Compare commits

..

84 Commits

Author SHA1 Message Date
76531c7d1c
core: update insta after ndstrides
New type vars are introduced when programming new ndarray functions.
2024-08-30 16:22:06 +08:00
e1cdc2dc78
core: remove old ndarray code and NDArray proxy
Nothing depends on the old ndarray implementation now.
2024-08-30 16:19:36 +08:00
1f0463463f
artiq: reimplement get_obj_value to use ndarray with strides 2024-08-30 16:16:25 +08:00
bb512b8f57
artiq: reimplement polymorphic_print for ndarray 2024-08-30 16:13:59 +08:00
700357a8b2
artiq: reimplement reformat_rpc_arg for ndarray 2024-08-30 16:13:47 +08:00
4e9facd457
standalone/ndarray: improve {reshape,broadcast_to,transpose} tests
Print their shapes and exhaustively print all contents.
2024-08-30 15:15:21 +08:00
b3a66948fa
standalone/ndarray: add and organize view function tests 2024-08-30 15:15:07 +08:00
7fb5e10ee2
core/ndstrides: update builtin_fns to use ndarray with strides 2024-08-30 15:14:29 +08:00
1de3f05734
core/ndstrides: add NDArrayObject::to_any 2024-08-30 15:10:03 +08:00
3426e0c9c2
core/ndstrides: add ContiguousNDArray
Currently this is used to interop with nalgebra.
2024-08-30 15:09:54 +08:00
4baf1c64ed
core/ndstrides: implement np_dot() for scalars and 1D 2024-08-30 15:07:44 +08:00
c93f05f74b
core/ndstrides: implement general matmul 2024-08-30 15:06:28 +08:00
e86718d3d9
core/ndstrides: implement cmpop 2024-08-30 14:59:34 +08:00
a43ec47530
core/ndstrides: implement unary op 2024-08-30 14:57:26 +08:00
bc88819eaf
core/ndstrides: implement binop 2024-08-30 14:57:11 +08:00
c6d3620431
core/ndstrides: add NDArrayOut, broadcast_map and map 2024-08-30 14:57:02 +08:00
cea512456a
core/ndstrides: implement subscript assignment
Overlapping is not handled. Currently it has undefined behavior.
2024-08-30 14:54:53 +08:00
b22f2bc76c
core/ndstrides: add more ScalarOrNDArray and NDArrayObject utils 2024-08-30 14:52:57 +08:00
b9e837109b
core/ndstrides: implement np_transpose() (no axes argument)
The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2024-08-30 14:50:48 +08:00
d32268fb5d
core/ndstrides: implement broadcasting & np_broadcast_to() 2024-08-30 14:45:43 +08:00
916a2b4993
core/ndstrides: implement np_reshape() 2024-08-30 14:41:54 +08:00
c7c3cc21a8
core: categorize np_{transpose,reshape} as 'view functions' 2024-08-30 14:41:54 +08:00
d2072d9248
core/ndstrides: implement np_size() 2024-08-30 14:41:00 +08:00
be19165ead
core/ndstrides: implement np_shape() and np_strides()
These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is used.
2024-08-30 14:41:00 +08:00
ee58cf3fc3
core/ndstrides: implement ndarray.fill() and .copy() 2024-08-30 14:41:00 +08:00
8fe8ccf200
core/ndstrides: implement np_identity() and np_eye() 2024-08-30 14:41:00 +08:00
d222236492
core/ndstrides: implement np_array()
It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`.

However, currently only `np_array(<input>, copy=False)` and `np_array(<input>, copy=True)` are supported. In NumPy, copy could be false, true, or None. Right now, NAC3's `np_array(<input>, copy=False)` behaves like NumPy's `np.array(<input>, copy=None)`.
2024-08-30 14:40:15 +08:00
13715dbda9
core/irrt: add List
Needed for implementing np_array()
2024-08-30 14:20:19 +08:00
7910de10a1
core/ndstrides: add NDArrayObject::atleast_nd 2024-08-30 14:18:34 +08:00
6edc3f895b
core/ndstrides: add NDArrayObject::make_copy 2024-08-30 14:18:17 +08:00
a40cdde8d2
core/ndstrides: implement ndarray indexing
The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
#486.
2024-08-30 14:12:54 +08:00
853fa39537
core/irrt: rename NDIndex to NDIndexInt
Unfortunately the name `NDIndex` is used in later commits. Renaming this
typedef to `NDIndexInt` to avoid amending. `NDIndexInt` will be removed
anyway when ndarray strides is completed.
2024-08-30 14:00:19 +08:00
b6a1880226
core/irrt: add Slice and Range
Needed for implementing general ndarray indexing.

Currently IRRT slice and range have nothing to do with NAC3's slice
and range. The IRRT slice and range are currently there to implement
ndarray specific features. However, in the future their definitions may
be used to replace that of NAC3's. (NAC3's range is a [i32 x 3], IRRT's
range is a proper struct. NAC3 does not have a slice struct).
2024-08-30 13:57:10 +08:00
d1c75c7444
core/ndstrides: implement len(ndarray) & refactor len() 2024-08-30 13:45:25 +08:00
58c5bc56b9
core/ndstrides: implement np_{zeros,ones,full,empty} 2024-08-30 13:44:12 +08:00
ddc0e44c61
core/model: add util::gen_for_model 2024-08-30 13:42:39 +08:00
549536f72c
core/object: add ListObject and TupleObject
Needed for implementing other ndarray utils.
2024-08-30 13:41:31 +08:00
40c42b571a
core/ndstrides: implement ndarray iterator NDIter
A necessary utility to iterate through all elements in a possibly strided ndarray.
2024-08-30 13:39:10 +08:00
92e7103ec7
core/ndstrides: introduce NDArray
NDArray with strides.
2024-08-30 13:24:45 +08:00
9bc5e96dba
core/irrt: fix exception.hpp C++ castings 2024-08-30 13:15:07 +08:00
78639b1030
core/toplevel/helper: add {extract,create}_ndims 2024-08-30 13:05:16 +08:00
9723c17e24
core/object: introduce object
A small abstraction to simplify implementations.
2024-08-30 13:04:54 +08:00
d1c7a8ee50
StructKind::{traverse -> iter}_fields 2024-08-30 12:51:17 +08:00
e0524c19eb
Newline "Otherwise, it will be caught..." 2024-08-30 12:51:17 +08:00
32822f9052
gep_index must be u32 2024-08-30 12:51:17 +08:00
6283036815
FieldTraversal::{Out -> Output} 2024-08-30 12:51:17 +08:00
f167f5f215
Ptr::copy_from to use SizeT 2024-08-30 12:51:17 +08:00
baf8ee2b3d
Ptr::offset_const offset i64, can be negative 2024-08-30 12:51:17 +08:00
d68760447f
Int::const_int to have sign_extend 2024-08-30 12:51:17 +08:00
fdd194ee2a
FnCall::{begin -> builder} 2024-08-30 12:51:17 +08:00
5fca81c68e
CallFunction -> FnCall 2024-08-30 12:51:17 +08:00
0562e9a385
Instance add newline 2024-08-30 12:51:17 +08:00
36af473816
unsafe Model::believe_value 2024-08-30 12:51:17 +08:00
7c7e1b3ab8
Model::{sizeof -> size_of} 2024-08-30 12:51:17 +08:00
dbcfc9538a
ArrayLen::{get_length -> length} 2024-08-30 12:51:17 +08:00
5c4ba09e2f
LenKind -> ArrayLen 2024-08-30 12:51:17 +08:00
eb34b99ee9
core/model: renaming and add notes on upgrading Ptr to LLVM 15 2024-08-30 12:51:17 +08:00
d397b9ceaa
core/model: introduce models 2024-08-30 12:51:17 +08:00
71c3a65a31 [core] codegen/stmt: Fix obtaining return type of sret functions 2024-08-29 19:15:30 +08:00
8c540d1033 [core] codegen/stmt: Add more casts for boolean types 2024-08-29 16:36:32 +08:00
0cc60a3d33 [core] codegen/expr: Fix missing cast to i1 2024-08-29 16:36:32 +08:00
a59c26aa99 [artiq] Fix RPC of ndarrays from host 2024-08-29 16:08:45 +08:00
02d93b11d1 [meta] Update dependencies 2024-08-29 14:32:21 +08:00
59cad5bfe1
standalone: clang-format demo.c 2024-08-29 10:37:24 +08:00
4318f8de84
standalone: improve src/assignment.py 2024-08-29 10:33:58 +08:00
15ac00708a [core] Use quoted include paths instead of angled brackets
This is preferred for user-defined headers.
2024-08-28 16:37:03 +08:00
c8dfdcfdea
standalone & artiq: remove class_names from resolver 2024-08-27 23:43:40 +08:00
600a5c8679 Revert "standalone: reformat demo.c"
This reverts commit 308edb8237.
2024-08-27 23:06:49 +08:00
22c4d25802 core/typecheck: add missing typecheck in matmul 2024-08-27 22:59:39 +08:00
308edb8237 standalone: reformat demo.c 2024-08-27 22:55:22 +08:00
9848795dcc core/irrt: add exceptions and debug utils 2024-08-27 22:55:22 +08:00
58222feed4 core/irrt: split into headers 2024-08-27 22:55:22 +08:00
518f21d174 core/irrt: build.rs capture IR defined constants 2024-08-27 22:55:22 +08:00
e8e49684bf core/irrt: build.rs capture IR defined types 2024-08-27 22:55:22 +08:00
b2900b4883 core/irrt: use +std=c++20 to compile
To explicitly set the C++ variant and avoid inconsistencies.
2024-08-27 22:55:22 +08:00
c6dade1394 core/irrt: reformat 2024-08-27 22:55:22 +08:00
7e3fcc0845 add .clang-format 2024-08-27 22:55:22 +08:00
d3b4c60d7f core/irrt: comment build.rs & move irrt to nac3core/irrt 2024-08-27 22:55:22 +08:00
5b2b6db7ed core: improve error messages 2024-08-26 18:37:55 +08:00
15e62f467e standalone: add tests for polymorphism 2024-08-26 18:37:55 +08:00
2c88924ff7 core: add support for simple polymorphism 2024-08-26 18:37:55 +08:00
a744b139ba core: allow Call and AnnAssign in init block 2024-08-26 18:37:55 +08:00
2b2b2dbf8f [core] Fix resolution of exception names in raise short form
Previous implementation fails as `resolver.get_identifier_def` in ARTIQ
would return the exception __init__ function rather than the class.

We fix this by limiting the exception class resolution to only include
raise statements, and to force the exception name to always be treated
as a class.

Fixes #501.
2024-08-26 18:35:02 +08:00
d9f96dab33 [core] Add codegen_unreachable 2024-08-23 13:10:55 +08:00
64 changed files with 1946 additions and 1575 deletions

View File

@ -1,3 +1,32 @@
BasedOnStyle: Microsoft
BasedOnStyle: LLVM
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -1
AlignEscapedNewlines: Left
AlwaysBreakAfterReturnType: None
AlwaysBreakTemplateDeclarations: Yes
AllowAllParametersOfDeclarationOnNextLine: false
AllowShortFunctionsOnASingleLine: Inline
BinPackParameters: false
BreakBeforeBinaryOperators: NonAssignment
BreakBeforeTernaryOperators: true
BreakConstructorInitializers: AfterColon
BreakInheritanceList: AfterColon
ColumnLimit: 120
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ContinuationIndentWidth: 4
DerivePointerAlignment: false
IndentCaseLabels: true
IndentPPDirectives: None
IndentWidth: 4
ReflowComments: false
MaxEmptyLinesToKeep: 1
PointerAlignment: Left
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterTemplateKeyword: false
SpacesBeforeTrailingComments: 2
TabWidth: 4
UseTab: Never

62
Cargo.lock generated
View File

@ -117,9 +117,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]]
name = "cc"
version = "1.1.13"
version = "1.1.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "72db2f7947ecee9b03b510377e8bb9077afa27176fdbff55c51027e976fdcc48"
checksum = "57b6a275aa2903740dc87da01c62040406b8812552e97129a63ea8850a17c6e6"
dependencies = [
"shlex",
]
@ -161,7 +161,7 @@ dependencies = [
"heck 0.5.0",
"proc-macro2",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
@ -310,9 +310,9 @@ dependencies = [
[[package]]
name = "fastrand"
version = "2.1.0"
version = "2.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9fc0510504f03c51ada170672ac806f1f105a88aa97a5281117e1ddc3368e51a"
checksum = "e8c02a5121d4ea3eb16a80748c74f5549a5665e4c21333c6098f283870fbdea6"
[[package]]
name = "fixedbitset"
@ -424,7 +424,7 @@ checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
@ -510,9 +510,9 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]]
name = "libc"
version = "0.2.157"
version = "0.2.158"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "374af5f94e54fa97cf75e945cce8a6b201e88a1a07e688b47dfd2a59c66dbd86"
checksum = "d8adc4bb1803a324070e64a98ae98f38934d91957a99cfb3a43dcbc01bc56439"
[[package]]
name = "libloading"
@ -752,7 +752,7 @@ dependencies = [
"phf_shared 0.11.2",
"proc-macro2",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
@ -856,7 +856,7 @@ dependencies = [
"proc-macro2",
"pyo3-macros-backend",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
@ -869,14 +869,14 @@ dependencies = [
"proc-macro2",
"pyo3-build-config",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
name = "quote"
version = "1.0.36"
version = "1.0.37"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
checksum = "b5b9d34b8991d19d98081b46eacdd8eb58c6f2b201139f7c5f643cc155a633af"
dependencies = [
"proc-macro2",
]
@ -942,9 +942,9 @@ dependencies = [
[[package]]
name = "redox_users"
version = "0.4.5"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd283d9651eeda4b2a83a43c1c91b266c40fd76ecd39a50a8c630ae69dc72891"
checksum = "ba009ff324d1fc1b900bd1fdb31564febe58a8ccc8a6fdbb93b543d33b13ca43"
dependencies = [
"getrandom",
"libredox",
@ -989,9 +989,9 @@ dependencies = [
[[package]]
name = "rustix"
version = "0.38.34"
version = "0.38.35"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "70dc5ec042f7a43c4a73241207cecc9873a06d45debb38b329f8541d85c2730f"
checksum = "a85d50532239da68e9addb745ba38ff4612a242c1c7ceea689c4bc7c2f43c36f"
dependencies = [
"bitflags",
"errno",
@ -1035,29 +1035,29 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
[[package]]
name = "serde"
version = "1.0.208"
version = "1.0.209"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cff085d2cb684faa248efb494c39b68e522822ac0de72ccf08109abde717cfb2"
checksum = "99fce0ffe7310761ca6bf9faf5115afbc19688edd00171d81b1bb1b116c63e09"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.208"
version = "1.0.209"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "24008e81ff7613ed8e5ba0cfaf24e2c2f1e5b8a0495711e44fcd4882fca62bcf"
checksum = "a5831b979fd7b5439637af1752d535ff49f4860c0f341d1baeb6faf0f4242170"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
name = "serde_json"
version = "1.0.125"
version = "1.0.127"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "83c8e735a073ccf5be70aa8066aa984eaf2fa000db6c8d0100ae605b366d31ed"
checksum = "8043c06d9f82bd7271361ed64f415fe5e12a77fdb52e573e7f06a516dea329ad"
dependencies = [
"itoa",
"memchr",
@ -1147,7 +1147,7 @@ dependencies = [
"proc-macro2",
"quote",
"rustversion",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
@ -1163,9 +1163,9 @@ dependencies = [
[[package]]
name = "syn"
version = "2.0.75"
version = "2.0.76"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f6af063034fc1935ede7be0122941bafa9bacb949334d090b77ca98b5817c7d9"
checksum = "578e081a14e0cefc3279b0472138c513f37b41a08d5a3cca9b6e4e8ceb6cd525"
dependencies = [
"proc-macro2",
"quote",
@ -1232,7 +1232,7 @@ checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]
[[package]]
@ -1310,9 +1310,9 @@ checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d"
[[package]]
name = "unicode-xid"
version = "0.2.4"
version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f962df74c8c05a667b5ee8bcf162993134c104e96440b663c8daa176dc772d8c"
checksum = "229730647fbc343e3a80e463c1db7f78f3855d3f3739bee0dda773c9a037c90a"
[[package]]
name = "unicode_names2"
@ -1510,5 +1510,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.75",
"syn 2.0.76",
]

