Compare commits

...

10 Commits

17 changed files with 8522 additions and 3245 deletions

1
Cargo.lock generated
View File

@ -456,7 +456,6 @@ source = "git+https://github.com/smoltcp-rs/smoltcp.git#bdfa44270e9c59b3095b555c
dependencies = [
"bitflags",
"byteorder",
"log",
"managed",
]

View File

@ -11,9 +11,8 @@ cortex-m = "0.6.2"
cortex-m-rt = "0.6.12"
embedded-hal = "0.2.4"
stm32h7xx-hal = {version = "0.7.1", features = [ "stm32h743v", "rt", "unproven", "ethernet", "phy_lan8742a" ] }
smoltcp = { version = "0.6.0", default-features = false, features = [ "ethernet", "proto-ipv4", "proto-ipv6", "socket-tcp", "log" ] }
smoltcp = { version = "0.6.0", default-features = false, features = [ "ethernet", "proto-ipv4", "proto-ipv6", "socket-tcp" ] }
nb = "1.0.0"
embedded-nal = "0.1.0"
minimq = { git = "https://github.com/quartiq/minimq.git", branch = "master" }
heapless = "0.5.6"

View File

@ -1,5 +0,0 @@
fpga_config: main.rs
openocd -f openocd/openocd.cfg -f openocd/main.cfg
main.rs: top.bin
cargo build --release

View File

@ -2,9 +2,9 @@ use std::process::Command;
fn main() {
Command::new("python3")
.arg("migen/fpga_config.py")
.arg("fpga/fpga_config.py")
.spawn()
.expect("FPGA bitstream file cannot be built!");
println!("cargo:rerun-if-changed=migen/fpga_config.py")
println!("cargo:rerun-if-changed=fpga/fpga_config.py")
}

92
fpga/fpga_config.py Normal file
View File

@ -0,0 +1,92 @@
# Import built in I/O, Connectors & Platform template for Humpback
from migen.build.platforms.sinara import humpback
# Import migen pin record structure
from migen.build.generic_platform import *
from migen.fhdl.module import Module
from migen.fhdl.specials import Instance
from migen.genlib.io import *
class UrukulConnector(Module):
def __init__(self, platform):
# Include extension
spi_mosi = [
("spi_mosi", 0, Pins("B16"), IOStandard("LVCMOS33"))
]
spi_cs = [
("spi_cs", 0, Pins("B13 B14 B15"), IOStandard("LVCMOS33"))
]
io_update = [
("io_update", 0, Pins("A11"), IOStandard("LVCMOS33"))
]
# Add extensions
platform.add_extension(spi_cs)
platform.add_extension(io_update)
platform.add_extension(spi_mosi)
# Request EEM I/O & SPI
eem0 = [
platform.request("eem0", 0),
platform.request("eem0", 1),
# Supply EEM pin with negative polarity
# See issue/PR: https://github.com/m-labs/migen/pull/181
platform.request("eem0_n", 2),
platform.request("eem0", 3),
platform.request("eem0", 4),
platform.request("eem0", 5),
platform.request("eem0", 6)
]
spi = platform.request("spi")
spi_mosi = platform.request("spi_mosi")
spi_cs = platform.request("spi_cs")
led = platform.request("user_led")
io_update = platform.request("io_update")
assert len(spi.clk) == 1
assert len(spi_mosi) == 1
assert len(spi.miso) == 1
assert len(spi_cs) == 3
assert len(io_update) == 1
# Flip negative input to positive output
self.miso_n = Signal()
# Very similar setup to Diff setup for iCE40 suggested, but gave B pin instead
self.specials += Instance("SB_IO",
p_PIN_TYPE=C(0b000001, 6),
p_IO_STANDARD="SB_LVDS_INPUT",
io_PACKAGE_PIN=eem0[2],
o_D_IN_0=self.miso_n
)
# Link EEM to SPI
self.comb += [
eem0[0].p.eq(spi.clk),
eem0[0].n.eq(~spi.clk),
eem0[1].p.eq(spi_mosi),
eem0[1].n.eq(~spi_mosi),
spi.miso.eq(~self.miso_n),
eem0[3].p.eq(spi_cs[0]),
eem0[3].n.eq(~spi_cs[0]),
eem0[4].p.eq(spi_cs[1]),
eem0[4].n.eq(~spi_cs[1]),
eem0[5].p.eq(spi_cs[2]),
eem0[5].n.eq(~spi_cs[2]),
eem0[6].p.eq(io_update),
eem0[6].n.eq(~io_update),
led.eq(1)
]
if __name__ == "__main__":
platform = humpback.Platform()
platform.build(UrukulConnector(platform))

