);
|
||||
let start = Int(Int32).believe_value(start);
|
||||
let stop = Int(Int32).believe_value(stop);
|
||||
let step = Int(Int32).believe_value(step);
|
||||
zelf.instance.start(ctx).store(ctx, start);
|
||||
zelf.instance.stop(ctx).store(ctx, stop);
|
||||
zelf.instance.step(ctx).store(ctx, step);
|
||||
|
||||
Ok(Some(zelf.as_base_value().into()))
|
||||
Ok(Some(zelf.instance.value.as_basic_value_enum()))
|
||||
},
|
||||
)))),
|
||||
loc: None,
|
||||
@ -1385,6 +1399,169 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||
debug_assert_prim_is_allowed(
|
||||
prim,
|
||||
&[PrimDef::FunNpSize, PrimDef::FunNpShape, PrimDef::FunNpStrides],
|
||||
);
|
||||
|
||||
let mut var_map = self.num_var_map.clone();
|
||||
var_map.insert(self.ndarray_dtype_tvar.id, self.ndarray_dtype_tvar.ty);
|
||||
|
||||
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||
&[self.primitives.ndarray],
|
||||
Some("T".into()),
|
||||
None,
|
||||
);
|
||||
|
||||
match prim {
|
||||
PrimDef::FunNpSize => create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&VarMap::new(),
|
||||
prim.name(),
|
||||
self.primitives.int32,
|
||||
&[(in_ndarray_ty.ty, "a")],
|
||||
Box::new(|ctx, obj, fun, args, generator| {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let ndarray_ty = fun.0.args[0].ty;
|
||||
let ndarray =
|
||||
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let size = ndarray.size(generator, ctx).truncate(generator, ctx, Int32);
|
||||
Ok(Some(size.value.as_basic_value_enum()))
|
||||
}),
|
||||
),
|
||||
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
|
||||
// The fnuction signatures of `np_shape` an `np_size` are the same.
|
||||
|
||||
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
|
||||
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
|
||||
|
||||
create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&VarMap::new(),
|
||||
prim.name(),
|
||||
ret_ty,
|
||||
&[(in_ndarray_ty.ty, "a")],
|
||||
Box::new(move |ctx, obj, fun, args, generator| {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let ndarray_ty = fun.0.args[0].ty;
|
||||
let ndarray =
|
||||
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||
|
||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let result_tuple = match prim {
|
||||
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
|
||||
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
Ok(Some(result_tuple.value.as_basic_value_enum()))
|
||||
}),
|
||||
)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build np/sp functions that take as input `NDArray` only
|
||||
fn build_ndarray_view_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||
debug_assert_prim_is_allowed(
|
||||
prim,
|
||||
&[PrimDef::FunNpBroadcastTo, PrimDef::FunNpTranspose, PrimDef::FunNpReshape],
|
||||
);
|
||||
|
||||
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||
&[self.primitives.ndarray],
|
||||
Some("T".into()),
|
||||
None,
|
||||
);
|
||||
|
||||
match prim {
|
||||
PrimDef::FunNpTranspose => {
|
||||
create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&VarMap::new(),
|
||||
prim.name(),
|
||||
in_ndarray_ty.ty,
|
||||
&[(in_ndarray_ty.ty, "x")],
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let arg_ty = fun.0.args[0].ty;
|
||||
let arg_val =
|
||||
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||
|
||||
let arg = AnyObject { ty: arg_ty, value: arg_val };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, arg);
|
||||
|
||||
let ndarray = ndarray.transpose(generator, ctx, None); // TODO: Add axes argument
|
||||
Ok(Some(ndarray.instance.value.as_basic_value_enum()))
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
||||
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
||||
// the `param_ty` for `create_fn_by_codegen`.