View File

@ -9,7 +9,11 @@ use nac3core::{
CodeGenContext, CodeGenerator,
},
symbol_resolver::ValueEnum,
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
toplevel::{
helper::{extract_ndims, PrimDef},
numpy::unpack_ndarray_var_tys,
DefinitionId, GenCall,
},
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
};
@ -19,8 +23,8 @@ use inkwell::{
context::Context,
module::Linkage,
types::IntType,
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate,
values::{BasicValue, BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use pyo3::{
@ -30,6 +34,7 @@ use pyo3::{
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use inkwell::values::IntValue;
use itertools::Itertools;
use std::{
collections::{hash_map::DefaultHasher, HashMap},
@ -462,12 +467,13 @@ fn format_rpc_arg<'ctx>(
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
// the reader.
// Turning it into a ContiguousNDArray to get a `data` that is contiguous.
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx);
let sizeof_sizet = Int(SizeT).size_of(generator, ctx.ctx);
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx);
let sizeof_pdata = Ptr(Any(dtype)).size_of(generator, ctx.ctx);
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
@ -509,6 +515,260 @@ fn format_rpc_arg<'ctx>(
arg_slot
}
/// Formats an RPC return value to conform to the expected format required by NAC3.
fn format_rpc_ret<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
ret_ty: Type,
) -> Option<BasicValueEnum<'ctx>> {
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let llvm_i8 = ctx.ctx.i8_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
});
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
return None;
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
// FIXME: It is possible to rewrite everything more neatly with `Model<'ctx>`, but this is not too important.
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
let num_8 = Int(SizeT).const_int(generator, ctx.ctx, 8, false);
// Round `val` up to its modulo `power_of_two`
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
val: IntValue<'ctx>,
power_of_two: IntValue<'ctx>| {
debug_assert_eq!(
val.get_type().get_bit_width(),
power_of_two.get_type().get_bit_width()
);
let llvm_val_t = val.get_type();
let max_rem = ctx
.builder
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
.unwrap();
ctx.builder
.build_and(
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
ctx.builder.build_not(max_rem, "").unwrap(),
"",
)
.unwrap()
};
// Allocate the resulting ndarray
// A condition after format_rpc_ret ensures this will not be popped this off.
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
// NOTE: Current content of `ndarray`:
// - * `data` - **NOT YET** allocated.
// - * `itemsize` - initialized to be size_of(dtype).
// - * `ndims` - initialized.
// - * `shape` - allocated; has uninitialized values.
// - * `strides` - allocated; has uninitialized values.
let itemsize = ndarray.instance.get(generator, ctx, |f| f.itemsize); // Same as doing a `ctx.get_llvm_type` on `dtype` and get its `size_of()`.
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
// (4 + 4 * ndims) bytes with 8-byte alignment
let sizeof_size_t = Int(SizeT).size_of(generator, ctx.ctx);
let sizeof_size_t = Int(SizeT).z_extend_or_truncate(generator, ctx, sizeof_size_t); // sizeof(size_t)
let sizeof_ptr = Ptr(Int(Byte)).size_of(generator, ctx.ctx);
let sizeof_ptr = Int(SizeT).z_extend_or_truncate(generator, ctx, sizeof_ptr); // sizeof(uint8_t*)
let sizeof_shape = ndarray.ndims_llvm(generator, ctx.ctx).mul(ctx, sizeof_size_t); // sizeof([size_t; ndims]); same as the # of bytes of `ndarray.shape`.
// Size of the buffer for the initial `rpc_recv()`.
let unaligned_buffer_size = sizeof_ptr.add(ctx, sizeof_shape); // sizeof(uint8_t*) + sizeof([size_t; ndims]).
let buffer_size = round_up(ctx, unaligned_buffer_size.value, num_8.value);
let buffer_size = unsafe { Int(SizeT).believe_value(buffer_size) };
let stackptr = call_stacksave(ctx, None);
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
let buffer = ctx
.builder
.build_array_alloca(
llvm_i8_8,
ctx.builder.build_int_unsigned_div(buffer_size.value, num_8.value, "").unwrap(),
"rpc.buffer",
)
.unwrap();
let buffer = ctx
.builder
.build_bitcast(buffer, llvm_pi8, "")
.map(BasicValueEnum::into_pointer_value)
.unwrap();
let buffer = unsafe { Ptr(Int(Byte)).believe_value(buffer) };
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
//
// The returned value is the number of bytes for `ndarray.data`.
let ndarray_nbytes = ctx
.build_call_or_invoke(
rpc_recv,
&[buffer.value.into()], // Reads [usize; ndims]
"rpc.size.next",
)
.map(BasicValueEnum::into_int_value)
.unwrap();
let ndarray_nbytes = unsafe { Int(SizeT).believe_value(ndarray_nbytes) };
// debug_assert(ndarray_nbytes > 0)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let cmp = ndarray_nbytes.compare(ctx, IntPredicate::UGT, num_0);
ctx.make_assert(
generator,
cmp.value,
"0:AssertionError",
"Unexpected RPC termination for ndarray - Expected data buffer next",
[None, None, None],
ctx.current_loc,
);
}
// Copy shape from the buffer to `ndarray.shape`.
// We need to skip the first `sizeof(uint8_t*)` bytes to skip the `pdata` in `[pdata, shape]`.
let pbuffer_shape = buffer.offset(ctx, sizeof_ptr.value);
let pbuffer_shape = pbuffer_shape.pointer_cast(generator, ctx, Int(SizeT));
// Copy shape from buffer to `ndarray.shape`
ndarray.copy_shape_from_array(generator, ctx, pbuffer_shape);
// Restore stack from before allocation of buffer
call_stackrestore(ctx, stackptr);
// Allocate `ndarray.data`.
// `ndarray.shape` must be initialized beforehand in this implementation
// (for ndarray.create_data() to know how many elements to allocate)
ndarray.create_data(generator, ctx); // NOTE: the strides of `ndarray` has also been set to contiguous in `::create_data()`.
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let num_elements = ndarray.size(generator, ctx);
let expected_ndarray_nbytes = num_elements.mul(ctx, itemsize);
let cmp = expected_ndarray_nbytes.compare(ctx, IntPredicate::UGE, ndarray_nbytes);
ctx.make_assert(
generator,
cmp.value,
"0:AssertionError",
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
[Some(expected_ndarray_nbytes.value), Some(ndarray_nbytes.value), None],
ctx.current_loc,
);
}
let ndarray_data = ndarray.instance.get(generator, ctx, |f| f.data);
// NOTE: Currently on `prehead_bb`
ctx.builder.build_unconditional_branch(head_bb).unwrap();
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&ndarray_data.value, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.map(BasicValueEnum::into_int_value)
.unwrap();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
// Align the allocation to sizeof(T)
let alloc_size = round_up(ctx, alloc_size, itemsize.value);
let alloc_ptr = ctx
.builder
.build_array_alloca(
dtype_llvm,
ctx.builder.build_int_unsigned_div(alloc_size, itemsize.value, "").unwrap(),
"rpc.alloc",
)
.unwrap();
let alloc_ptr =
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ndarray.instance.value.as_basic_value_enum()
}
_ => {
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr =
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr =
ctx.builder.build_bitcast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
ctx.builder.build_load(slot, "rpc.result").unwrap()
}
};
Some(result)
}
fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>,
@ -644,63 +904,14 @@ fn rpc_codegen_callback_fn<'ctx>(
// reclaim stack space used by arguments
call_stackrestore(ctx, stackptr);
// -- receive value:
// T result = {
// void *ret_ptr = alloca(sizeof(T));
// void *ptr = ret_ptr;
// loop: int size = rpc_recv(ptr);
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
// if(size) { ptr = alloca(size); goto loop; }
// else *(T*)ret_ptr
// }
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
});
let result = format_rpc_ret(generator, ctx, fun.0.ret);
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
return Ok(None);
}
let prehead_bb = ctx.builder.get_insert_block().unwrap();
let current_function = prehead_bb.get_parent().unwrap();
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
let need_load = !ret_ty.is_pointer_type();
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(head_bb);
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
phi.add_incoming(&[(&slotgen, prehead_bb)]);
let alloc_size = ctx
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
.unwrap()
.into_int_value();
let is_done = ctx
.builder
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
.unwrap();
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
ctx.builder.position_at_end(alloc_bb);
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
ctx.builder.build_unconditional_branch(head_bb).unwrap();
ctx.builder.position_at_end(tail_bb);
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
if need_load {
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
// An RPC returning an NDArray would not touch here.
call_stackrestore(ctx, stackptr);
}
Ok(Some(result))
Ok(result)
}
pub fn attributes_writeback(

View File

@ -33,7 +33,6 @@ use inkwell::{
OptimizationLevel,
};
use itertools::Itertools;
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
@ -449,7 +448,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
name_to_pyid: name_to_pyid.clone(),
module: module.clone(),
id_to_pyval: RwLock::default(),
@ -541,7 +539,6 @@ impl Nac3 {
pyid_to_type: pyid_to_type.clone(),
primitive_ids: self.primitive_ids.clone(),
global_value_ids: global_value_ids.clone(),
class_names: Mutex::default(),
id_to_pyval: RwLock::default(),
id_to_primitive: RwLock::default(),
field_to_val: RwLock::default(),
@ -560,8 +557,7 @@ impl Nac3 {
// Process IRRT
let context = inkwell::context::Context::create();
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let irrt = load_irrt(&context, resolver.as_ref());
let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };

View File

@ -24,7 +24,7 @@ use nac3core::{
},
};
use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock};
use parking_lot::RwLock;
use pyo3::{
types::{PyDict, PyTuple},
PyAny, PyErr, PyObject, PyResult, Python,
@ -80,7 +80,6 @@ pub struct InnerResolver {
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
pub primitive_ids: PrimitivePythonId,
@ -1092,7 +1091,7 @@ impl InnerResolver {
if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global(
Struct(NDArray).get_type(generator, ctx.ctx),
Struct(NDArray).llvm_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&id_str,
)
@ -1149,7 +1148,7 @@ impl InnerResolver {
// create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global(
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx),
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.llvm_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".shape"),
);
@ -1181,27 +1180,27 @@ impl InnerResolver {
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global(
Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx),
Array { len: AnyLen(sz as u32), item: dtype }.llvm_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".data"),
);
data_global.set_initializer(&data.value);
// Get the constant itemsize.
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap();
let itemsize = dtype.llvm_type(generator, ctx.ctx).size_of().unwrap();
let itemsize = itemsize.get_zero_extended_constant().unwrap();
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides = strides
.into_iter()
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride))
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride, false))
.collect_vec();
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx),
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.llvm_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".strides"),
);
@ -1214,9 +1213,9 @@ impl InnerResolver {
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize);
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize, false);
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims);
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
let ndarray_shape =
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
@ -1237,7 +1236,7 @@ impl InnerResolver {
);
let ndarray_global = ctx.module.add_global(
Struct(NDArray).get_type(generator, ctx.ctx),
Struct(NDArray).llvm_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&id_str,
);

View File

@ -22,6 +22,7 @@ fn main() {
"--target=wasm32",
"-x",
"c++",
"-std=c++20",
"-fno-discard-value-names",
"-fno-exceptions",
"-fno-rtti",

View File

@ -1,16 +1,15 @@
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/math_util.hpp>
#include <irrt/ndarray/array.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp>
#include <irrt/ndarray/iter.hpp>
#include <irrt/ndarray/matmul.hpp>
#include <irrt/ndarray/reshape.hpp>
#include <irrt/ndarray/transpose.hpp>
#include <irrt/original.hpp>
#include <irrt/range.hpp>
#include <irrt/slice.hpp>
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/math.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/ndarray/iter.hpp"
#include "irrt/ndarray/indexing.hpp"
#include "irrt/ndarray/array.hpp"
#include "irrt/ndarray/reshape.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/transpose.hpp"
#include "irrt/ndarray/matmul.hpp"

View File

@ -1,9 +1,9 @@
#pragma once
#include <irrt/int_types.hpp>
#include "irrt/int_types.hpp"
template <typename SizeT> struct CSlice
{
template<typename SizeT>
struct CSlice {
uint8_t* base;
SizeT len;
};

View File

@ -1,20 +0,0 @@
#pragma once
#include <irrt/int_types.hpp>
namespace cstr
{
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char *str)
{
uint32_t length = 0;
while (*str != '\0')
{
length++;
str++;
}
return length;
}
} // namespace cstr

View File

@ -8,16 +8,18 @@
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3);
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
#define debug_assert_eq(SizeT, lhs, rhs) \
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) \
{ \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if ((lhs) != (rhs)) { \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
} \
}
#define debug_assert(SizeT, expr) \
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) \
{ \
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
if (!(expr)) { \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
} \
}

View File

@ -1,8 +1,7 @@
#pragma once
#include <irrt/cslice.hpp>
#include <irrt/cstr_util.hpp>
#include <irrt/int_types.hpp>
#include "irrt/cslice.hpp"
#include "irrt/int_types.hpp"
/**
* @brief The int type of ARTIQ exception IDs.
@ -13,8 +12,7 @@ typedef int32_t ExceptionId;
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C"
{
extern "C" {
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
@ -29,13 +27,12 @@ extern "C"
*/
extern "C" void __nac3_raise(void* err);
namespace
{
namespace {
/**
* @brief NAC3's Exception struct
*/
template <typename SizeT> struct Exception
{
template<typename SizeT>
struct Exception {
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
@ -45,24 +42,32 @@ template <typename SizeT> struct Exception
int64_t params[3];
};
const int64_t NO_PARAM = 0;
constexpr int64_t NO_PARAM = 0;
template<typename SizeT>
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
int64_t param0, int64_t param1, int64_t param2)
{
void _raise_exception_helper(ExceptionId id,
const char* filename,
int32_t line,
const char* function,
const char* msg,
int64_t param0,
int64_t param1,
int64_t param2) {
Exception<SizeT> e = {
.id = id,
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
.filename = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(filename)),
.len = static_cast<int32_t>(__builtin_strlen(filename))},
.line = line,
.column = 0,
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
.function = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(function)),
.len = static_cast<int32_t>(__builtin_strlen(function))},
.msg = {.base = reinterpret_cast<uint8_t*>(const_cast<char*>(msg)),
.len = static_cast<int32_t>(__builtin_strlen(msg))},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise((void *)&e);
__nac3_raise(reinterpret_cast<void*>(&e));
__builtin_unreachable();
}

View File

@ -6,3 +6,8 @@ using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);
// NDArray indices are always `uint32_t`.
using NDIndexInt = uint32_t;
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;