View File

@ -1,92 +0,0 @@
# Import built in I/O, Connectors & Platform template for Humpback
from migen.build.platforms.sinara import humpback
# Import migen pin record structure
from migen.build.generic_platform import *
from migen.fhdl.module import Module
from migen.fhdl.specials import Instance
from migen.genlib.io import *
class UrukulConnector(Module):
def __init__(self, platform):
# Include extension
spi_mosi = [
("spi_mosi", 0, Pins("B16"), IOStandard("LVCMOS33"))
]
spi_cs = [
("spi_cs", 0, Pins("B13 B14 B15"), IOStandard("LVCMOS33"))
]
io_update = [
("io_update", 0, Pins("A11"), IOStandard("LVCMOS33"))
]
# Add extensions
platform.add_extension(spi_cs)
platform.add_extension(io_update)
platform.add_extension(spi_mosi)
# Request EEM I/O & SPI
eem0 = [
platform.request("eem0", 0),
platform.request("eem0", 1),
# Supply EEM pin with negative polarity
# See issue/PR: https://github.com/m-labs/migen/pull/181
platform.request("eem0_n", 2),
platform.request("eem0", 3),
platform.request("eem0", 4),
platform.request("eem0", 5),
platform.request("eem0", 6)
]
spi = platform.request("spi")
spi_mosi = platform.request("spi_mosi")
spi_cs = platform.request("spi_cs")
led = platform.request("user_led")
io_update = platform.request("io_update")
assert len(spi.clk) == 1
assert len(spi_mosi) == 1
assert len(spi.miso) == 1
assert len(spi_cs) == 3
assert len(io_update) == 1
# Flip negative input to positive output
self.miso_n = Signal()
# Very similar setup to Diff setup for iCE40 suggested, but gave B pin instead
self.specials += Instance("SB_IO",
p_PIN_TYPE=C(0b000001, 6),
p_IO_STANDARD="SB_LVDS_INPUT",
io_PACKAGE_PIN=eem0[2],
o_D_IN_0=self.miso_n
)
# Link EEM to SPI
self.comb += [
eem0[0].p.eq(spi.clk),
eem0[0].n.eq(~spi.clk),
eem0[1].p.eq(spi_mosi),
eem0[1].n.eq(~spi_mosi),
spi.miso.eq(~self.miso_n),
eem0[3].p.eq(spi_cs[0]),
eem0[3].n.eq(~spi_cs[0]),
eem0[4].p.eq(spi_cs[1]),
eem0[4].n.eq(~spi_cs[1]),
eem0[5].p.eq(spi_cs[2]),
eem0[5].n.eq(~spi_cs[2]),
eem0[6].p.eq(io_update),
eem0[6].n.eq(~io_update),
led.eq(1)
]
if __name__ == "__main__":
platform = humpback.Platform()
platform.build(UrukulConnector(platform))