|
||||
//
|
||||
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
||||
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
||||
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
||||
PrimDef::FunNpBroadcastTo | PrimDef::FunNpReshape => {
|
||||
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special holding
|
||||
|
||||
create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&VarMap::new(),
|
||||
prim.name(),
|
||||
ret_ty,
|
||||
&[
|
||||
(in_ndarray_ty.ty, "x"),
|
||||
(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape"), // Handled by special folding
|
||||
],
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let ndarray_ty = fun.0.args[0].ty;
|
||||
let ndarray_val =
|
||||
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||
|
||||
let shape_ty = fun.0.args[1].ty;
|
||||
let shape_val =
|
||||
args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
||||
|
||||
let ndarray = AnyObject { value: ndarray_val, ty: ndarray_ty };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let shape = AnyObject { value: shape_val, ty: shape_ty };
|
||||
let (_, shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
||||
|
||||
// The ndims after reshaping is gotten from the return type of the call.
|
||||
let (_, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
|
||||
let new_ndarray = match prim {
|
||||
PrimDef::FunNpBroadcastTo => {
|
||||
ndarray.broadcast_to(generator, ctx, ndims, shape)
|
||||
}
|
||||
PrimDef::FunNpReshape => {
|
||||
ndarray.reshape_or_copy(generator, ctx, ndims, shape)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
};
|
||||
Ok(Some(new_ndarray.instance.value.as_basic_value_enum()))
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build the `str()` function.
|
||||
fn build_str_function(&mut self) -> TopLevelDef {
|
||||
let prim = PrimDef::FunStr;
|
||||
@ -1872,57 +2049,6 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Build np/sp functions that take as input `NDArray` only
|
||||
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
||||
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
|
||||
|
||||
match prim {
|
||||
PrimDef::FunNpTranspose => {
|
||||
let ndarray_ty = self.unifier.get_fresh_var_with_range(
|
||||
&[self.ndarray_num_ty],
|
||||
Some("T".into()),
|
||||
None,
|
||||
);
|
||||
create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&into_var_map([ndarray_ty]),
|
||||
prim.name(),
|
||||
ndarray_ty.ty,
|
||||
&[(ndarray_ty.ty, "x")],
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let arg_ty = fun.0.args[0].ty;
|
||||
let arg_val =
|
||||
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
||||
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
||||
// the `param_ty` for `create_fn_by_codegen`.
|
||||
//
|
||||
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
||||
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
||||
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
||||
PrimDef::FunNpReshape => create_fn_by_codegen(
|
||||
self.unifier,
|
||||
&VarMap::new(),
|
||||
prim.name(),
|
||||
self.ndarray_num_ty,
|
||||
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let x1_ty = fun.0.args[0].ty;
|
||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||
let x2_ty = fun.0.args[1].ty;
|
||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
||||
}),
|
||||
),
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build `np_linalg` and `sp_linalg` functions
|
||||
///
|
||||
/// The input to these functions must be floating point `NDArray`
|
||||
@ -1954,10 +2080,12 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
Box::new(move |ctx, _, fun, args, generator| {
|
||||
let x1_ty = fun.0.args[0].ty;
|
||||
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
||||
|
||||
let x2_ty = fun.0.args[1].ty;
|
||||
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
||||
|
||||
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
||||
let result = ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?;
|
||||
Ok(Some(result))
|
||||
}),
|
||||
),
|
||||
|
||||
|
@ -52,6 +52,16 @@ pub enum PrimDef {
|
||||
FunNpEye,
|
||||
FunNpIdentity,
|
||||
|
||||
// NumPy ndarray property getters
|
||||
FunNpSize,
|
||||
FunNpShape,
|
||||
FunNpStrides,
|
||||
|
||||
// NumPy ndarray view functions
|
||||
FunNpBroadcastTo,
|
||||
FunNpTranspose,
|
||||
FunNpReshape,
|
||||
|
||||
// Miscellaneous NumPy & SciPy functions
|
||||
FunNpRound,
|
||||
FunNpFloor,
|
||||
@ -99,8 +109,6 @@ pub enum PrimDef {
|
||||
FunNpLdExp,
|
||||
FunNpHypot,
|
||||
FunNpNextAfter,
|
||||
FunNpTranspose,
|
||||
FunNpReshape,
|
||||
|
||||
// Linalg functions
|
||||
FunNpDot,
|
||||
@ -238,6 +246,16 @@ impl PrimDef {
|
||||
PrimDef::FunNpEye => fun("np_eye", None),
|
||||
PrimDef::FunNpIdentity => fun("np_identity", None),
|
||||
|
||||
// NumPy NDArray property getters,
|
||||
PrimDef::FunNpSize => fun("np_size", None),
|
||||
PrimDef::FunNpShape => fun("np_shape", None),
|
||||
PrimDef::FunNpStrides => fun("np_strides", None),
|
||||
|
||||
// NumPy NDArray view functions
|
||||
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
|
||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||
|
||||
// Miscellaneous NumPy & SciPy functions
|
||||
PrimDef::FunNpRound => fun("np_round", None),
|
||||
PrimDef::FunNpFloor => fun("np_floor", None),
|
||||
@ -285,8 +303,6 @@ impl PrimDef {
|
||||
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
||||
PrimDef::FunNpHypot => fun("np_hypot", None),
|
||||
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||
|
||||
// Linalg functions
|
||||
PrimDef::FunNpDot => fun("np_dot", None),
|
||||
@ -1000,3 +1016,23 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
|
||||
_ => 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
|
||||
/// The `ndims` must only contain 1 value.