View File

@ -1,19 +1,90 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/slice.hpp>
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/slice.hpp"
namespace
{
namespace {
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template <typename SizeT> struct List
{
template<typename SizeT>
struct List {
uint8_t* items;
SizeT len;
};
} // namespace
extern "C" {
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t* dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t* src_arr,
SliceIndex src_arr_len,
const SliceIndex size) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr)
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca) {
uint8_t* tmp = reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
} // extern "C"

View File

@ -0,0 +1,93 @@
#pragma once
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template<typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) { \
return __nac3_int_exp_impl(base, exp); \
}
extern "C" {
// Putting semicolons here to make clang-format not reformat this into
// a stair shape.
DEF_nac3_int_exp_(int32_t);
DEF_nac3_int_exp_(int64_t);
DEF_nac3_int_exp_(uint32_t);
DEF_nac3_int_exp_(uint64_t);
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
}

View File

@ -1,14 +1,13 @@
#pragma once
namespace
{
template <typename T> const T &max(const T &a, const T &b)
{
namespace {
template<typename T>
const T& max(const T& a, const T& b) {
return a > b ? a : b;
}
template <typename T> const T &min(const T &a, const T &b)
{
template<typename T>
const T& min(const T& a, const T& b) {
return a > b ? b : a;
}
} // namespace

View File

@ -1,38 +1,32 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/list.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
namespace
{
namespace ndarray
{
namespace array
{
namespace {
namespace ndarray {
namespace array {
/**
* @brief In the context of `np.array(<list>)`, deduce the ndarray's shape produced by `<list>` and raise
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0], [3.0]])`)
* an exception if there is anything wrong with `<shape>` (e.g., inconsistent dimensions `np.array([[1.0, 2.0],
* [3.0]])`)
*
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the responsibility to
* allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because of implementation details.
* If this function finds no issues with `<list>`, the deduced shape is written to `shape`. The caller has the
* responsibility to allocate `[SizeT; ndims]` for `shape`. The caller must also initialize `shape` with `-1`s because
* of implementation details.
*/
template<typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
{
if (shape[axis] == -1)
{
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list, SizeT ndims, SizeT* shape) {
if (shape[axis] == -1) {
// Dimension is unspecified. Set it.
shape[axis] = list->len;
}
else
{
} else {
// Dimension is specified. Check.
if (shape[axis] != list->len)
{
if (shape[axis] != list->len) {
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
@ -42,17 +36,13 @@ void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndi
}
}
if (axis + 1 == ndims)
{
if (axis + 1 == ndims) {
// `list` has type `list[ItemType]`
// Do nothing
}
else
{
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
for (SizeT i = 0; i < list->len; i++) {
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
@ -61,10 +51,9 @@ void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndi
/**
* @brief See `set_and_validate_list_shape_helper`.
*/
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
template<typename SizeT>
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
@ -87,33 +76,26 @@ template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, Si
* - `ndarray->data` is written with contents from `<list>`.
*/
template<typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
{
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list, NDArray<SizeT>* ndarray) {
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL)
{
if (!ndarray::basic::is_c_contiguous(ndarray))
{
if (IRRT_DEBUG_ASSERT_BOOL) {
if (!ndarray::basic::is_c_contiguous(ndarray)) {
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims)
{
if (axis + 1 == ndarray->ndims) {
// `list` has type `list[scalar]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t* dst = ndarray->data + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
}
else
{
} else {
// `list` has type `list[list[...]]`
List<SizeT>** lists = (List<SizeT>**)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
for (SizeT i = 0; i < list->len; i++) {
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
@ -122,8 +104,8 @@ void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDA
/**
* @brief See `write_list_to_array_helper`.
*/
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
{
template<typename SizeT>
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
@ -131,27 +113,22 @@ template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<Si
} // namespace ndarray
} // namespace
extern "C"
{
extern "C" {
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
{
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t>* list, int32_t ndims, int32_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
{
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t>* list, int64_t ndims, int64_t* shape) {
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
{
void __nac3_ndarray_array_write_list_to_array(List<int32_t>* list, NDArray<int32_t>* ndarray) {
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
{
void __nac3_ndarray_array_write_list_to_array64(List<int64_t>* list, NDArray<int64_t>* ndarray) {
write_list_to_array(list, ndarray);
}
}

View File

@ -1,28 +1,23 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace
{
namespace ndarray
{
namespace basic
{
namespace {
namespace ndarray {
namespace basic {
/**
* @brief Assert that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
if (shape[axis] < 0)
{
template<typename SizeT>
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
for (SizeT axis = 0; axis < ndims; axis++) {
if (shape[axis] < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
@ -35,20 +30,18 @@ template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT
* @brief Assert that two shapes are the same in the context of writing output to an ndarray.
*/
template<typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
const SizeT *output_shape)
{
if (ndarray_ndims != output_ndims)
{
void assert_output_shape_same(SizeT ndarray_ndims,
const SizeT* ndarray_shape,
SizeT output_ndims,
const SizeT* output_shape) {
if (ndarray_ndims != output_ndims) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
{
if (ndarray_shape[axis] != output_shape[axis])
{
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
if (ndarray_shape[axis] != output_shape[axis]) {
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
@ -64,8 +57,8 @@ void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, S
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
{
template<typename SizeT>
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
@ -80,10 +73,9 @@ template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *s
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
{
for (SizeT i = 0; i < ndims; i++)
{
template<typename SizeT>
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
@ -97,8 +89,8 @@ template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shap
*
* This function corresponds to `<an_ndarray>.size`
*/
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
{
template<typename SizeT>
SizeT size(const NDArray<SizeT>* ndarray) {
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
@ -107,8 +99,8 @@ template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
{
template<typename SizeT>
SizeT nbytes(const NDArray<SizeT>* ndarray) {
return size(ndarray) * ndarray->itemsize;
}
@ -119,15 +111,12 @@ template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
*
* @param dst_length The length.
*/
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
{
template<typename SizeT>
SizeT len(const NDArray<SizeT>* ndarray) {
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0)
{
if (ndarray->ndims == 0) {
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
}
else
{
} else {
return ndarray->shape[0];
}
}
@ -135,16 +124,21 @@ template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
* You may want to see ndarray's rules for C-contiguity:
* https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
{
template<typename SizeT>
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
// References:
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// - tinynumpy's implementation:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]:
// https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity:
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
// From
// https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
@ -160,21 +154,17 @@ template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0)
{
if (ndarray->ndims == 0) {
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
{
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++)
{
for (SizeT i = 1; i < ndarray->ndims; i++) {
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
{
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
return false;
}
}
@ -187,8 +177,8 @@ template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
*
* This function does no bound check.
*/
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
template<typename SizeT>
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray, const SizeT* indices) {
uint8_t* element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
@ -200,11 +190,10 @@ template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT>
*
* This function does no bound check.
*/
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
{
template<typename SizeT>
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
uint8_t* element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
@ -218,11 +207,10 @@ template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarra
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
{
template<typename SizeT>
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
for (SizeT i = 0; i < ndarray->ndims; i++) {
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
@ -235,8 +223,8 @@ template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
{
template<typename SizeT>
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
@ -245,15 +233,14 @@ template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
template<typename SizeT>
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// TODO: Make this faster with memcpy when we see a contiguous segment.
// TODO: Handle overlapping.
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++)
{
for (SizeT i = 0; i < size(src_ndarray); i++) {
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
@ -263,109 +250,92 @@ template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDAr
} // namespace ndarray
} // namespace
extern "C"
{
extern "C" {
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
{
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
{
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t* shape) {
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
int32_t output_ndims, const int32_t *output_shape)
{
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
const int32_t* ndarray_shape,
int32_t output_ndims,
const int32_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
int64_t output_ndims, const int64_t *output_shape)
{
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims,
const int64_t* ndarray_shape,
int64_t output_ndims,
const int64_t* output_shape) {
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
{
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
{
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
{
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
{
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
{
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
{
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
{
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
{
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
return is_c_contiguous(ndarray);
}
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
{
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray, int32_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
{
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray, int64_t nth) {
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
{
uint8_t* __nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t>* ndarray, int32_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
{
uint8_t* __nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t>* ndarray, int64_t* indices) {
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
{
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
{
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -1,43 +1,35 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
namespace
{
template <typename SizeT> struct ShapeEntry
{
namespace {
template<typename SizeT>
struct ShapeEntry {
SizeT ndims;
SizeT* shape;
};
} // namespace
namespace
{
namespace ndarray
{
namespace broadcast
{
namespace {
namespace ndarray {
namespace broadcast {
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template<typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
{
if (src_ndims > target_ndims)
{
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape, SizeT src_ndims, const SizeT* src_shape) {
if (src_ndims > target_ndims) {
return false;
}
for (SizeT i = 0; i < src_ndims; i++)
{
for (SizeT i = 0; i < src_ndims; i++) {
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim))
{
if (!(src_dim == 1 || target_dim == src_dim)) {
return false;
}
}
@ -56,10 +48,8 @@ bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT
* of `np.broadcast_shapes` and write it here.
*/
template<typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
{
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
{
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes, SizeT dst_ndims, SizeT* dst_shape) {
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
dst_shape[dst_axis] = 1;
}
@ -67,8 +57,7 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++)
{
for (SizeT i = 0; i < num_shapes; i++) {
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
@ -78,24 +67,18 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++)
{
for (SizeT j = 0; j < entry.ndims; j++) {
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1)
{
if (dst_dim == 1) {
dst_shape[dst_axis] = entry_dim;
}
else if (entry_dim == 1 || entry_dim == dst_dim)
{
} else if (entry_dim == 1 || entry_dim == dst_dim) {
// Do nothing
}
else
{
} else {
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
@ -129,11 +112,10 @@ void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT d
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
template<typename SizeT>
void broadcast_to(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape))
{
src_ndarray->shape)) {
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
@ -141,17 +123,13 @@ template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, N
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
{
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
{
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1)) {
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
}
else
{
} else {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
@ -160,29 +138,28 @@ template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, N
} // namespace ndarray
} // namespace
extern "C"
{
extern "C" {
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray, NDArray<int32_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray, NDArray<int64_t>* dst_ndarray) {
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
int32_t *dst_shape)
{
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
const ShapeEntry<int32_t>* shapes,
int32_t dst_ndims,
int32_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
int64_t *dst_shape)
{
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
const ShapeEntry<int64_t>* shapes,
int64_t dst_ndims,
int64_t* dst_shape) {
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -1,16 +1,16 @@
#pragma once
#include <irrt/int_types.hpp>
#include "irrt/int_types.hpp"
namespace
{
namespace {
/**
* @brief The NDArray object
*
* Official numpy implementation: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
* Official numpy implementation:
* https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template <typename SizeT> struct NDArray
{
template<typename SizeT>
struct NDArray {
/**
* @brief The underlying data this `ndarray` is pointing to.
*/