File diff suppressed because it is too large Load Diff

View File

@ -4,123 +4,123 @@ use core::assert;
use crate::urukul::Error;
pub struct Attenuator<SPI> {
spi: SPI,
data: [u8; 4],
spi: SPI,
data: [u8; 4],
}
impl<SPI, E> Attenuator<SPI>
where
SPI: Transfer<u8, Error = E>
SPI: Transfer<u8, Error = E>
{
pub fn new(spi: SPI) -> Self {
Attenuator {
spi,
// data[y] refers to the yth byte for SPI communication
data: [0, 0, 0, 0],
}
}
pub fn new(spi: SPI) -> Self {
Attenuator {
spi,
// data[y] refers to the yth byte for SPI communication
data: [0, 0, 0, 0],
}
}
/*
* Set attenuations of all attenuators
* att[x] refers to the attenuation for channel x
*/
pub fn set_attenuation(&mut self, att: [f32; 4]) -> Result<(), Error<E>> {
for i in 0..4 {
let mut atten = att[i];
if att[i] > 31.5 {
atten = 31.5;
}
if att[i] < 0.0 {
atten = 0.0;
}
// Set data as attenuation * 2
// Flip data using bitwise XOR, active low data
// Data is most signifant attenuator first
self.data[3-i] = (((atten * 2.0) as u8) ^ 0xFF) << 2
}
let mut clone = self.data.clone();
// Transmit SPI once to set attenuation
self.spi.transfer(&mut clone)
.map(|_| ())
.map_err(|_| Error::AttenuatorError)
}
/*
* Set attenuations of all attenuators
* att[x] refers to the attenuation for channel x
*/
pub fn set_attenuation(&mut self, att: [f32; 4]) -> Result<(), Error<E>> {
for i in 0..4 {
let mut atten = att[i];
if att[i] > 31.5 {
atten = 31.5;
}
if att[i] < 0.0 {
atten = 0.0;
}
// Set data as attenuation * 2
// Flip data using bitwise XOR, active low data
// Data is most signifant attenuator first
self.data[3-i] = (((atten * 2.0) as u8) ^ 0xFF) << 2
}
let mut clone = self.data.clone();
// Transmit SPI once to set attenuation
self.spi.transfer(&mut clone)
.map(|_| ())
.map_err(|_| Error::AttenuatorError)
}
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
assert!(channel < 4);
let mut arr: [f32; 4] = self.get_attenuation()?;
arr[channel as usize] = attenuation;
self.set_attenuation(arr).map(|_| ())
}
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
assert!(channel < 4);
let mut arr: [f32; 4] = self.get_attenuation()?;
arr[channel as usize] = attenuation;
self.set_attenuation(arr).map(|_| ())
}
pub fn get_channel_attenuation(&mut self, channel: u8) -> Result<f32, Error<E>> {
assert!(channel < 4);
match self.get_attenuation() {
Ok(arr) => Ok(arr[channel as usize]),
Err(e) => Err(e),
}
}
pub fn get_channel_attenuation(&mut self, channel: u8) -> Result<f32, Error<E>> {
assert!(channel < 4);
match self.get_attenuation() {
Ok(arr) => Ok(arr[channel as usize]),
Err(e) => Err(e),
}
}
pub fn get_attenuation(&mut self) -> Result<[f32; 4], Error<E>> {
let mut clone = self.data.clone();
match self.spi.transfer(&mut clone).map_err(Error::SPI) {
Ok(arr) => {
let mut ret :[f32; 4] = [0.0; 4];
for index in 0..4 {
ret[index] = ((arr[3 - index] ^ 0xFC) as f32) / 8.0;
}
Ok(ret)
},
Err(e) => Err(e),
}
}
pub fn get_attenuation(&mut self) -> Result<[f32; 4], Error<E>> {
let mut clone = self.data.clone();
match self.spi.transfer(&mut clone).map_err(Error::SPI) {
Ok(arr) => {
let mut ret :[f32; 4] = [0.0; 4];
for index in 0..4 {
ret[index] = ((arr[3 - index] ^ 0xFC) as f32) / 8.0;
}
Ok(ret)
},
Err(e) => Err(e),
}
}
/*
* Test method for Attenuators.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test attenuators by getting back the attenuation
let mut error_count = 0;
// Convert cached SPI data into attenuation floats
let att_floats :[f32; 4] = [
((self.data[3] ^ 0xFC) as f32) / 8.0,
((self.data[2] ^ 0xFC) as f32) / 8.0,
((self.data[1] ^ 0xFC) as f32) / 8.0,
((self.data[0] ^ 0xFC) as f32) / 8.0,
];
// Set the attenuation to an arbitrary value, then read the attenuation
self.set_attenuation([
3.5, 9.5, 20.0, 28.5
])?;
match self.get_attenuation() {
Ok(arr) => {
if arr[0] != 3.5 {
error_count += 1;
}
if arr[1] != 9.5 {
error_count += 1;
}
if arr[2] != 20.0 {
error_count += 1;
}
if arr[3] != 28.5 {
error_count += 1;
}
},
Err(_) => return Err(Error::AttenuatorError),
};
self.set_attenuation(att_floats)?;
Ok(error_count)
}
/*
* Test method for Attenuators.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test attenuators by getting back the attenuation
let mut error_count = 0;
// Convert cached SPI data into attenuation floats
let att_floats :[f32; 4] = [
((self.data[3] ^ 0xFC) as f32) / 8.0,
((self.data[2] ^ 0xFC) as f32) / 8.0,
((self.data[1] ^ 0xFC) as f32) / 8.0,
((self.data[0] ^ 0xFC) as f32) / 8.0,
];
// Set the attenuation to an arbitrary value, then read the attenuation
self.set_attenuation([
3.5, 9.5, 20.0, 28.5
])?;
match self.get_attenuation() {
Ok(arr) => {
if arr[0] != 3.5 {
error_count += 1;
}
if arr[1] != 9.5 {
error_count += 1;
}
if arr[2] != 20.0 {
error_count += 1;
}
if arr[3] != 28.5 {
error_count += 1;
}
},
Err(_) => return Err(Error::AttenuatorError),
};
self.set_attenuation(att_floats)?;
Ok(error_count)
}
}
impl<SPI, E> Transfer<u8> for Attenuator<SPI>
where
SPI: Transfer<u8, Error = E>
SPI: Transfer<u8, Error = E>
{
type Error = Error<E>;
type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI)
}
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI)
}
}