|
||||
#[must_use]
|
||||
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
|
||||
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
|
||||
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
|
||||
panic!("ndims_ty should be a TLiteral");
|
||||
};
|
||||
|
||||
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
|
||||
|
||||
let ndims = values[0].clone();
|
||||
u64::try_from(ndims).unwrap()
|
||||
}
|
||||
|
||||
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
|
||||
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
|
||||
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
use crate::symbol_resolver::SymbolValue;
|
||||
use crate::toplevel::helper::PrimDef;
|
||||
use crate::toplevel::helper::{extract_ndims, PrimDef};
|
||||
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
||||
use crate::typecheck::{
|
||||
type_inferencer::*,
|
||||
@ -520,36 +520,41 @@ pub fn typeof_binop(
|
||||
}
|
||||
|
||||
Operator::MatMult => {
|
||||
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
||||
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
|
||||
TypeEnum::TLiteral { values, .. } => {
|
||||
assert_eq!(values.len(), 1);
|
||||
u64::try_from(values[0].clone()).unwrap()
|
||||
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
||||
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
|
||||
|
||||
let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
||||
let rhs_ndims = extract_ndims(unifier, rhs_ndims);
|
||||
|
||||
if !(unifier.unioned(lhs_dtype, primitives.float)
|
||||
&& unifier.unioned(rhs_dtype, primitives.float))
|
||||
{
|
||||
return Err(format!(
|
||||
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
|
||||
unifier.stringify(lhs),
|
||||
unifier.stringify(rhs)
|
||||
));
|
||||
}
|
||||
|
||||
let result_ndims = match (lhs_ndims, rhs_ndims) {
|
||||
(0, _) | (_, 0) => {
|
||||
return Err(
|
||||
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
|
||||
)
|
||||
}
|
||||
_ => unreachable!(),
|
||||
};
|
||||
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
||||
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
|
||||
TypeEnum::TLiteral { values, .. } => {
|
||||
assert_eq!(values.len(), 1);
|
||||
u64::try_from(values[0].clone()).unwrap()
|
||||
}
|
||||
_ => unreachable!(),
|
||||
(1, 1) => 0,
|
||||
(1, _) => rhs_ndims - 1,
|
||||
(_, 1) => lhs_ndims - 1,
|
||||
(m, n) => max(m, n),
|
||||
};
|
||||
|
||||
match (lhs_ndims, rhs_ndims) {
|
||||
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
|
||||
(lhs, rhs) if lhs == 0 || rhs == 0 => {
|
||||
return Err(format!(
|
||||
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
|
||||
u8::from(rhs == 0)
|
||||
))
|
||||
}
|
||||
(lhs, rhs) => {
|
||||
return Err(format!(
|
||||
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
|
||||
))
|
||||
}
|
||||
if result_ndims == 0 {
|
||||
// If the result is unsized, NumPy returns a scalar.