View File

@ -1,14 +1,13 @@
#pragma once
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/range.hpp>
#include <irrt/slice.hpp>
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/range.hpp"
#include "irrt/slice.hpp"
namespace
{
namespace {
typedef uint8_t NDIndexType;
/**
@ -48,8 +47,7 @@ const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
* ^^^^ ^ ^^^ ^^^^^^^^^^ each of these is represented by an NDIndex.
* ```
*/
struct NDIndex
{
struct NDIndex {
/**
* @brief Enum tag to specify the type of index.
*
@ -66,12 +64,9 @@ struct NDIndex
};
} // namespace
namespace
{
namespace ndarray
{
namespace indexing
{
namespace {
namespace ndarray {
namespace indexing {
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
@ -100,8 +95,7 @@ namespace indexing
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template<typename SizeT>
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
void index(SizeT num_indices, const NDIndex* indices, const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
@ -111,40 +105,28 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++)
{
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
for (SizeT i = 0; i < num_indices; i++) {
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
expected_dst_ndims--;
num_indexed++;
}
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
{
} else if (indices[i].type == ND_INDEX_TYPE_SLICE) {
num_indexed++;
}
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
{
} else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS) {
expected_dst_ndims++;
}
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
{
} else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS) {
num_ellipsis++;
if (num_ellipsis > 1)
{
if (num_ellipsis > 1) {
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
}
else
{
} else {
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0)
{
if (src_ndarray->ndims - num_indexed < 0) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
@ -154,20 +136,18 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
// Reference code:
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++)
{
for (int32_t i = 0; i < num_indices; i++) {
const NDIndex* index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
SizeT input = (SizeT) * ((int32_t*)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1)
{
if (k == -1) {
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
@ -177,9 +157,7 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++;
}
else if (index->type == ND_INDEX_TYPE_SLICE)
{
} else if (index->type == ND_INDEX_TYPE_SLICE) {
Slice<int32_t>* slice = (Slice<int32_t>*)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
@ -190,36 +168,28 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
dst_axis++;
src_axis++;
}
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
{
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
}
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
{
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++)
{
for (SizeT j = 0; j < ellipsis_size; j++) {
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
}
else
{
} else {
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
{
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
@ -231,19 +201,20 @@ void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_
} // namespace ndarray
} // namespace
extern "C"
{
extern "C" {
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
NDArray<int32_t> *dst_ndarray)
{
void __nac3_ndarray_index(int32_t num_indices,
NDIndex* indices,
NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
NDArray<int64_t> *dst_ndarray)
{
void __nac3_ndarray_index64(int64_t num_indices,
NDIndex* indices,
NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray) {
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -1,19 +1,39 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace
{
namespace {
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* Example usage (in pseudo-code):
* ```
* // Suppose my_ndarray has been initialized, with shape [2, 3] and dtype `double`
* NDIter nditer;
* nditer.initialize(my_ndarray);
* while (nditer.has_element()) {
* // This body is run 6 (= my_ndarray.size) times.
*
* // [0, 0] -> [0, 1] -> [0, 2] -> [1, 0] -> [1, 1] -> [1, 2] -> end
* print(nditer.indices);
*
* // 0 -> 1 -> 2 -> 3 -> 4 -> 5
* print(nditer.nth);
*
* // <1st element> -> <2nd element> -> ... -> <6th element> -> end
* print(*((double *) nditer.element))
*
* nditer.next(); // Go to next element.
* }
* ```
*
* Interesting cases:
* - If ndims == 0, there is one iteration.
* - If shape contains zeroes, there are no iterations.
* - If `my_ndarray.ndims` == 0, there is one iteration.
* - If `my_ndarray.shape` contains zeroes, there are no iterations.
*/
template <typename SizeT> struct NDIter
{
template<typename SizeT>
struct NDIter {
// Information about the ndarray being iterated over.
SizeT ndims;
SizeT* shape;
@ -29,7 +49,7 @@ template <typename SizeT> struct NDIter
/**
* @brief The nth (0-based) index of the current indices.
*
* Initially this is all 0s.
* Initially this is 0.
*/
SizeT nth;
@ -47,11 +67,7 @@ template <typename SizeT> struct NDIter
*/
SizeT size;
// TODO:: Not implemented: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
{
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element, SizeT* indices) {
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
@ -61,41 +77,39 @@ template <typename SizeT> struct NDIter
// Compute size
this->size = 1;
for (SizeT i = 0; i < ndims; i++)
{
for (SizeT i = 0; i < ndims; i++) {
this->size *= shape[i];
}
// `indices` starts on all 0s.
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
{
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
// NOTE: ndarray->data is pointing to the first element, and `NDIter`'s `element` should also point to the first
// element as well.
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
bool has_next()
{
return nth < size;
}
// Is the current iteration valid?
// If true, then `element`, `indices` and `nth` contain details about the current element.
bool has_element() { return nth < size; }
void next()
{
for (SizeT i = 0; i < ndims; i++)
{
// Go to the next element.
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis])
{
if (indices[axis] >= shape[axis]) {
indices[axis] = 0;
// TODO: Can be optimized with backstrides.
// TODO: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and
// https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
element -= strides[axis] * (shape[axis] - 1);
}
else
{
} else {
element += strides[axis];
break;
}
@ -105,35 +119,28 @@ template <typename SizeT> struct NDIter
};
} // namespace
extern "C"
{
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
{
extern "C" {
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray, int32_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
{
void __nac3_nditer_initialize64(NDIter<int64_t>* iter, NDArray<int64_t>* ndarray, int64_t* indices) {
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
{
return iter->has_next();
bool __nac3_nditer_has_element(NDIter<int32_t>* iter) {
return iter->has_element();
}
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
{
return iter->has_next();
bool __nac3_nditer_has_element64(NDIter<int64_t>* iter) {
return iter->has_element();
}
void __nac3_nditer_next(NDIter<int32_t> *iter)
{
void __nac3_nditer_next(NDIter<int32_t>* iter) {
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t> *iter)
{
void __nac3_nditer_next64(NDIter<int64_t>* iter) {
iter->next();
}
}

View File

@ -1,20 +1,17 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/iter.hpp>
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/basic.hpp"
#include "irrt/ndarray/broadcast.hpp"
#include "irrt/ndarray/iter.hpp"
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace
{
namespace ndarray
{
namespace matmul
{
namespace {
namespace ndarray {
namespace matmul {
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
@ -37,16 +34,20 @@ namespace matmul
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template<typename SizeT>
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
{
void calculate_shapes(SizeT a_ndims,
SizeT* a_shape,
SizeT b_ndims,
SizeT* b_shape,
SizeT final_ndims,
SizeT* new_a_shape,
SizeT* new_b_shape,
SizeT* dst_shape) {
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
{
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2]) {
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
@ -72,21 +73,28 @@ void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_sha
} // namespace ndarray
} // namespace
extern "C"
{
extern "C" {
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
int32_t *dst_shape)
{
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims,
int32_t* a_shape,
int32_t b_ndims,
int32_t* b_shape,
int32_t final_ndims,
int32_t* new_a_shape,
int32_t* new_b_shape,
int32_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
int64_t *dst_shape)
{
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims,
int64_t* a_shape,
int64_t b_ndims,
int64_t* b_shape,
int64_t final_ndims,
int64_t* new_a_shape,
int64_t* new_b_shape,
int64_t* dst_shape) {
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -1,14 +1,12 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
namespace
{
namespace ndarray
{
namespace reshape
{
namespace {
namespace ndarray {
namespace reshape {
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
@ -22,8 +20,8 @@ namespace reshape
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
{
template<typename SizeT>
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT* new_shape) {
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
@ -31,27 +29,19 @@ template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
{
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
SizeT dim = new_shape[axis_i];
if (dim < 0)
{
if (dim == -1)
{
if (neg1_exists)
{
if (dim < 0) {
if (dim == -1) {
if (neg1_exists) {
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
}
else
{
} else {
neg1_exists = true;
neg1_axis_i = axis_i;
}
}
else
{
} else {
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
@ -63,46 +53,33 @@ template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
}
else
{
} else {
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists)
{
if (neg1_exists) {
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0)
{
if (new_size == 0 && size == 0) {
// `x` has infinitely many solutions
can_reshape = false;
}
else if (new_size == 0 && size != 0)
{
} else if (new_size == 0 && size != 0) {
// `x` has no solutions
can_reshape = false;
}
else if (size % new_size != 0)
{
} else if (size % new_size != 0) {
// `x` has no integer solutions
can_reshape = false;
}
else
{
} else {
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
}
else
{
} else {
can_reshape = (new_size == size);
}
if (!can_reshape)
{
if (!can_reshape) {
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
@ -111,15 +88,12 @@ template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new
} // namespace ndarray
} // namespace
extern "C"
{
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
{
extern "C" {
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
{
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t* new_shape) {
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -1,8 +1,10 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/ndarray/def.hpp"
#include "irrt/slice.hpp"
/*
* Notes on `np.transpose(<array>, <axes>)`
@ -13,12 +15,9 @@
* Supporting it for now.
*/
namespace
{
namespace ndarray
{
namespace transpose
{
namespace {
namespace ndarray {
namespace transpose {
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
@ -30,10 +29,9 @@ namespace transpose
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
{
if (ndims != num_axes)
{
template<typename SizeT>
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
if (ndims != num_axes) {
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
@ -42,18 +40,15 @@ template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++)
{
for (SizeT i = 0; i < ndims; i++) {
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1)
{
if (axis == -1) {
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis])
{
if (axe_specified[axis]) {
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
@ -89,8 +84,7 @@ template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template<typename SizeT>
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
{
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray, SizeT num_axes, const SizeT* axes) {
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
@ -101,8 +95,7 @@ void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, S
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr)
{
if (axes == nullptr) {
// `np.transpose(<array>, axes=None)`
/*
@ -113,19 +106,15 @@ void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, S
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++)
{
for (SizeT axis = 0; axis < ndims; axis++) {
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
}
else
{
} else {
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++)
{
for (SizeT axis = 0; axis < ndims; axis++) {
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
@ -138,18 +127,19 @@ void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, S
} // namespace ndarray
} // namespace
extern "C"
{
extern "C" {
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
const int32_t *axes)
{
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
NDArray<int32_t>* dst_ndarray,
int32_t num_axes,
const int32_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
int64_t num_axes, const int64_t *axes)
{
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
NDArray<int64_t>* dst_ndarray,
int64_t num_axes,
const int64_t* axes) {
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -1,215 +0,0 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace
{
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T> T __nac3_int_exp_impl(T base, T exp)
{
T res = 1;
/* repeated squaring method */
do
{
if (exp & 1)
{
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
extern "C"
{
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) \
{ \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
{
if (i < 0)
{
i = len + i;
}
if (i < 0)
{
return 0;
}
else if (i > len)
{
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
{
SliceIndex diff = end - start;
if (diff > 0 && step > 0)
{
return ((diff - 1) / step) + 1;
}
else if (diff < 0 && step < 0)
{
return ((diff + 1) / step) + 1;
}
else
{
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
SliceIndex src_arr_len, const SliceIndex size)
{
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1)
{
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0)
{
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0)
{
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca)
{
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
{
/* for constant optimization */
if (size == 1)
{
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
}
else if (size == 4)
{
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
}
else if (size == 8)
{
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
}
else
{
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start)
{
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x)
{
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x)
{
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z)
{
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z))
{
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x))
{
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x))
{
return __builtin_nan("");
}
return j0(x);
}
} // extern "C"

View File

@ -1,14 +1,12 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/int_types.hpp>
#include "irrt/debug.hpp"
#include "irrt/int_types.hpp"
namespace
{
namespace range
{
template <typename T> T len(T start, T stop, T step)
{
namespace {
namespace range {
template<typename T>
T len(T start, T stop, T step) {
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
@ -23,8 +21,8 @@ template <typename T> T len(T start, T stop, T step)
/**
* @brief A Python range.
*/
template <typename T> struct Range
{
template<typename T>
struct Range {
T start;
T stop;
T step;
@ -32,10 +30,18 @@ template <typename T> struct Range
/**
* @brief Calculate the `len()` of this range.
*/
template <typename SizeT> T len()
{
template<typename SizeT>
T len() {
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C" {
using namespace range;
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
return len(start, end, step);
}
}

View File

@ -1,29 +1,24 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
#include <irrt/range.hpp>
#include "irrt/debug.hpp"
#include "irrt/exception.hpp"
#include "irrt/int_types.hpp"
#include "irrt/math_util.hpp"
#include "irrt/range.hpp"
namespace
{
namespace slice
{
namespace {
namespace slice {
/**
* @brief Resolve a possibly negative index in a list of a known length.
*
* Returns -1 if the resolved index is out of the list's bounds.
*/
template <typename T> T resolve_index_in_length(T length, T index)
{
template<typename T>
T resolve_index_in_length(T length, T index) {
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length)
{
if (0 <= resolved && resolved < length) {
return resolved;
}
else
{
} else {
return -1;
}
}
@ -34,40 +29,38 @@ template <typename T> T resolve_index_in_length(T length, T index)
* This is equivalent to `range(*slice(start, stop, step).indices(length))` in Python.
*/
template<typename T>
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
T *range_start, T *range_stop, T *range_step)
{
void indices(bool start_defined,
T start,
bool stop_defined,
T stop,
bool step_defined,
T step,
T length,
T* range_start,
T* range_stop,
T* range_step) {
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative)
{
if (step_is_negative) {
lower = -1;
upper = length - 1;
}
else
{
} else {
lower = 0;
upper = length;
}
if (start_defined)
{
if (start_defined) {
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
}
else
{
} else {
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined)
{
if (stop_defined) {
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
}
else
{
} else {
*range_stop = step_is_negative ? lower : upper;
}
}
@ -76,8 +69,8 @@ void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_d
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template <typename T> struct Slice
{
template<typename T>
struct Slice {
bool start_defined;
T start;
@ -87,32 +80,25 @@ template <typename T> struct Slice
bool step_defined;
T step;
Slice()
{
this->reset();
}
Slice() { this->reset(); }
void reset()
{
void reset() {
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start)