View File

@ -7,51 +7,51 @@
*/
macro_rules! construct_bitmask {
($collection: ident; $unsigned_type: ty; $($name: ident, $shift: expr, $width: expr),+) => {
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[allow(non_camel_case_types)]
pub enum $collection {
$(
$name,
)*
}
($collection: ident; $unsigned_type: ty; $($name: ident, $shift: expr, $width: expr),+) => {
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[allow(non_camel_case_types)]
pub enum $collection {
$(
$name,
)*
}
impl $collection {
pub(crate) fn get_width(self) -> u8 {
match self {
$(
$collection::$name => $width,
)*
}
}
pub(crate) fn get_shift(self) -> u8 {
match self {
$(
$collection::$name => $shift,
)*
}
}
pub(crate) fn get_bitmask(self) -> $unsigned_type {
let mut mask: $unsigned_type = 0;
for bit in 0..self.get_width() {
mask |= (1 << (self.get_shift() + bit) % ((size_of::<$unsigned_type>() as u8) * 8));
}
mask
}
pub(crate) fn get_shifted_bits(self, arg: $unsigned_type) -> $unsigned_type {
assert!(arg < (2 << self.get_width()));
(arg << (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8)))
}
#[allow(dead_code)]
pub(crate) fn set_data_by_arg(self, data: &mut $unsigned_type, arg: $unsigned_type) {
// Clear bits in field, then insert shifted argument
*data &= (!self.get_bitmask());
*data |= self.get_shifted_bits(arg);
}
pub(crate) fn get_filtered_content(self, data: $unsigned_type) -> $unsigned_type {
// Filter everything then shift bits
((data & self.get_bitmask()) >> (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8)))
}
}
}
impl $collection {
pub(crate) fn get_width(self) -> u8 {
match self {
$(
$collection::$name => $width,
)*
}
}
pub(crate) fn get_shift(self) -> u8 {
match self {
$(
$collection::$name => $shift,
)*
}
}
pub(crate) fn get_bitmask(self) -> $unsigned_type {
let mut mask: $unsigned_type = 0;
for bit in 0..self.get_width() {
mask |= (1 << (self.get_shift() + bit) % ((size_of::<$unsigned_type>() as u8) * 8));
}
mask
}
pub(crate) fn get_shifted_bits(self, arg: $unsigned_type) -> $unsigned_type {
assert!(arg < (2 << self.get_width()));
(arg << (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8)))
}
#[allow(dead_code)]
pub(crate) fn set_data_by_arg(self, data: &mut $unsigned_type, arg: $unsigned_type) {
// Clear bits in field, then insert shifted argument
*data &= (!self.get_bitmask());
*data |= self.get_shifted_bits(arg);
}
pub(crate) fn get_filtered_content(self, data: $unsigned_type) -> $unsigned_type {
// Filter everything then shift bits
((data & self.get_bitmask()) >> (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8)))
}
}
}
}