|
||||
primitives.float
|
||||
} else {
|
||||
let result_ndims_ty =
|
||||
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
|
||||
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
|
||||
}
|
||||
}
|
||||
|
||||
@ -752,7 +757,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
||||
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
||||
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
|
||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
|
||||
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
||||
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
||||
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||
|
@ -1,7 +1,7 @@
|
||||
use std::cmp::max;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::convert::{From, TryInto};
|
||||
use std::iter::once;
|
||||
use std::iter::{self, once};
|
||||
use std::{cell::RefCell, sync::Arc};
|
||||
|
||||
use super::{
|
||||
@ -1181,6 +1181,45 @@ impl<'a> Inferencer<'a> {
|
||||
}));
|
||||
}
|
||||
|
||||
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
|
||||
let ndarray = self.fold_expr(args.remove(0))?;
|
||||
|
||||
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
|
||||
|
||||
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
|
||||
let ret_ty = TypeEnum::TTuple {
|
||||
ty: iter::repeat(self.primitives.int32).take(ndims as usize).collect_vec(),
|
||||
is_vararg_ctx: false,
|
||||
};
|
||||
let ret_ty = self.unifier.add_ty(ret_ty);
|
||||
|
||||
let func_ty = TypeEnum::TFunc(FunSignature {
|
||||
args: vec![FuncArg {
|
||||
name: "a".into(),
|
||||
default_value: None,
|
||||
ty: ndarray.custom.unwrap(),
|
||||
is_vararg: false,
|
||||
}],
|
||||
ret: ret_ty,
|
||||
vars: VarMap::new(),
|
||||
});
|
||||
let func_ty = self.unifier.add_ty(func_ty);
|
||||
|
||||
return Ok(Some(Located {
|
||||
location,
|
||||
custom: Some(ret_ty),
|
||||
node: ExprKind::Call {
|
||||
func: Box::new(Located {
|
||||
custom: Some(func_ty),
|
||||
location: func.location,
|
||||
node: ExprKind::Name { id: *id, ctx: *ctx },
|
||||
}),
|
||||
args: vec![ndarray],
|
||||
keywords: vec![],
|
||||
},
|
||||
}));
|
||||
}
|
||||
|
||||
if id == &"np_dot".into() {
|
||||
let arg0 = self.fold_expr(args.remove(0))?;
|
||||
let arg1 = self.fold_expr(args.remove(0))?;
|
||||
|
@ -179,6 +179,16 @@ def patch(module):
|
||||
module.np_identity = np.identity
|
||||
module.np_array = np.array
|
||||
|
||||
# NumPy NDArray view functions
|
||||
module.np_broadcast_to = np.broadcast_to
|
||||
module.np_transpose = np.transpose
|
||||
module.np_reshape = np.reshape
|
||||
|
||||
# NumPy NDArray property getters
|
||||
module.np_size = np.size
|
||||
module.np_shape = np.shape
|
||||
module.np_strides = lambda ndarray: ndarray.strides
|
||||
|
||||
# NumPy Math functions
|
||||
module.np_isnan = np.isnan
|
||||
module.np_isinf = np.isinf
|
||||
@ -218,8 +228,6 @@ def patch(module):
|
||||
module.np_ldexp = np.ldexp
|
||||
module.np_hypot = np.hypot
|
||||
module.np_nextafter = np.nextafter
|
||||
module.np_transpose = np.transpose
|
||||
module.np_reshape = np.reshape
|
||||
|
||||
# SciPy Math functions
|
||||
module.sp_spec_erf = special.erf
|
||||
|
@ -68,6 +68,19 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
|
||||
for c in range(len(n[r])):
|
||||
output_float64(n[r][c])