{
void set_start(T start) {
this->start_defined = true;
this->start = start;
}
void set_stop(T stop)
{
void set_stop(T stop) {
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step)
{
void set_step(T step) {
this->step_defined = true;
this->step = step;
}
@ -122,8 +108,8 @@ template <typename T> struct Slice
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template <typename SizeT> Range<T> indices(T length)
{
template<typename SizeT>
Range<T> indices(T length) {
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
@ -137,18 +123,16 @@ template <typename T> struct Slice
/**
* @brief Like `.indices()` but with assertions.
*/
template <typename SizeT> Range<T> indices_checked(T length)
{
template<typename SizeT>
Range<T> indices_checked(T length) {
// TODO: Switch to `SizeT length`
if (length < 0)
{
if (length < 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0)
{
if (this->step_defined && this->step == 0) {
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
@ -156,3 +140,17 @@ template <typename T> struct Slice
}
};
} // namespace
extern "C" {
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
}

View File

@ -11,17 +11,18 @@ use super::object::tuple::TupleObject;
use crate::codegen::classes::RangeValue;
use crate::codegen::expr::destructure_range;
use crate::codegen::irrt::calculate_len_for_slice_range;
use crate::codegen::macros::codegen_unreachable;
use crate::codegen::object::ndarray::{NDArrayOut, ScalarOrNDArray};
use crate::codegen::{extern_fns, irrt, llvm_intrinsics, CodeGenContext, CodeGenerator};
use crate::toplevel::helper::PrimDef;
use crate::typecheck::typedef::Type;
use crate::typecheck::typedef::TypeEnum;
use crate::typecheck::typedef::{Type, TypeEnum};
/// Shorthand for [`unreachable!()`] when a type of argument is not supported.
///
/// The generated message will contain the function name and the name of the unsupported type.
fn unsupported_type(ctx: &CodeGenContext<'_, '_>, fn_name: &str, tys: &[Type]) -> ! {
unreachable!(
codegen_unreachable!(
ctx,
"{fn_name}() not supported for '{}'",
tys.iter().map(|ty| format!("'{}'", ctx.unifier.stringify(*ty))).join(", "),
)
@ -827,7 +828,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
match fn_name {
"np_argmin" | "np_argmax" => llvm_int64.const_zero().into(),
"np_max" | "np_min" => a,
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
}
}
_ if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) => {
@ -879,7 +880,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
(ndarray.dtype, old_extremum),
(ndarray.dtype, curr_value),
),
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
let new_extremum_idx = match (old_extremum, new_extremum) {
@ -909,7 +910,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
ctx.builder.build_store(extremum, new_extremum).unwrap();
let new_extremum_idx =
Int(SizeT).believe_value(new_extremum_idx.into_int_value());
unsafe { Int(SizeT).believe_value(new_extremum_idx.into_int_value()) };
extremum_idx.store(ctx, new_extremum_idx);
Ok(())
@ -923,7 +924,7 @@ pub fn call_numpy_max_min<'ctx, G: CodeGenerator + ?Sized>(
.value
.as_basic_value_enum(),
"np_max" | "np_min" => ctx.builder.build_load(extremum, "").unwrap(),
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
}
}
@ -1648,8 +1649,9 @@ pub fn call_np_linalg_qr<'ctx, G: CodeGenerator + ?Sized>(
let x1_shape = x1.instance.get(generator, ctx, |f| f.shape);
let d0 = x1_shape.get_index_const(generator, ctx, 0);
let d1 = x1_shape.get_index_const(generator, ctx, 1);
let dk =
Int(SizeT).believe_value(llvm_intrinsics::call_int_smin(ctx, d0.value, d1.value, None));
let dk = unsafe {
Int(SizeT).believe_value(llvm_intrinsics::call_int_smin(ctx, d0.value, d1.value, None))
};
let q = NDArrayObject::alloca_dynamic_shape(generator, ctx, ctx.primitives.float, &[d0, dk]);
q.create_data(generator, ctx);
@ -1686,8 +1688,9 @@ pub fn call_np_linalg_svd<'ctx, G: CodeGenerator + ?Sized>(
let x1_shape = x1.instance.get(generator, ctx, |f| f.shape);
let d0 = x1_shape.get_index_const(generator, ctx, 0);
let d1 = x1_shape.get_index_const(generator, ctx, 1);
let dk =
Int(SizeT).believe_value(llvm_intrinsics::call_int_smin(ctx, d0.value, d1.value, None));
let dk = unsafe {
Int(SizeT).believe_value(llvm_intrinsics::call_int_smin(ctx, d0.value, d1.value, None))
};
let u = NDArrayObject::alloca_dynamic_shape(generator, ctx, ctx.primitives.float, &[d0, d0]);
u.create_data(generator, ctx);
@ -1783,8 +1786,9 @@ pub fn call_sp_linalg_lu<'ctx, G: CodeGenerator + ?Sized>(
let x1_shape = x1.instance.get(generator, ctx, |f| f.shape);
let d0 = x1_shape.get_index_const(generator, ctx, 0);
let d1 = x1_shape.get_index_const(generator, ctx, 1);
let dk =
Int(SizeT).believe_value(llvm_intrinsics::call_int_smin(ctx, d0.value, d1.value, None));
let dk = unsafe {
Int(SizeT).believe_value(llvm_intrinsics::call_int_smin(ctx, d0.value, d1.value, None))
};
let l = NDArrayObject::alloca_dynamic_shape(generator, ctx, ctx.primitives.float, &[d0, dk]);
l.create_data(generator, ctx);

View File

@ -11,6 +11,7 @@ use crate::{
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
call_int_umin, call_memcpy_generic,
},
macros::codegen_unreachable,
need_sret,
object::ndarray::{NDArrayOut, ScalarOrNDArray},
stmt::{
@ -44,12 +45,9 @@ use std::cmp::min;
use std::iter::{repeat, repeat_with};
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
use super::{
model::*,
object::{
use super::object::{
any::AnyObject,
ndarray::{indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject},
},
};
pub fn get_subst_key(
@ -120,7 +118,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
_ => codegen_unreachable!(self),
};
let def = &self.top_level.definitions.read()[obj_id.0];
let (index, value) = if let TopLevelDef::Class { fields, attributes, .. } = &*def.read() {
@ -131,7 +129,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
(attribute_index.0, Some(attribute_index.1 .2.clone()))
}
} else {
unreachable!()
codegen_unreachable!(self)
};
(index, value)
}
@ -141,7 +139,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
TypeEnum::TObj { fields, .. } => {
fields.iter().find_position(|x| *x.0 == attr).unwrap().0
}
_ => unreachable!(),
_ => codegen_unreachable!(self),
}
}
@ -196,7 +194,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
{
*params.iter().next().unwrap().1
}
_ => unreachable!("must be option type"),
_ => codegen_unreachable!(self, "must be option type"),
};
let val = self.gen_symbol_val(generator, v, ty);
let ptr = generator
@ -212,7 +210,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
{
*params.iter().next().unwrap().1
}
_ => unreachable!("must be option type"),
_ => codegen_unreachable!(self, "must be option type"),
};
let actual_ptr_type =
self.get_llvm_type(generator, ty).ptr_type(AddressSpace::default());
@ -279,7 +277,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
{
self.ctx.i64_type()
} else {
unreachable!()
codegen_unreachable!(self)
};
Some(ty.const_int(*val as u64, false).into())
}
@ -293,7 +291,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
let (types, is_vararg_ctx) = if let TypeEnum::TTuple { ty, is_vararg_ctx } = &*ty {
(ty.clone(), *is_vararg_ctx)
} else {
unreachable!()
codegen_unreachable!(self)
};
let values = zip(types, v.iter())
.map_while(|(ty, v)| self.gen_const(generator, v, ty))
@ -338,7 +336,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
None
}
_ => unreachable!(),
_ => codegen_unreachable!(self),
}
}
@ -352,7 +350,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
signed: bool,
) -> BasicValueEnum<'ctx> {
let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) else {
unreachable!()
codegen_unreachable!(self)
};
let float = self.ctx.f64_type();
match (op, signed) {
@ -427,7 +425,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
.build_right_shift(lhs, rhs, signed, "rshift")
.map(Into::into)
.unwrap(),
_ => unreachable!(),
_ => codegen_unreachable!(self),
}
}
@ -439,7 +437,7 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
}
(Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(),
// special implementation?
(Operator::MatMult, _) => unreachable!(),
(Operator::MatMult, _) => codegen_unreachable!(self),
}
}
@ -451,7 +449,8 @@ impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) else {
unreachable!(
codegen_unreachable!(
self,
"Expected (FloatValue, FloatValue), got ({}, {})",
lhs.get_type(),
rhs.get_type()
@ -695,7 +694,7 @@ pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String> {
let TopLevelDef::Class { methods, .. } = def else { unreachable!() };
let TopLevelDef::Class { methods, .. } = def else { codegen_unreachable!(ctx) };
// TODO: what about other fields that require alloca?
let fun_id = methods.iter().find(|method| method.0 == "__init__".into()).map(|method| method.2);
@ -727,7 +726,7 @@ pub fn gen_func_instance<'ctx>(
key,
) = fun
else {
unreachable!()
codegen_unreachable!(ctx)
};
if let Some(sym) = instance_to_symbol.get(&key) {
@ -759,7 +758,7 @@ pub fn gen_func_instance<'ctx>(
.collect();
let mut signature = store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { unreachable!() };
let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { codegen_unreachable!(ctx) };
if let Some(obj) = &obj {
let zelf = store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
@ -1125,7 +1124,7 @@ pub fn gen_comprehension<'ctx, G: CodeGenerator>(
ctx: &mut CodeGenContext<'ctx, '_>,
expr: &Expr<Option<Type>>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let ExprKind::ListComp { elt, generators } = &expr.node else { unreachable!() };
let ExprKind::ListComp { elt, generators } = &expr.node else { codegen_unreachable!(ctx) };
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
@ -1384,13 +1383,13 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty_immutable(ty1) {
ctx.unifier.get_representative(*params.iter().next().unwrap().1)
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let elem_ty2 =
if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty_immutable(ty2) {
ctx.unifier.get_representative(*params.iter().next().unwrap().1)
} else {
unreachable!()
codegen_unreachable!(ctx)
};
debug_assert!(ctx.unifier.unioned(elem_ty1, elem_ty2));
@ -1463,7 +1462,7 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
{
*params.iter().next().unwrap().1
} else {
unreachable!()
codegen_unreachable!(ctx)
};
(elem_ty, left_val, right_val)
@ -1473,12 +1472,12 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
{
*params.iter().next().unwrap().1
} else {
unreachable!()
codegen_unreachable!(ctx)
};
(elem_ty, right_val, left_val)
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let list_val =
ListValue::from_ptr_val(list_val.into_pointer_value(), llvm_usize, None);
@ -1621,7 +1620,7 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else {
let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap());
let TypeEnum::TObj { fields, obj_id, .. } = left_ty_enum.as_ref() else {
unreachable!("must be tobj")
codegen_unreachable!(ctx, "must be tobj")
};
let (op_name, id) = {
let normal_method_name = Binop::normal(op.base).op_info().method_name;
@ -1642,19 +1641,19 @@ pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>(
} else {
let left_enum_ty = ctx.unifier.get_ty_immutable(left_ty.unwrap());
let TypeEnum::TObj { fields, .. } = left_enum_ty.as_ref() else {
unreachable!("must be tobj")
codegen_unreachable!(ctx, "must be tobj")
};
let fn_ty = fields.get(&op_name).unwrap().0;
let fn_ty_enum = ctx.unifier.get_ty_immutable(fn_ty);
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { unreachable!() };
let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { codegen_unreachable!(ctx) };
sig.clone()
};
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() };
let TopLevelDef::Class { methods, .. } = &*obj_def else { codegen_unreachable!(ctx) };
methods.iter().find(|method| method.0 == op_name).unwrap().2
};
@ -1783,7 +1782,8 @@ pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>(
if op == ast::Unaryop::Invert {
ast::Unaryop::Not
} else {
unreachable!(
codegen_unreachable!(
ctx,
"ufunc {} not supported for ndarray[bool, N]",
op.op_info().method_name,
)
@ -1846,8 +1846,8 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
|| right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id())
{
let (Some(left_ty), left) = left else { unreachable!() };
let (Some(right_ty), right) = comparators[0] else { unreachable!() };
let (Some(left_ty), left) = left else { codegen_unreachable!(ctx) };
let (Some(right_ty), right) = comparators[0] else { codegen_unreachable!(ctx) };
let op = ops[0];
let left = AnyObject { value: left, ty: left_ty };
@ -1917,7 +1917,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => IntPredicate::EQ,
ast::Cmpop::NotEq => IntPredicate::NE,
_ if left_ty == ctx.primitives.bool => unreachable!(),
_ if left_ty == ctx.primitives.bool => codegen_unreachable!(ctx),
ast::Cmpop::Lt => {
if use_unsigned_ops {
IntPredicate::ULT
@ -1946,7 +1946,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
IntPredicate::SGE
}
}
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_compare(op, lhs, rhs, "cmp").unwrap()
@ -1963,7 +1963,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_float_compare(op, lhs, rhs, "cmp").unwrap()
} else if left_ty == ctx.primitives.str {
@ -2095,7 +2095,7 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
match (op, val) {
(Cmpop::Eq, true) | (Cmpop::NotEq, false) => llvm_i1.const_all_ones(),
(Cmpop::Eq, false) | (Cmpop::NotEq, true) => llvm_i1.const_zero(),
(_, _) => unreachable!(),
(_, _) => codegen_unreachable!(ctx),
}
};
@ -2108,14 +2108,14 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
{
*params.iter().next().unwrap().1
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let right_elem_ty = if let TypeEnum::TObj { params, .. } =
&*ctx.unifier.get_ty_immutable(right_ty)
{
*params.iter().next().unwrap().1
} else {
unreachable!()
codegen_unreachable!(ctx)
};
if !ctx.unifier.unioned(left_elem_ty, right_elem_ty) {
@ -2323,7 +2323,10 @@ pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>(
})
.map(BasicValueEnum::into_int_value)?;
Ok(ctx.builder.build_not(cmp, "").unwrap())
Ok(ctx.builder.build_not(
generator.bool_to_i1(ctx, cmp),
"",
).unwrap())
},
|_, ctx| {
let bb = ctx.builder.get_insert_block().unwrap();
@ -2472,7 +2475,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
.const_null()
.into()
}
_ => unreachable!("must be option type"),
_ => codegen_unreachable!(ctx, "must be option type"),
}
}
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
@ -2482,29 +2485,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
None => {
let resolver = ctx.resolver.clone();
if let Some(res) = resolver.get_symbol_value(*id, ctx) {
res
} else {
// Allow "raise Exception" short form
let def_id = resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), expr.location)
})?;
let def = ctx.top_level.definitions.read();
if let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() {
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!(
"Failed to resolve symbol {} (at {})",
id, expr.location
));
};
return Ok(generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into));
}
return Err(format!("Failed to resolve symbol {} (at {})", id, expr.location));
}
resolver.get_symbol_value(*id, ctx).unwrap()
}
},
ExprKind::List { elts, .. } => {
@ -2533,7 +2514,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
*params.iter().next().unwrap().1
} else {
unreachable!()
codegen_unreachable!(ctx)
};
if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty_immutable(ty) {
@ -2627,7 +2608,9 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
return generator.gen_expr(ctx, &modified_expr);
}
None => unreachable!("Function Type should not have attributes"),
None => {
codegen_unreachable!(ctx, "Function Type should not have attributes")
}
}
} else if let TypeEnum::TObj { obj_id, fields, params } = &*ctx.unifier.get_ty(c) {
if fields.is_empty() && params.is_empty() {
@ -2649,7 +2632,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
return generator.gen_expr(ctx, &modified_expr);
}
None => unreachable!(),
None => codegen_unreachable!(ctx),
}
}
}
@ -2751,7 +2734,7 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
}
(Some(a), None) => a.into(),
(None, Some(b)) => b.into(),
(None, None) => unreachable!(),
(None, None) => codegen_unreachable!(ctx),
}
}
ExprKind::BinOp { op, left, right } => {
@ -2841,7 +2824,9 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
ctx.unifier.get_call_signature(*call).unwrap()
} else {
let ty = func.custom.unwrap();
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else { unreachable!() };
let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else {
codegen_unreachable!(ctx)
};
sign.clone()
};
@ -2860,17 +2845,26 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
let Some(val) = generator.gen_expr(ctx, value)? else { return Ok(None) };
// Handle Class Method calls
// The attribute will be `DefinitionId` of the method if the call is to one of the parent methods
let func_id = attr.to_string().parse::<usize>();
let id = if let TypeEnum::TObj { obj_id, .. } =
&*ctx.unifier.get_ty(value.custom.unwrap())
{
*obj_id
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let fun_id = {
// Use the `DefinitionID` from attribute if it is available
let fun_id = if let Ok(func_id) = func_id {
DefinitionId(func_id)
} else {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() };
let TopLevelDef::Class { methods, .. } = &*obj_def else {
codegen_unreachable!(ctx)
};
methods.iter().find(|method| method.0 == *attr).unwrap().2
};
@ -2941,7 +2935,9 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
.unwrap(),
));
}
ValueEnum::Dynamic(_) => unreachable!("option must be static or ptr"),
ValueEnum::Dynamic(_) => {
codegen_unreachable!(ctx, "option must be static or ptr")
}
}
}
@ -3098,7 +3094,10 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
if let ExprKind::Constant { value: Constant::Int(v), .. } = &slice.node {
(*v).try_into().unwrap()
} else {
unreachable!("tuple subscript must be const int after type check");
codegen_unreachable!(
ctx,
"tuple subscript must be const int after type check"
);
};
match generator.gen_expr(ctx, value)? {
Some(ValueEnum::Dynamic(v)) => {
@ -3121,7 +3120,10 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
None => return Ok(None),
}
}
_ => unreachable!("should not be other subscriptable types after type check"),
_ => codegen_unreachable!(
ctx,
"should not be other subscriptable types after type check"
),
}
}
ExprKind::ListComp { .. } => {
@ -3134,42 +3136,3 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
_ => unimplemented!(),
}))
}
/// Generate LLVM IR for an [`ExprKind::Slice`]
#[allow(clippy::type_complexity)]