View File

@ -4,121 +4,121 @@ use core::mem::size_of;
// Bitmasks for CFG
construct_bitmask!(CFGMask; u32;
RF_SW, 0, 4,
LED, 4, 4,
PROFILE, 8, 3,
IO_UPDATE, 12, 1,
MASK_NU, 13, 4,
CLK_SEL0, 17, 1,
SYNC_SEL, 18, 1,
RST, 19, 1,
IO_RST, 20, 1,
CLK_SEL1, 21, 1,
DIV, 22, 2
RF_SW, 0, 4,
LED, 4, 4,
PROFILE, 8, 3,
IO_UPDATE, 12, 1,
MASK_NU, 13, 4,
CLK_SEL0, 17, 1,
SYNC_SEL, 18, 1,
RST, 19, 1,
IO_RST, 20, 1,
CLK_SEL1, 21, 1,
DIV, 22, 2
);
// BitMasks for CFG read
construct_bitmask!(StatusMask; u32;
RF_SW, 0, 4,
SMP_ERR, 4, 4,
PLL_LOCK, 8, 4,
IFC_MODE, 12, 4,
PROTO_KEY, 16, 7
RF_SW, 0, 4,
SMP_ERR, 4, 4,
PLL_LOCK, 8, 4,
IFC_MODE, 12, 4,
PROTO_KEY, 16, 7
);
pub struct ConfigRegister<SPI> {
spi: SPI,
data: u32,
spi: SPI,
data: u32,
}
impl<SPI, E> ConfigRegister<SPI>
where
SPI: Transfer<u8, Error = E>
SPI: Transfer<u8, Error = E>
{
pub fn new(spi: SPI) -> Self {
ConfigRegister {
spi,
data: 0,
}
}
pub fn new(spi: SPI) -> Self {
ConfigRegister {
spi,
data: 0,
}
}
/*
* Set configuration bits according to data field
* Return status
*/
fn set_all_configurations(&mut self) -> Result<u32, Error<E>> {
match self.spi.transfer(&mut [
((self.data & 0x00FF0000) >> 16) as u8,
((self.data & 0x0000FF00) >> 8) as u8,
((self.data & 0x000000FF) >> 0) as u8,
]).map_err(Error::SPI) {
Ok(arr) => Ok(
((arr[0] as u32) << 16) |
((arr[1] as u32) << 8) |
arr[2] as u32
),
Err(e) => Err(e),
}
}
/*
* Set configuration bits according to data field
* Return status
*/
fn set_all_configurations(&mut self) -> Result<u32, Error<E>> {
match self.spi.transfer(&mut [
((self.data & 0x00FF0000) >> 16) as u8,
((self.data & 0x0000FF00) >> 8) as u8,
((self.data & 0x000000FF) >> 0) as u8,
]).map_err(Error::SPI) {
Ok(arr) => Ok(
((arr[0] as u32) << 16) |
((arr[1] as u32) << 8) |
arr[2] as u32
),
Err(e) => Err(e),
}
}
/*
* Set configuration bits according to supplied configs
* Return status
*/
pub fn set_configurations(&mut self, configs: &mut[(CFGMask, u32)]) -> Result<u32, Error<E>> {
for config in configs.into_iter() {
config.0.set_data_by_arg(&mut self.data, config.1)
}
// Write all configurations at the same time
self.set_all_configurations()
}
/*
* Set configuration bits according to supplied configs
* Return status
*/
pub fn set_configurations(&mut self, configs: &mut[(CFGMask, u32)]) -> Result<u32, Error<E>> {
for config in configs.into_iter() {
config.0.set_data_by_arg(&mut self.data, config.1)
}
// Write all configurations at the same time
self.set_all_configurations()
}
/*
* Return selected configuration field
*/
pub fn get_configuration(&mut self, config_type: CFGMask) -> u8 {
config_type.get_filtered_content(self.data) as u8
}
/*
* Return selected configuration field
*/
pub fn get_configuration(&mut self, config_type: CFGMask) -> u8 {
config_type.get_filtered_content(self.data) as u8
}
/*
* Return status using mask
*/
pub fn get_status(&mut self, status_type: StatusMask) -> Result<u8, Error<E>> {
match self.set_all_configurations() {
Ok(val) => Ok(status_type.get_filtered_content(val) as u8),
Err(e) => Err(e),
}
}
/*
* Return status using mask
*/
pub fn get_status(&mut self, status_type: StatusMask) -> Result<u8, Error<E>> {
match self.set_all_configurations() {
Ok(val) => Ok(status_type.get_filtered_content(val) as u8),
Err(e) => Err(e),
}
}
/*
* Return entire status register
*/
pub fn get_all_status(&mut self) -> Result<u32, Error<E>> {
return self.set_all_configurations();
}
/*
* Return entire status register
*/
pub fn get_all_status(&mut self) -> Result<u32, Error<E>> {
return self.set_all_configurations();
}
/*
* Test method for Configuration Register.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test configuration register by getting PROTO_KEY.
match self.get_status(StatusMask::PROTO_KEY) {
Ok(8) => Ok(0),
Ok(_) => Ok(1),
Err(_) => Err(Error::ConfigRegisterError),
}
}
/*
* Test method for Configuration Register.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test configuration register by getting PROTO_KEY.
match self.get_status(StatusMask::PROTO_KEY) {
Ok(8) => Ok(0),
Ok(_) => Ok(1),
Err(_) => Err(Error::ConfigRegisterError),
}
}
}
impl<SPI, E> Transfer<u8> for ConfigRegister<SPI>
where
SPI: Transfer<u8, Error = E>
SPI: Transfer<u8, Error = E>
{
type Error = Error<E>;
type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI)
}
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI)
}
}