|
||||
|
||||
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
|
||||
for d in range(len(n)):
|
||||
for r in range(len(n[d])):
|
||||
for c in range(len(n[d][r])):
|
||||
output_float64(n[d][r][c])
|
||||
|
||||
def output_ndarray_float_4(n: ndarray[float, Literal[4]]):
|
||||
for x in range(len(n)):
|
||||
for y in range(len(n[x])):
|
||||
for z in range(len(n[x][y])):
|
||||
for w in range(len(n[x][y][z])):
|
||||
output_float64(n[x][y][z][w])
|
||||
|
||||
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
|
||||
pass
|
||||
|
||||
@ -186,6 +199,50 @@ def test_ndarray_nd_idx():
|
||||
output_float64(x[1, 0])
|
||||
output_float64(x[1, 1])
|
||||
|
||||
def test_ndarray_subscript_assignment():
|
||||
xs = np_array([[11111.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 99999.0]])
|
||||
output_ndarray_float_2(xs)
|
||||
|
||||
output_int32(np_shape(xs[1:, 1::])[0])
|
||||
output_int32(np_shape(xs[1:, 1::])[1])
|
||||
xs[1:, 1::] = 77.0
|
||||
output_ndarray_float_2(xs)
|
||||
|
||||
xs[0, -1] = 88.0
|
||||
output_ndarray_float_2(xs)
|
||||
|
||||
ys = np_transpose(xs)[1::-1]
|
||||
ys[0] = np_array([44.0, 55.0, 66.0])
|
||||
output_ndarray_float_2(xs)
|
||||
output_ndarray_float_2(ys)
|
||||
|
||||
zs = np_reshape(xs, (-1,))
|
||||
zs[2:5] = np_array([1000.0, 2000.0, 3000.0])
|
||||
output_ndarray_float_2(xs)
|
||||
|
||||
def test_ndarray_broadcast_to():
|
||||
xs = np_array([1.0, 2.0])
|
||||
output_ndarray_float_1(xs)
|
||||
output_int32(np_shape(xs)[0])
|
||||
|
||||
ys = np_broadcast_to(xs, (1, 3, 2))
|
||||
output_ndarray_float_3(ys)
|
||||
output_int32(np_shape(ys)[0])
|
||||
output_int32(np_shape(ys)[1])
|
||||
output_int32(np_shape(ys)[2])
|
||||
|
||||
zs = np_broadcast_to(ys, (4, 3, 2))
|
||||
output_ndarray_float_3(zs)
|
||||
output_int32(np_shape(zs)[0])
|
||||
output_int32(np_shape(zs)[1])
|
||||
output_int32(np_shape(zs)[2])
|
||||
|
||||
# Broadcasting shares memory.
|
||||
zs[0, 0, 0] = 99
|
||||
output_ndarray_float_1(xs)
|
||||
output_ndarray_float_3(ys)
|
||||
output_ndarray_float_3(zs)
|
||||
|
||||
def test_ndarray_add():
|
||||
x = np_identity(2)
|
||||
y = x + np_ones([2, 2])
|
||||
@ -530,11 +587,59 @@ def test_ndarray_ipow_broadcast_scalar():
|
||||
output_ndarray_float_2(x)
|
||||
|
||||
def test_ndarray_matmul():
|
||||
x = np_identity(2)
|
||||
y = x @ np_ones([2, 2])
|
||||
# 2D @ 2D -> 2D
|
||||
a1 = np_array([[2.0, 3.0], [5.0, 7.0]])
|
||||
b1 = np_array([[11.0, 13.0], [17.0, 23.0]])
|
||||
c1 = a1 @ b1
|
||||
output_int32(np_shape(c1)[0])
|
||||
output_int32(np_shape(c1)[1])
|
||||
output_ndarray_float_2(c1)
|
||||
|
||||
output_ndarray_float_2(x)
|
||||
output_ndarray_float_2(y)
|
||||
# 1D @ 1D -> Scalar
|
||||
a2 = np_array([2.0, 3.0, 5.0])
|
||||
b2 = np_array([7.0, 11.0, 13.0])
|
||||
c2 = a2 @ b2
|
||||
output_float64(c2)
|
||||
|
||||
# 2D @ 1D -> 1D
|
||||
a3 = np_array([[1.0, 2.0, 3.0], [7.0, 8.0, 9.0]])
|
||||
b3 = np_array([4.0, 5.0, 6.0])
|
||||
c3 = a3 @ b3
|
||||
output_int32(np_shape(c3)[0])
|
||||
output_ndarray_float_1(c3)
|
||||
|
||||
# 1D @ 2D -> 1D
|
||||
a4 = np_array([1.0, 2.0, 3.0])
|
||||
b4 = np_array([[4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])
|
||||
c4 = a4 @ b4
|
||||
output_int32(np_shape(c4)[0])
|
||||
output_ndarray_float_1(c4)
|
||||
|
||||