pub fn gen_slice<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lower: &Option<Box<Expr<Option<Type>>>>,
upper: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
) -> Result<
(
Option<Instance<'ctx, Int<Int32>>>,
Option<Instance<'ctx, Int<Int32>>>,
Option<Instance<'ctx, Int<Int32>>>,
),
String,
> {
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
Ok(match value_expr {
None => None,
Some(value_expr) => {
let value_expr = generator
.gen_expr(ctx, value_expr)?
.unwrap()
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
let value_expr = Int(Int32).check_value(generator, ctx.ctx, value_expr).unwrap();
Some(value_expr)
}
})
};
let lower = help(lower)?;
let upper = help(upper)?;
let step = help(step)?;
Ok((lower, upper, step))
}

View File

@ -2,14 +2,14 @@ use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
use super::{
classes::{ArrayLikeValue, ListValue},
model::*,
macros::codegen_unreachable,
model::{function::FnCall, *},
object::{
list::List,
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
},
CodeGenContext, CodeGenerator,
};
use function::CallFunction;
use inkwell::{
attributes::{Attribute, AttributeLoc},
context::Context,
@ -23,7 +23,7 @@ use itertools::Either;
use nac3parser::ast::Expr;
#[must_use]
pub fn load_irrt(ctx: &Context) -> Module {
pub fn load_irrt<'ctx>(ctx: &'ctx Context, symbol_resolver: &dyn SymbolResolver) -> Module<'ctx> {
let bitcode_buf = MemoryBuffer::create_from_memory_range(
include_bytes!(concat!(env!("OUT_DIR"), "/irrt.bc")),
"irrt_bitcode_buffer",
@ -39,6 +39,25 @@ pub fn load_irrt(ctx: &Context) -> Module {
let function = irrt_mod.get_function(symbol).unwrap();
function.add_attribute(AttributeLoc::Function, ctx.create_enum_attribute(inline_attr, 0));
}
// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = irrt_mod.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
irrt_mod
}
@ -56,7 +75,7 @@ pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
(64, 64, true) => "__nac3_int_exp_int64_t",
(32, 32, false) => "__nac3_int_exp_uint32_t",
(64, 64, false) => "__nac3_int_exp_uint64_t",
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
let base_type = base.get_type();
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
@ -442,7 +461,7 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
BasicTypeEnum::IntType(t) => t.size_of(),
BasicTypeEnum::PointerType(t) => t.size_of(),
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
};
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
}
@ -564,32 +583,6 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
.unwrap()
}
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
pub fn setup_irrt_exceptions<'ctx>(
ctx: &'ctx Context,
module: &Module<'ctx>,
symbol_resolver: &dyn SymbolResolver,
) {
let exn_id_type = ctx.i32_type();
let errors = &[
("EXN_INDEX_ERROR", "0:IndexError"),
("EXN_VALUE_ERROR", "0:ValueError"),
("EXN_ASSERTION_ERROR", "0:AssertionError"),
("EXN_TYPE_ERROR", "0:TypeError"),
];
for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = module.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
});
global.set_initializer(&exn_id);
}
}
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
#[must_use]
@ -620,7 +613,7 @@ pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator +
ctx,
"__nac3_ndarray_util_assert_shape_no_negative",
);
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
FnCall::builder(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
@ -636,7 +629,7 @@ pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator +
ctx,
"__nac3_ndarray_util_assert_output_shape_same",
);
CallFunction::begin(generator, ctx, &name)
FnCall::builder(generator, ctx, &name)
.arg(ndarray_ndims)
.arg(ndarray_shape)
.arg(output_ndims)
@ -650,7 +643,7 @@ pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("size")
}
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
@ -659,7 +652,7 @@ pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
}
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
@ -668,7 +661,7 @@ pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<SizeT>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("len")
}
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
@ -677,7 +670,7 @@ pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
@ -687,7 +680,7 @@ pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
index: Instance<'ctx, Int<SizeT>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
@ -698,7 +691,7 @@ pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
FnCall::builder(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
@ -708,7 +701,7 @@ pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
FnCall::builder(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
@ -718,7 +711,7 @@ pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
@ -729,16 +722,16 @@ pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
FnCall::builder(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
pub fn call_nac3_nditer_has_element<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_element");
FnCall::builder(generator, ctx, &name).arg(iter).returning_auto("has_element")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
@ -747,7 +740,7 @@ pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
FnCall::builder(generator, ctx, &name).arg(iter).returning_void();
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
@ -759,7 +752,7 @@ pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
CallFunction::begin(generator, ctx, &name)
FnCall::builder(generator, ctx, &name)
.arg(num_indices)
.arg(indices)
.arg(src_ndarray)
@ -779,7 +772,7 @@ pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerato
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
FnCall::builder(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
@ -793,7 +786,7 @@ pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Siz
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
FnCall::builder(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
@ -808,11 +801,7 @@ pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenera
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
CallFunction::begin(generator, ctx, &name)
.arg(size)
.arg(new_ndims)
.arg(new_shape)
.returning_void();
FnCall::builder(generator, ctx, &name).arg(size).arg(new_ndims).arg(new_shape).returning_void();
}
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
@ -822,7 +811,7 @@ pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
FnCall::builder(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
@ -834,7 +823,7 @@ pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
CallFunction::begin(generator, ctx, &name)
FnCall::builder(generator, ctx, &name)
.arg(num_shape_entries)
.arg(shape_entries)
.arg(dst_ndims)
@ -851,7 +840,7 @@ pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
CallFunction::begin(generator, ctx, &name)
FnCall::builder(generator, ctx, &name)
.arg(src_ndarray)
.arg(dst_ndarray)
.arg(num_axes)
@ -874,7 +863,7 @@ pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
CallFunction::begin(generator, ctx, &name)
FnCall::builder(generator, ctx, &name)
.arg(a_ndims)
.arg(a_shape)
.arg(b_ndims)

View File

@ -54,6 +54,22 @@ mod test;
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
pub use generator::{CodeGenerator, DefaultCodeGenerator};
mod macros {
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
/// its first argument to provide Python source information to indicate the codegen location
/// causing the assertion.
macro_rules! codegen_unreachable {
($ctx:expr $(,)?) => {
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
};
($ctx:expr, $($arg:tt)*) => {
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
};
}
pub(crate) use codegen_unreachable;
}
#[derive(Default)]
pub struct StaticValueStore {
pub lookup: HashMap<Vec<(usize, u64)>, usize>,
@ -493,7 +509,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
Ptr(Struct(NDArray)).llvm_type(generator, ctx).as_basic_type_enum()
}
_ => unreachable!(

View File

@ -18,7 +18,7 @@ impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,

View File

@ -11,8 +11,8 @@ use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// Trait for Rust structs identifying length values for [`Array`].
pub trait LenKind: fmt::Debug + Clone + Copy {
fn get_length(&self) -> u32;
pub trait ArrayLen: fmt::Debug + Clone + Copy {
fn length(&self) -> u32;
}
/// A statically known length.
@ -23,14 +23,14 @@ pub struct Len<const N: u32>;
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> LenKind for Len<N> {
fn get_length(&self) -> u32 {
impl<const N: u32> ArrayLen for Len<N> {
fn length(&self) -> u32 {
N
}
}
impl LenKind for AnyLen {
fn get_length(&self) -> u32 {
impl ArrayLen for AnyLen {
fn length(&self) -> u32 {
self.0
}
}
@ -46,12 +46,16 @@ pub struct Array<Len, Item> {
pub item: Item,
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.item.get_type(generator, ctx).array_type(self.len.get_length())
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.item.llvm_type(generator, ctx).array_type(self.len.length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
@ -65,11 +69,11 @@ impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.get_length() {
if ty.len() != self.len.length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.get_length()
self.len.length()
)));
}
@ -81,7 +85,7 @@ impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
}
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
impl<'ctx, Len: ArrayLen, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
@ -91,15 +95,15 @@ impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
Ptr(self.model.0.item).believe_value(ptr)
unsafe { Ptr(self.model.0.item).believe_value(ptr) }
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.get_length()),
i < u64::from(self.model.0.len.length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.get_length()
self.model.0.len.length()
);
let i = ctx.ctx.i32_type().const_int(i, false);

View File

@ -11,7 +11,7 @@ use crate::codegen::{CodeGenContext, CodeGenerator};
pub struct ModelError(pub String);
impl ModelError {
// Append a context message to the error.
/// Append a context message to the error.
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
@ -47,7 +47,7 @@ impl ModelError {
/// }
/// ```
///
/// ### Notes on converting between Inkwell and model.
/// ### Notes on converting between Inkwell and model/ge.
///
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
/// [`Model::check_value`] or [`Model::believe_value`].
@ -68,15 +68,16 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// Return the [`BasicType`] of this model.
#[must_use]
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
fn llvm_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context)
-> Self::Type;
/// Get the number of bytes of the [`BasicType`] of this model.
fn sizeof<G: CodeGenerator + ?Sized>(
fn size_of<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.get_type(generator, ctx).size_of().unwrap()
self.llvm_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
@ -89,9 +90,11 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// Create an instance from a value.
///
/// # Safety
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
unsafe fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
@ -110,7 +113,7 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
Ok(self.believe_value(value))
unsafe { Ok(self.believe_value(value)) }
}
// Allocate a value on the stack and return its pointer.
@ -119,8 +122,8 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
Ptr(*self).believe_value(p)
let p = ctx.builder.build_alloca(self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
}
// Allocate an array on the stack and return its pointer.
@ -130,8 +133,9 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
Ptr(*self).believe_value(p)
let p =
ctx.builder.build_array_alloca(self.llvm_type(generator, ctx.ctx), len, "").unwrap();
unsafe { Ptr(*self).believe_value(p) }
}
fn var_alloca<G: CodeGenerator + ?Sized>(
@ -140,9 +144,9 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
Ok(Ptr(*self).believe_value(p))
unsafe { Ok(Ptr(*self).believe_value(p)) }
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
@ -153,9 +157,9 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let ty = self.llvm_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
unsafe { Ok(Ptr(*self).believe_value(PointerValue::from(p))) }
}
/// Allocate a constant array.
@ -176,7 +180,7 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
};
}
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
let value = match self.llvm_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
@ -195,6 +199,7 @@ pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// It is guaranteed the [`BasicType`] of `value` is consistent with that of `model`.

View File

@ -63,7 +63,11 @@ impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_float_type(generator, ctx)
}

View File

@ -35,7 +35,7 @@ struct Arg<'ctx> {
/// If `my_function_name` has not been declared in `ctx.module`, once `.returning()` is called, a function
/// declaration of `my_function_name` is added to `ctx.module`, where the [`FunctionType`] is deduced from
/// the argument types and returning type.
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
pub struct FnCall<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
@ -46,9 +46,9 @@ pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> FnCall<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn builder(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
FnCall { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
@ -63,7 +63,7 @@ impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b,
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
ty: arg.model.llvm_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
@ -73,7 +73,7 @@ impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b,
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
let ret_ty = return_model.llvm_type(self.generator, self.ctx.ctx);
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work

View File

@ -100,7 +100,11 @@ impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
@ -134,9 +138,10 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
value: u64,
sign_extend: bool,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_int(value, false);
self.believe_value(value)
let value = self.llvm_type(generator, ctx).const_int(value, sign_extend);
unsafe { self.believe_value(value) }
}
pub fn const_0<G: CodeGenerator + ?Sized>(
@ -144,8 +149,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_zero();
self.believe_value(value)
let value = self.llvm_type(generator, ctx).const_zero();
unsafe { self.believe_value(value) }
}
pub fn const_1<G: CodeGenerator + ?Sized>(
@ -153,7 +158,7 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
self.const_int(generator, ctx, 1, false)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
@ -161,8 +166,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_all_ones();
self.believe_value(value)
let value = self.llvm_type(generator, ctx).const_all_ones();
unsafe { self.believe_value(value) }
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
@ -177,9 +182,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
);
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.build_int_s_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
unsafe { self.believe_value(value) }
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
@ -193,8 +198,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
ctx.builder.build_int_s_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
@ -209,9 +214,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
);
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.build_int_z_extend_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
unsafe { self.believe_value(value) }
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
@ -225,8 +230,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
ctx.builder.build_int_z_extend(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
@ -241,9 +246,9 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
);
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.build_int_truncate_or_bit_cast(value, self.llvm_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
unsafe { self.believe_value(value) }
}
pub fn truncate<G: CodeGenerator + ?Sized>(
@ -257,8 +262,8 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
ctx.builder.build_int_truncate(value, self.llvm_type(generator, ctx.ctx), "").unwrap();
unsafe { self.believe_value(value) }
}
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
@ -272,7 +277,7 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.s_extend(generator, ctx, value),
Ordering::Equal => self.believe_value(value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
@ -288,7 +293,7 @@ impl<'ctx, N: IntKind<'ctx>> Int<N> {
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.z_extend(generator, ctx, value),
Ordering::Equal => self.believe_value(value),
Ordering::Equal => unsafe { self.believe_value(value) },
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
@ -301,7 +306,7 @@ impl Int<Bool> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0)
self.const_int(generator, ctx, 0, false)
}
#[must_use]
@ -310,7 +315,7 @@ impl Int<Bool> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
self.const_int(generator, ctx, 1, false)
}
}
@ -390,19 +395,19 @@ impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
self.model.believe_value(value)
unsafe { self.model.believe_value(value) }
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
self.model.believe_value(value)
unsafe { self.model.believe_value(value) }
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
self.model.believe_value(value)
unsafe { self.model.believe_value(value) }
}
pub fn compare(
@ -412,6 +417,6 @@ impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
Int(Bool).believe_value(value)
unsafe { Int(Bool).believe_value(value) }
}
}

View File

@ -31,9 +31,13 @@ impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
self.0.llvm_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
@ -71,8 +75,8 @@ impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Item>> {
let ptr = self.get_type(generator, ctx).const_null();
self.believe_value(ptr)
let ptr = self.llvm_type(generator, ctx).const_null();
unsafe { self.believe_value(ptr) }
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
@ -87,9 +91,9 @@ impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
// ```
// return self.believe_value(ptr);
// ```
let t = self.get_type(generator, ctx.ctx);
let t = self.llvm_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
self.believe_value(ptr)
unsafe { self.believe_value(ptr) }