View File

@ -2,14 +2,14 @@ use crate::urukul::Error;
use crate::spi_slave::Parts;
use embedded_hal::{
digital::v2::OutputPin,
blocking::spi::Transfer,
digital::v2::OutputPin,
blocking::spi::Transfer,
};
use core::cell;
/*
* Basic structure for CPLD signal multiplexing
* Basic structure for CPLD signal multiplexing
*/
#[derive(Debug)]
pub struct CPLDData<SPI, CS0, CS1, CS2, GPIO> {

1593
src/dds.rs

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
use embedded_hal::{
digital::v2::{OutputPin, InputPin},
digital::v2::{OutputPin, InputPin},
blocking::spi::Transfer,
blocking::delay::DelayUs,
};
@ -21,65 +21,65 @@ pub fn flash_ice40_fpga<SPI: Transfer<u8>,
DONE: InputPin>
(mut spi: SPI, mut ss: SS, mut creset: RST, cdone: DONE, mut delay: DELAY) -> Result<(), FPGAFlashError>
{
// Data buffer setup
let mut dummy_byte :[u8; 1] = [0x00];
let mut dummy_13_bytes :[u8; 13] = [0x00; 13];
// Data buffer setup
let mut dummy_byte :[u8; 1] = [0x00];
let mut dummy_13_bytes :[u8; 13] = [0x00; 13];
// Drive CRESET_B low
// Drive CRESET_B low
creset.set_low()
.map_err(|_| FPGAFlashError::NegotiationError)?;
// Drive SPI_SS_B low
// Drive SPI_SS_B low
ss.set_low()
.map_err(|_| FPGAFlashError::NegotiationError)?;
// Wait at least 200ns
delay.delay_us(1_u32);
// Wait at least 200ns
delay.delay_us(1_u32);
// Drive CRESET_B high
// Drive CRESET_B high
creset.set_high()
.map_err(|_| FPGAFlashError::NegotiationError)?;
// Wait at least another 1200us to clear internal config memory
delay.delay_us(1200_u32);
// Wait at least another 1200us to clear internal config memory
delay.delay_us(1200_u32);
// Before data transmission starts, check if C_DONE is truly low
// If C_DONE is high, the FPGA reset procedure is unsuccessful
match cdone.is_low() {
match cdone.is_low() {
Ok(true) => {},
_ => return Err(FPGAFlashError::ResetStatusError),
};
// Set SPI_SS_B high
// Set SPI_SS_B high
ss.set_high()
.map_err(|_| FPGAFlashError::NegotiationError)?;
// Send 8 dummy clock, effectively 1 byte of 0x00
// Send 8 dummy clock, effectively 1 byte of 0x00
spi.transfer(&mut dummy_byte)
.map_err(|_| FPGAFlashError::SPICommunicationError)?;
// Drive SPI_SS_B low
// Drive SPI_SS_B low
ss.set_low()
.map_err(|_| FPGAFlashError::NegotiationError)?;
// Send the whole image without interruption
for byte in DATA.into_iter() {
// Send the whole image without interruption
for byte in DATA.into_iter() {
let mut single_byte_slice = [*byte];
spi.transfer(&mut single_byte_slice)
.map_err(|_| FPGAFlashError::SPICommunicationError)?;
}
}
// Drive SPI_SS_B high
// Drive SPI_SS_B high
ss.set_high()
.map_err(|_| FPGAFlashError::NegotiationError)?;
// Send at another 100 dummy clocks (choosing 13 bytes)
// Send at another 100 dummy clocks (choosing 13 bytes)
spi.transfer(&mut dummy_13_bytes)
.map_err(|_| FPGAFlashError::SPICommunicationError)?;
// Check the CDONE output from FPGA
// CDONE needs to be high
match cdone.is_high() {
match cdone.is_high() {
Ok(true) => {},
_ => return Err(FPGAFlashError::ResetStatusError),
};