# Broadcasting
|
||||
a5 = np_array([
|
||||
[[ 0.0, 1.0, 2.0, 3.0],
|
||||
[ 4.0, 5.0, 6.0, 7.0]],
|
||||
[[ 8.0, 9.0, 10.0, 11.0],
|
||||
[12.0, 13.0, 14.0, 15.0]],
|
||||
[[16.0, 17.0, 18.0, 19.0],
|
||||
[20.0, 21.0, 22.0, 23.0]]
|
||||
])
|
||||
b5 = np_array([
|
||||
[[[ 0.0, 1.0, 2.0],
|
||||
[ 3.0, 4.0, 5.0],
|
||||
[ 6.0, 7.0, 8.0],
|
||||
[ 9.0, 10.0, 11.0]]],
|
||||
[[[12.0, 13.0, 14.0],
|
||||
[15.0, 16.0, 17.0],
|
||||
[18.0, 19.0, 20.0],
|
||||
[21.0, 22.0, 23.0]]]
|
||||
])
|
||||
c5 = a5 @ b5
|
||||
output_int32(np_shape(c5)[0])
|
||||
output_int32(np_shape(c5)[1])
|
||||
output_int32(np_shape(c5)[2])
|
||||
output_int32(np_shape(c5)[3])
|
||||
output_ndarray_float_4(c5)
|
||||
|
||||
def test_ndarray_imatmul():
|
||||
x = np_identity(2)
|
||||
@ -1580,6 +1685,7 @@ def run() -> int32:
|
||||
test_ndarray_neg_idx()
|
||||
test_ndarray_slices()
|
||||
test_ndarray_nd_idx()
|
||||
test_ndarray_subscript_assignment()
|
||||
|
||||
test_ndarray_add()
|
||||
test_ndarray_add_broadcast()
|
||||
|
@ -14,6 +14,7 @@ use inkwell::{
|
||||
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
|
||||
OptimizationLevel,
|
||||
};
|
||||
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
|
||||
@ -314,6 +315,16 @@ fn main() {
|
||||
let resolver =
|
||||
Arc::new(Resolver(internal_resolver.clone())) as Arc<dyn SymbolResolver + Send + Sync>;
|
||||
|
||||
let context = inkwell::context::Context::create();
|
||||
|
||||
// Process IRRT
|
||||
let irrt = load_irrt(&context);
|
||||
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||
if emit_llvm {
|
||||
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
|
||||
}
|
||||
|
||||
// Process the Python script
|
||||
let parser_result = parser::parse_program(&program, file_name.into()).unwrap();
|
||||
|
||||
for stmt in parser_result {
|
||||
@ -418,8 +429,8 @@ fn main() {
|
||||
registry.add_task(task);
|
||||
registry.wait_tasks_complete(handles);
|
||||
|
||||
// Link all modules together into `main`
|
||||
let buffers = membuffers.lock();
|
||||
let context = inkwell::context::Context::create();
|
||||
let main = context
|
||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||
.unwrap();
|
||||
@ -439,12 +450,9 @@ fn main() {
|
||||
main.link_in_module(other).unwrap();
|
||||
}
|
||||
|
||||
let irrt = load_irrt(&context);
|
||||
if emit_llvm {
|
||||
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
|
||||
}
|
||||
main.link_in_module(irrt).unwrap();
|
||||
|
||||
// Private all functions except "run"
|
||||
let mut function_iter = main.get_first_function();
|
||||
while let Some(func) = function_iter {
|
||||
if func.count_basic_blocks() > 0 && func.get_name().to_str().unwrap() != "run" {
|
||||
@ -453,6 +461,7 @@ fn main() {
|
||||
function_iter = func.get_next_function();
|
||||
}
|
||||
|
||||
// Optimize `main`
|
||||
let target_machine = llvm_options
|
||||
.target
|
||||
.create_target_machine(llvm_options.opt_level)
|
||||
@ -466,6 +475,7 @@ fn main() {
|
||||
panic!("Failed to run optimization for module `main`: {}", err.to_string());
|
||||
}
|
||||
|
||||
// Write output
|
||||
target_machine
|
||||
.write_to_file(&main, FileType::Object, Path::new("module.o"))
|
||||
.expect("couldn't write module to file");
|
||||
|
Loading…
Reference in New Issue
Block a user