}
}
@ -102,7 +106,7 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
self.model.believe_value(p)
unsafe { self.model.believe_value(p) }
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
@ -110,9 +114,9 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: u64,
offset: i64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset, false);
let offset = ctx.ctx.i32_type().const_int(offset as u64, true);
self.offset(ctx, offset)
}
@ -128,7 +132,7 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
index: i64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
@ -147,7 +151,7 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
index: i64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
@ -190,13 +194,13 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
unsafe { Int(Bool).believe_value(value) }
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
unsafe { Int(Bool).believe_value(value) }
}
/// `memcpy` from another pointer.
@ -208,9 +212,9 @@ impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
num_items: IntValue<'ctx>,
) {
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
let itemsize = self.model.sizeof(generator, ctx.ctx);
let itemsize = Int(Int64).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(Int64).z_extend_or_truncate(generator, ctx, num_items);
let itemsize = self.model.size_of(generator, ctx.ctx);
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(SizeT).z_extend_or_truncate(generator, ctx, num_items);
let totalsize = itemsize.mul(ctx, num_items);
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false

View File

@ -13,16 +13,16 @@ use super::*;
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Out<M>;
type Output<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Output<M> {
self.add(name, M::default())
}
}
@ -31,7 +31,7 @@ pub trait FieldTraversal<'ctx> {
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u64,
pub gep_index: u32,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
@ -41,16 +41,16 @@ pub struct GepField<M> {
/// A traversal to calculate the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u64,
gep_index_counter: u32,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Out<M> = GepField<M>;
type Output<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Out { gep_index, name, model }
Self::Output { gep_index, name, model }
}
}
@ -65,10 +65,10 @@ struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Out<M> = (); // Checking types return nothing.
type Output<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Output<M> {
let t = model.llvm_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
@ -89,9 +89,9 @@ struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Out<M> = (); // Checking types return nothing.
type Output<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Output<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
@ -100,7 +100,8 @@ impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
self.errors
.push(err.under_context(format!("field #{gep_index} '{name}'").as_str()));
}
} // Otherwise, it will be caught by Struct's `check_type`.
}
// Otherwise, it will be caught by Struct's `check_type`.
}
}
@ -192,13 +193,13 @@ pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
/// Traverse through all fields of this [`StructKind`].
///
/// Only used internally in this module for implementing other components.
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
///
/// Only used internally in this module for implementing other components.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
self.iter_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
@ -208,7 +209,7 @@ pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.traverse_fields(&mut traversal);
self.iter_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
@ -242,7 +243,11 @@ impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
fn llvm_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
@ -265,7 +270,7 @@ impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
errors: Vec::new(),
scrutinee: ty,
};
self.0.traverse_fields(&mut traversal);
self.0.iter_fields(&mut traversal);
// Check the number of fields.
let exp_num_fields = traversal.gep_index_counter;
@ -298,7 +303,7 @@ impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
let val = self.value.get_field_at_index(field.gep_index).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
@ -321,13 +326,13 @@ impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
&[llvm_i32.const_zero(), llvm_i32.const_int(u64::from(field.gep_index), false)],
field.name,
)
.unwrap()
};
Ptr(field.model).believe_value(ptr)
unsafe { Ptr(field.model).believe_value(ptr) }
}
/// Convenience function equivalent to `.gep(...).load(...)`.

View File

@ -34,7 +34,7 @@ where
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = int_model.believe_value(i);
let i = unsafe { int_model.believe_value(i) };
body(g, ctx, hooks, i)
},
step.value,

View File

@ -1,5 +1,6 @@
use crate::{
codegen::{
macros::codegen_unreachable,
model::*,
object::{
any::AnyObject,
@ -334,7 +335,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
},
|generator, ctx, (a_iter, _b_iter)| {
// Only a_iter drives the condition, b_iter should have the same status.
Ok(a_iter.has_next(generator, ctx).value)
Ok(a_iter.has_element(generator, ctx).value)
},
|generator, ctx, _hooks, (a_iter, b_iter)| {
let a_scalar = a_iter.get_scalar(generator, ctx).value;
@ -378,7 +379,8 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
}
_ => unreachable!(
_ => codegen_unreachable!(
ctx,
"{FN_NAME}() not supported for '{}'",
format!("'{}'", ctx.unifier.stringify(x1_ty))
),

View File

@ -8,9 +8,9 @@ use super::any::AnyObject;
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Out<Ptr<Item>>,
pub items: F::Output<Ptr<Item>>,
/// Number of items in the array
pub len: F::Out<Int<SizeT>>,
pub len: F::Output<Int<SizeT>>,
}
/// A list in NAC3.
@ -23,7 +23,7 @@ pub struct List<Item> {
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),

View File

@ -40,7 +40,7 @@ impl<'ctx> NDArrayObject<'ctx> {
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int, false);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, shape,

View File

@ -10,8 +10,8 @@ use super::NDArrayObject;
/// Fields of [`ShapeEntry`]
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
}
/// An IRRT structure used in broadcasting.
@ -21,7 +21,7 @@ pub struct ShapeEntry;
impl<'ctx> StructKind<'ctx> for ShapeEntry {
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
}
}
@ -73,19 +73,23 @@ fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
let num_shape_entries = Int(SizeT).const_int(
generator,
ctx.ctx,
u64::try_from(in_shape_entries.len()).unwrap(),
false,
);
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
let pshape_entry = shape_entries.offset_const(ctx, i64::try_from(i).unwrap());
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims, false);
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
pshape_entry.set(ctx, |f| f.shape, *in_shape);
}
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims, false);
call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
@ -109,7 +113,7 @@ impl<'ctx> NDArrayObject<'ctx> {
// Infer the broadcast output ndims.
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int, false);
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
let shape_entries = ndarrays

View File

@ -7,9 +7,9 @@ use super::NDArrayObject;
/// Fields of [`ContiguousNDArray`]
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub data: F::Out<Ptr<Item>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub data: F::Output<Ptr<Item>>,
}
/// An ndarray without strides and non-opaque `data` field in NAC3.
@ -22,7 +22,7 @@ pub struct ContiguousNDArray<M> {
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),

View File

@ -76,7 +76,7 @@ impl<'ctx> NDArrayObject<'ctx> {
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);

View File

@ -12,8 +12,8 @@ pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
pub data: F::Out<Ptr<Int<Byte>>>,
pub type_: F::Output<Int<NDIndexType>>,
pub data: F::Output<Ptr<Int<Byte>>>,
}
/// An IRRT representation of an ndarray subscript index.
@ -23,7 +23,7 @@ pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
@ -49,7 +49,7 @@ impl<'ctx> RustNDIndex<'ctx> {
}
}
/// Write the contents to an LLVM [`NDIndex`].
/// Serialize this [`RustNDIndex`] by writing it into an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
@ -59,7 +59,7 @@ impl<'ctx> RustNDIndex<'ctx> {
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
ctx,
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id(), false),
);
// Set `dst_ndindex_ptr->data`
@ -84,7 +84,7 @@ impl<'ctx> RustNDIndex<'ctx> {
}
}
/// Allocate an array of `NDIndex`es on the stack and return the array pointer.
/// Serialize a list of `RustNDIndex` as a newly allocated LLVM array of `NDIndex`.
pub fn make_ndindices<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
@ -92,10 +92,14 @@ impl<'ctx> RustNDIndex<'ctx> {
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
let ndindex_model = Struct(NDIndex);
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
// Allocate the LLVM ndindices.
let num_ndindices =
Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64, false);
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
// Initialize all of them.
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = ndindices.offset_const(ctx, i as u64);
let pndindex = ndindices.offset_const(ctx, i64::try_from(i).unwrap());
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
@ -155,10 +159,7 @@ pub mod util {
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{
expr::gen_slice, model::*, object::utils::slice::RustSlice, CodeGenContext,
CodeGenerator,
},
codegen::{model::*, object::utils::slice::util::gen_slice, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
@ -206,8 +207,8 @@ pub mod util {
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(RustSlice { int_kind: Int32, start: lower, stop: upper, step })
let slice = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(slice)
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(

View File

@ -76,14 +76,13 @@ impl<'ctx> NDArrayObject<'ctx> {
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_next()`.
// `in_nditers`' `has_next()`s should return the same value.
Ok(out_nditer.has_next(generator, ctx).value)
// We can simply use `out_nditer`'s `has_element()`.
// `in_nditers`' `has_element()`s should return the same value.
Ok(out_nditer.has_element(generator, ctx).value)
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars = in_nditers
.iter()
.map(|nditer| nditer.get_scalar(generator, ctx).value)

View File

@ -28,10 +28,7 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int, false);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
@ -71,11 +68,11 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
let len = lhs.instance.get(generator, ctx, |f| f.shape).get_index_const(
generator,
ctx,
ndims_int - 1,
i64::try_from(ndims_int - 1).unwrap(),
);
let at_row = ndims_int - 2;
let at_col = ndims_int - 1;
let at_row = i64::try_from(ndims_int - 2).unwrap();
let at_col = i64::try_from(ndims_int - 1).unwrap();
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
@ -89,6 +86,9 @@ fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
let i = indices.get_index_const(generator, ctx, at_row);
let j = indices.get_index_const(generator, ctx, at_col);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0, false);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1, false);
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
indices.set_index_const(ctx, at_row, i);

View File

@ -39,11 +39,11 @@ use super::{any::AnyObject, tuple::TupleObject};
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Out<Ptr<Int<Byte>>>,
pub itemsize: F::Out<Int<SizeT>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
pub data: F::Output<Ptr<Int<Byte>>>,
pub itemsize: F::Output<Int<SizeT>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
@ -55,7 +55,7 @@ pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
@ -105,7 +105,7 @@ impl<'ctx> NDArrayObject<'ctx> {
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims)
Int(SizeT).const_int(generator, ctx, self.ndims, false)
}
/// Get the typechecker ndarray type of this [`NDArrayObject`].
@ -142,7 +142,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims, false);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
@ -168,8 +168,8 @@ impl<'ctx> NDArrayObject<'ctx> {
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim, false);
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, dim);
}
ndarray
@ -189,7 +189,7 @@ impl<'ctx> NDArrayObject<'ctx> {
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
dst_shape.offset_const(ctx, i64::try_from(i).unwrap()).store(ctx, *dim);
}
ndarray
@ -438,6 +438,8 @@ impl<'ctx> NDArrayObject<'ctx> {
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
// TODO: It is possible to optimize this by exploiting contiguous strides with memset.
// Probably best to implement in IRRT.
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
@ -462,7 +464,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let dim = self
.instance
.get(generator, ctx, |f| f.shape)
.get_index_const(generator, ctx, i)
.get_index_const(generator, ctx, i64::try_from(i).unwrap())
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
@ -490,7 +492,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let dim = self
.instance
.get(generator, ctx, |f| f.strides)
.get_index_const(generator, ctx, i)
.get_index_const(generator, ctx, i64::try_from(i).unwrap())
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
@ -530,7 +532,7 @@ impl<'ctx> NDArrayObject<'ctx> {
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims, false);
let output_shape = out_shape;
call_nac3_ndarray_util_assert_output_shape_same(

View File

@ -1,7 +1,7 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
irrt::{call_nac3_nditer_has_element, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
@ -12,15 +12,15 @@ use super::NDArrayObject;
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
pub ndims: F::Output<Int<SizeT>>,
pub shape: F::Output<Ptr<Int<SizeT>>>,
pub strides: F::Output<Ptr<Int<SizeT>>>,
pub indices: F::Out<Ptr<Int<SizeT>>>,
pub nth: F::Out<Int<SizeT>>,
pub element: F::Out<Ptr<Int<Byte>>>,
pub indices: F::Output<Ptr<Int<SizeT>>>,
pub nth: F::Output<Int<SizeT>>,
pub element: F::Output<Ptr<Int<Byte>>>,
pub size: F::Out<Int<SizeT>>,
pub size: F::Output<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
@ -30,7 +30,7 @@ pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
@ -72,20 +72,22 @@ impl<'ctx> NDIterHandle<'ctx> {
NDIterHandle { ndarray, instance: nditer, indices }
}
/// Is there a next element?
/// Is the current iteration valid?
///
/// If true, then `element`, `indices` and `nth` contain details about the current element.
///
/// If `ndarray` is unsized, this returns true only for the first iteration.
/// If `ndarray` is 0-sized, this always returns false.
#[must_use]
pub fn has_next<G: CodeGenerator + ?Sized>(
pub fn has_element<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_next(generator, ctx, self.instance)
call_nac3_nditer_has_element(generator, ctx, self.instance)
}
/// Go to the next element. If `has_next()` is false, then this has undefined behavior.
/// Go to the next element. If `has_element()` is false, then this has undefined behavior.
///
/// If `ndarray` is unsized, this can only be called once.
/// If `ndarray` is 0-sized, this can never be called.
@ -166,7 +168,7 @@ impl<'ctx> NDArrayObject<'ctx> {
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|generator, ctx, nditer| Ok(nditer.has_element(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);

View File

@ -77,7 +77,7 @@ pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i as u64, int);
result.set_index_const(ctx, i64::try_from(i).unwrap(), int);
}
(len, result)

View File

@ -81,7 +81,7 @@ impl<'ctx> TupleObject<'ctx> {
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64, false)
}
/// Get the `i`-th (0-based) object in this tuple.

View File

@ -3,12 +3,12 @@ use crate::codegen::{model::*, CodeGenContext, CodeGenerator};
/// Fields of [`Slice`]
#[derive(Debug, Clone)]
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
pub start_defined: F::Out<Int<Bool>>,
pub start: F::Out<Int<N>>,
pub stop_defined: F::Out<Int<Bool>>,
pub stop: F::Out<Int<N>>,
pub step_defined: F::Out<Int<Bool>>,
pub step: F::Out<Int<N>>,
pub start_defined: F::Output<Int<Bool>>,
pub start: F::Output<Int<N>>,
pub stop_defined: F::Output<Int<Bool>>,
pub stop: F::Output<Int<N>>,
pub step_defined: F::Output<Int<Bool>>,
pub step: F::Output<Int<N>>,
}
/// An IRRT representation of an (unresolved) slice.
@ -18,7 +18,7 @@ pub struct Slice<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
fn iter_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
start_defined: traversal.add_auto("start_defined"),
start: traversal.add("start", Int(self.0)),

View File

@ -1,7 +1,9 @@
use super::{
super::symbol_resolver::ValueEnum,
expr::destructure_range,
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::{destructure_range, gen_binop_expr},
gen_in_range_check,
irrt::{handle_slice_indices, list_slice_assignment},
macros::codegen_unreachable,
object::{
any::AnyObject,
ndarray::{
@ -11,11 +13,7 @@ use super::{
CodeGenContext, CodeGenerator,
};
use crate::{
codegen::{
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
expr::gen_binop_expr,
gen_in_range_check,
},
symbol_resolver::ValueEnum,
toplevel::{DefinitionId, TopLevelDef},
typecheck::{
magic_methods::Binop,
@ -127,7 +125,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
return Ok(None);
};
let BasicValueEnum::PointerValue(ptr) = val else {
unreachable!();
codegen_unreachable!(ctx);
};
unsafe {
ctx.builder.build_in_bounds_gep(
@ -141,7 +139,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
}
.unwrap()
}
_ => unreachable!(),
_ => codegen_unreachable!(ctx),
}))
}
@ -182,6 +180,14 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
}
}
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
// Perform i1 <-> i8 conversion as needed
let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) {
generator.bool_to_i8(ctx, val.into_int_value()).into()
} else {
val
};
ctx.builder.build_store(ptr, val).unwrap();
}
};
@ -199,12 +205,12 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Deconstruct the tuple `value`
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
else {
unreachable!()
codegen_unreachable!(ctx)
};
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
unreachable!();
codegen_unreachable!(ctx);
};
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
@ -264,7 +270,7 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
// Now assign with that sub-tuple to the starred target.
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
} else {
unreachable!() // The typechecker ensures this
codegen_unreachable!(ctx) // The typechecker ensures this
}
// Handle assignment after the starred target
@ -312,7 +318,9 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
if let ExprKind::Slice { .. } = &key.node {
// Handle assigning to a slice
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
let ExprKind::Slice { lower, upper, step } = &key.node else {
codegen_unreachable!(ctx)
};
let Some((start, end, step)) = handle_slice_indices(
lower,
upper,
@ -462,7 +470,9 @@ pub fn gen_for<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else {
codegen_unreachable!(ctx)
};
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -504,7 +514,7 @@ pub fn gen_for<G: CodeGenerator>(
let Some(target_i) =
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
else {
unreachable!()
codegen_unreachable!(ctx)
};
let (start, stop, step) = destructure_range(ctx, iter_val);
@ -947,7 +957,7 @@ pub fn gen_while<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -977,7 +987,7 @@ pub fn gen_while<G: CodeGenerator>(
return Ok(());
};
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) };
ctx.builder
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
@ -1125,7 +1135,7 @@ pub fn gen_if<G: CodeGenerator>(
ctx: &mut CodeGenContext<'_, '_>,
stmt: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
// var_assignment static values may be changed in another branch
// if so, remove the static value as it may not be correct in this branch
@ -1248,11 +1258,11 @@ pub fn exn_constructor<'ctx>(
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
obj_id.0
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let defs = ctx.top_level.definitions.read();
let def = defs[zelf_id].read();
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) };
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
unsafe {
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
@ -1360,7 +1370,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
target: &Stmt<Option<Type>>,
) -> Result<(), String> {
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
unreachable!()
codegen_unreachable!(ctx)
};
// if we need to generate anything related to exception, we must have personality defined
@ -1437,7 +1447,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
*obj_id
} else {
unreachable!()
codegen_unreachable!(ctx)
};
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
let exn_id = ctx.resolver.get_string_id(&exception_name);
@ -1709,6 +1719,23 @@ pub fn gen_return<G: CodeGenerator>(
} else {
None
};
// Remap boolean return type into i1
let value = value.map(|ret_val| {
// The "return type" of a sret function is in the first parameter
let expected_ty = if ctx.need_sret {
func.get_type().get_param_types()[0]
} else {
func.get_type().get_return_type().unwrap()
};
if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) {
generator.bool_to_i1(ctx, ret_val.into_int_value()).into()
} else {
ret_val
}
});
if let Some(return_target) = ctx.return_target {
if let Some(value) = value {
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
@ -1719,25 +1746,6 @@ pub fn gen_return<G: CodeGenerator>(
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
ctx.builder.build_return(None).unwrap();
} else {
// Remap boolean return type into i1
let value = value.map(|v| {
let expected_ty = func.get_type().get_return_type().unwrap();
let ret_val = v.as_basic_value_enum();
if expected_ty.is_int_type() && ret_val.is_int_value() {
let ret_type = expected_ty.into_int_type();
let ret_val = ret_val.into_int_value();
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
generator.bool_to_i1(ctx, ret_val)
} else {
ret_val
}
.into()
} else {
ret_val
}
});
let value = value.as_ref().map(|v| v as &dyn BasicValue);
ctx.builder.build_return(value).unwrap();
}
@ -1806,7 +1814,30 @@ pub fn gen_stmt<G: CodeGenerator>(
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
StmtKind::Raise { exc, .. } => {
if let Some(exc) = exc {
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
let exn = if let ExprKind::Name { id, .. } = &exc.node {
// Handle "raise Exception" short form
let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| {
format!("{} (at {})", e.iter().next().unwrap(), exc.location)
})?;
let def = ctx.top_level.definitions.read();
let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
let TypeEnum::TFunc(signature) =
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
else {
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
};
generator
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
.map(Into::into)
} else {
generator.gen_expr(ctx, exc)?
};
let exc = if let Some(v) = exn {
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
} else {
return Ok(());

View File

@ -23,7 +23,7 @@ impl Default for ComposerConfig {
}
}
type DefAst = (Arc<RwLock<TopLevelDef>>, Option<Stmt<()>>);
pub type DefAst = (Arc<RwLock<TopLevelDef>>, Option<Stmt<()>>);
pub struct TopLevelComposer {
// list of top level definitions, same as top level context
pub definition_ast_list: Vec<DefAst>,
@ -1822,7 +1822,12 @@ impl TopLevelComposer {
if *name != init_str_id {
unreachable!("must be init function here")
}
let all_inited = Self::get_all_assigned_field(body.as_slice())?;
let all_inited = Self::get_all_assigned_field(
object_id.0,
definition_ast_list,
body.as_slice(),
)?;
for (f, _, _) in fields {
if !all_inited.contains(f) {
return Err(HashSet::from([

View File

@ -3,6 +3,7 @@ use std::convert::TryInto;
use crate::symbol_resolver::SymbolValue;
use crate::toplevel::numpy::unpack_ndarray_var_tys;
use crate::typecheck::typedef::{into_var_map, iter_type_vars, Mapping, TypeVarId, VarMap};
use ast::ExprKind;
use nac3parser::ast::{Constant, Location};
use strum::IntoEnumIterator;
use strum_macros::EnumIter;
@ -749,7 +750,16 @@ impl TopLevelComposer {
)
}
pub fn get_all_assigned_field(stmts: &[Stmt<()>]) -> Result<HashSet<StrRef>, HashSet<String>> {
/// This function returns the fields that have been initialized in the `__init__` function of a class
/// The function takes as input:
/// * `class_id`: The `object_id` of the class whose function is being evaluated (check `TopLevelDef::Class`)
/// * `definition_ast_list`: A list of ast definitions and statements defined in `TopLevelComposer`
/// * `stmts`: The body of function being parsed. Each statment is analyzed to check varaible initialization statements
pub fn get_all_assigned_field(
class_id: usize,
definition_ast_list: &Vec<DefAst>,
stmts: &[Stmt<()>],
) -> Result<HashSet<StrRef>, HashSet<String>> {
let mut result = HashSet::new();
for s in stmts {
match &s.node {
@ -785,30 +795,138 @@ impl TopLevelComposer {
// TODO: do not check for For and While?
ast::StmtKind::For { body, orelse, .. }
| ast::StmtKind::While { body, orelse, .. } => {
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(orelse.as_slice())?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?);
}
ast::StmtKind::If { body, orelse, .. } => {
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
}
ast::StmtKind::Try { body, orelse, finalbody, .. } => {
let inited_for_sure = Self::get_all_assigned_field(body.as_slice())?
.intersection(&Self::get_all_assigned_field(orelse.as_slice())?)
let inited_for_sure = Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?
.intersection(&Self::get_all_assigned_field(
class_id,
definition_ast_list,
orelse.as_slice(),
)?)
.copied()
.collect::<HashSet<_>>();
result.extend(inited_for_sure);
result.extend(Self::get_all_assigned_field(finalbody.as_slice())?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
finalbody.as_slice(),
)?);
}
ast::StmtKind::With { body, .. } => {
result.extend(Self::get_all_assigned_field(body.as_slice())?);
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
body.as_slice(),
)?);
}
// Variables Initialized in function calls
ast::StmtKind::Expr { value, .. } => {
let ExprKind::Call { func, .. } = &value.node else {
continue;
};
let ExprKind::Attribute { value, attr, .. } = &func.node else {
continue;
};
let ExprKind::Name { id, .. } = &value.node else {
continue;
};
// Need to consider the two cases:
// Case 1) Call to class function i.e. id = `self`
// Case 2) Call to class ancestor function i.e. id = ancestor_name
// We leave checking whether function in case 2 belonged to class ancestor or not to type checker
//
// According to current handling of `self`, function definition are fixed and do not change regardless
// of which object is passed as `self` i.e. virtual polymorphism is not supported
// Therefore, we change class id for case 2 to reflect behavior of our compiler
let class_name = if *id == "self".into() {
let ast::StmtKind::ClassDef { name, .. } =
&definition_ast_list[class_id].1.as_ref().unwrap().node
else {
unreachable!()
};
name
} else {
id
};
let parent_method = definition_ast_list.iter().find_map(|def| {
let (
class_def,
Some(ast::Located {
node: ast::StmtKind::ClassDef { name, body, .. },
..
}),
) = &def
else {
return None;
};
let TopLevelDef::Class { object_id: class_id, .. } = &*class_def.read()
else {
unreachable!()
};
if name == class_name {
body.iter().find_map(|m| {
let ast::StmtKind::FunctionDef { name, body, .. } = &m.node else {
return None;
};
if *name == *attr {
return Some((body.clone(), class_id.0));
}
None
})
} else {
None
}
});
// If method body is none then method does not exist
if let Some((method_body, class_id)) = parent_method {
result.extend(Self::get_all_assigned_field(
class_id,
definition_ast_list,
method_body.as_slice(),
)?);
} else {
return Err(HashSet::from([format!(
"{}.{} not found in class {class_name} at {}",
*id, *attr, value.location
)]));
}
}
ast::StmtKind::Pass { .. }
| ast::StmtKind::Assert { .. }
| ast::StmtKind::Expr { .. } => {}
| ast::StmtKind::AnnAssign { .. } => {}
_ => {
unimplemented!()

View File

@ -511,6 +511,23 @@ pub fn typeof_binop(
}
Operator::MatMult => {
// NOTE: NumPy matmul's LHS and RHS must both be ndarrays. Scalars are not allowed.
match (&*unifier.get_ty(lhs), &*unifier.get_ty(rhs)) {
(
TypeEnum::TObj { obj_id: lhs_obj_id, .. },
TypeEnum::TObj { obj_id: rhs_obj_id, .. },
) if *lhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap()
&& *rhs_obj_id == primitives.ndarray.obj_id(unifier).unwrap() =>
{
// LHS and RHS have valid types
}
_ => {
let lhs_str = unifier.stringify(lhs);
let rhs_str = unifier.stringify(rhs);
return Err(format!("ndarray.__matmul__ only accepts ndarray operands, but left operand has type {lhs_str}, and right operand has type {rhs_str}"));
}
}
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
@ -527,6 +544,8 @@ pub fn typeof_binop(
));
}
// Deduce the ndims of the resulting ndarray.
// If this is 0 (an unsized ndarray), matmul returns a scalar just like NumPy.
let result_ndims = match (lhs_ndims, rhs_ndims) {
(0, _) | (_, 0) => {
return Err(

View File

@ -12,6 +12,7 @@ use super::{
RecordField, RecordKey, Type, TypeEnum, TypeVar, Unifier, VarMap,
},
};
use crate::toplevel::type_annotation::TypeAnnotation;
use crate::{
symbol_resolver::{SymbolResolver, SymbolValue},
toplevel::{
@ -102,6 +103,7 @@ pub struct Inferencer<'a> {
}
type InferenceError = HashSet<String>;
type OverrideResult = Result<Option<ast::Expr<Option<Type>>>, InferenceError>;
struct NaiveFolder();
impl Fold<()> for NaiveFolder {
@ -1711,6 +1713,86 @@ impl<'a> Inferencer<'a> {
Ok(None)
}
/// Checks whether a class method is calling parent function
/// Returns [`None`] if its not a call to parent method, otherwise
/// returns a new `func` with class name replaced by `self` and method resolved to its `DefinitionID`
///
/// e.g. A.f1(self, ...) returns Some(self.{DefintionID(f1)})
fn check_overriding(&mut self, func: &ast::Expr<()>, args: &[ast::Expr<()>]) -> OverrideResult {
// `self` must be first argument for call to parent method
if let Some(Located { node: ExprKind::Name { id, .. }, .. }) = &args.first() {
if *id != "self".into() {
return Ok(None);
}
} else {
return Ok(None);
}
let Located {
node: ExprKind::Attribute { value, attr: method_name, ctx }, location, ..
} = func
else {
return Ok(None);
};
let ExprKind::Name { id: class_name, ctx: class_ctx } = &value.node else {
return Ok(None);
};
let zelf = &self.fold_expr(args[0].clone())?;
// Check whether the method belongs to class ancestors
let def_id = self.unifier.get_ty(zelf.custom.unwrap());
let TypeEnum::TObj { obj_id, .. } = def_id.as_ref() else { unreachable!() };
let defs = self.top_level.definitions.read();
let res = {
if let TopLevelDef::Class { ancestors, .. } = &*defs[obj_id.0].read() {
let res = ancestors.iter().find_map(|f| {
let TypeAnnotation::CustomClass { id, .. } = f else { unreachable!() };
let TopLevelDef::Class { name, methods, .. } = &*defs[id.0].read() else {
unreachable!()
};
// Class names are stored as `__module__.class`
let name = name.to_string();
let (_, name) = name.rsplit_once('.').unwrap();
if name == class_name.to_string() {
return methods.iter().find_map(|f| {
if f.0 == *method_name {
return Some(*f);
}
None
});
}
None
});
res
} else {
None
}
};
match res {
Some(r) => {
let mut new_func = func.clone();
let mut new_value = value.clone();
new_value.node = ExprKind::Name { id: "self".into(), ctx: *class_ctx };
new_func.node =
ExprKind::Attribute { value: new_value.clone(), attr: *method_name, ctx: *ctx };
let mut new_func = self.fold_expr(new_func)?;
let ExprKind::Attribute { value, .. } = new_func.node else { unreachable!() };
new_func.node =
ExprKind::Attribute { value, attr: r.2 .0.to_string().into(), ctx: *ctx };
new_func.custom = Some(r.1);
Ok(Some(new_func))
}
None => report_error(
format!("Ancestor method [{class_name}.{method_name}] should be defined with same decorator as its overridden version").as_str(),
*location,
),
}
}
fn fold_call(
&mut self,
location: Location,
@ -1724,8 +1806,20 @@ impl<'a> Inferencer<'a> {
return Ok(spec_call_func);
}
let func = Box::new(self.fold_expr(func)?);
let args = args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
// Check for call to parent method
let override_res = self.check_overriding(&func, &args)?;
let is_override = override_res.is_some();
let func = if is_override { override_res.unwrap() } else { self.fold_expr(func)? };
let func = Box::new(func);
let mut args =
args.into_iter().map(|v| self.fold_expr(v)).collect::<Result<Vec<_>, _>>()?;
// TODO: Handle passing of self to functions to allow runtime lookup of functions to be called
// Currently removing `self` and using compile time function definitions
if is_override {
args.remove(0);
}
let keywords = keywords
.into_iter()
.map(|v| fold::fold_keyword(self, v))

View File

@ -120,7 +120,8 @@ struct Exception {
uint32_t __nac3_raise(struct Exception* e) {
printf("__nac3_raise called. Exception details:\n");
printf(" ID: %" PRIu32 "\n", e->id);
printf(" Location: %*s:%"PRIu32":%"PRIu32"\n" , (int) e->file.len, (const char*) e->file.data, e->line, e->column);
printf(" Location: %*s:%" PRIu32 ":%" PRIu32 "\n", (int)e->file.len, (const char*)e->file.data, e->line,
e->column);
printf(" Function: %*s\n", (int)e->function.len, (const char*)e->function.data);
printf(" Message: \"%*s\"\n", (int)e->message.len, (const char*)e->message.data);
printf(" Params: {0}=%" PRId64 ", {1}=%" PRId64 ", {2}=%" PRId64 "\n", e->param[0], e->param[1], e->param[2]);

View File

@ -9,6 +9,7 @@ def output_bool(x: bool):
def example1():
x, *ys, z = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(len(ys))
output_int32(ys[0])
output_int32(ys[1])
output_int32(ys[2])
@ -18,12 +19,14 @@ def example2():
x, y, *zs = (1, 2, 3, 4, 5)
output_int32(x)
output_int32(y)
output_int32(len(zs))
output_int32(zs[0])
output_int32(zs[1])
output_int32(zs[2])
def example3():
*xs, y, z = (1, 2, 3, 4, 5)
output_int32(len(xs))
output_int32(xs[0])
output_int32(xs[1])
output_int32(xs[2])
@ -31,6 +34,12 @@ def example3():
output_int32(z)
def example4():
*xs, y, z = (4, 5)
output_int32(len(xs))
output_int32(y)
output_int32(z)
def example5():
# Example from: https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
x = [0, 1]
i = 0
@ -44,7 +53,7 @@ class A:
def __init__(self):
self.value = 1000
def example5():
def example6():
ws = [88, 7, 8]
a = A()
x, [y, *ys, a.value], ws[0], (ws[0],) = 1, (2, False, 4, 5), 99, (6,)
@ -63,4 +72,5 @@ def run() -> int32:
example3()
example4()
example5()
example6()
return 0

View File

@ -10,23 +10,58 @@ class A:
def __init__(self, a: int32):
self.a = a
def f1(self):
self.f2()
def f2(self):
def output_all_fields(self):
output_int32(self.a)
def set_a(self, a: int32):
self.a = a
class B(A):
b: int32
def __init__(self, b: int32):
self.a = b + 1
A.__init__(self, b + 1)
self.set_b(b)
def output_parent_fields(self):
A.output_all_fields(self)
def output_all_fields(self):
A.output_all_fields(self)
output_int32(self.b)
def set_b(self, b: int32):
self.b = b
class C(B):
c: int32
def __init__(self, c: int32):
B.__init__(self, c + 1)
self.c = c
def output_parent_fields(self):
B.output_all_fields(self)
def output_all_fields(self):
B.output_all_fields(self)
output_int32(self.c)
def set_c(self, c: int32):
self.c = c
def run() -> int32:
aaa = A(5)
bbb = B(2)
aaa.f1()
bbb.f1()
ccc = C(10)
ccc.output_all_fields()
ccc.set_a(1)
ccc.set_b(2)
ccc.set_c(3)
ccc.output_all_fields()
bbb = B(10)
bbb.set_a(9)
bbb.set_b(8)
bbb.output_all_fields()
ccc.output_all_fields()
return 0

View File

@ -15,7 +15,6 @@ use std::{collections::HashMap, sync::Arc};
pub struct ResolverInternal {
pub id_to_type: Mutex<HashMap<StrRef, Type>>,
pub id_to_def: Mutex<HashMap<StrRef, DefinitionId>>,
pub class_names: Mutex<HashMap<StrRef, Type>>,
pub module_globals: Mutex<HashMap<StrRef, SymbolValue>>,
pub str_store: Mutex<HashMap<String, i32>>,
}

View File

@ -14,7 +14,6 @@ use inkwell::{
memory_buffer::MemoryBuffer, passes::PassBuilderOptions, support::is_multithreaded, targets::*,
OptimizationLevel,
};
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::{
codegen::{
concrete_type::ConcreteTypeStore, irrt::load_irrt, CodeGenLLVMOptions,
@ -307,7 +306,6 @@ fn main() {
let internal_resolver: Arc<ResolverInternal> = ResolverInternal {
id_to_type: builtins_ty.into(),
id_to_def: builtins_def.into(),
class_names: Mutex::default(),
module_globals: Mutex::default(),
str_store: Mutex::default(),
}
@ -318,8 +316,7 @@ fn main() {
let context = inkwell::context::Context::create();
// Process IRRT
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let irrt = load_irrt(&context, resolver.as_ref());
if emit_llvm {
irrt.write_bitcode_to_path(Path::new("irrt.bc"));
}