View File

@ -1,15 +1,15 @@
#![no_main]
#![no_std]
#![feature(str_strip)]
use log::{ trace, debug, info, warn };
use stm32h7xx_hal::hal::digital::v2::InputPin;
#![feature(core_intrinsics)]
use log::{ trace };
use stm32h7xx_hal::gpio::Speed;
use stm32h7xx_hal::{pac, prelude::*, spi};
use stm32h7xx_hal::ethernet;
use smoltcp as net;
use minimq::{
embedded_nal::{IpAddr, Ipv4Addr, TcpStack},
embedded_nal::{ IpAddr, Ipv4Addr },
MqttClient, QoS
};
@ -17,7 +17,6 @@ use cortex_m;
use cortex_m_rt::entry;
use rtic::cyccnt::{Instant, U32Ext};
use heapless::Vec;
use heapless::consts;
#[macro_use]
@ -70,30 +69,30 @@ macro_rules! add_socket {
#[entry]
fn main() -> ! {
let mut cp = cortex_m::Peripherals::take().unwrap();
let dp = pac::Peripherals::take().unwrap();
let mut cp = cortex_m::Peripherals::take().unwrap();
let dp = pac::Peripherals::take().unwrap();
unsafe {
logger::enable_itm(&dp.DBGMCU, &mut cp.DCB, &mut cp.ITM);
}
logger::init();
unsafe {
logger::enable_itm(&dp.DBGMCU, &mut cp.DCB, &mut cp.ITM);
}
logger::init();
// Enable SRAM3 for the descriptor ring.
dp.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
// // Reset RCC clock
// dp.RCC.rsr.write(|w| w.rmvf().set_bit());
// dp.RCC.rsr.write(|w| w.rmvf().set_bit());
let pwr = dp.PWR.constrain();
let vos = pwr.freeze();
let pwr = dp.PWR.constrain();
let vos = pwr.freeze();
let rcc = dp.RCC.constrain();
let ccdr = rcc
.use_hse(8.mhz())
.sys_ck(400.mhz())
.hclk(200.mhz())
.pll1_q_ck(48.mhz())
.pll1_r_ck(400.mhz())
.freeze(vos, &dp.SYSCFG);
let rcc = dp.RCC.constrain();
let ccdr = rcc
.use_hse(8.mhz())
.sys_ck(400.mhz())
.hclk(200.mhz())
.pll1_q_ck(48.mhz())
.pll1_r_ck(400.mhz())
.freeze(vos, &dp.SYSCFG);
let delay = cp.SYST.delay(ccdr.clocks);
@ -102,42 +101,42 @@ fn main() -> ! {
cp.DWT.enable_cycle_counter();
let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD);
let gpioe = dp.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = dp.GPIOF.split(ccdr.peripheral.GPIOF);
let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD);
let _gpioe = dp.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = dp.GPIOF.split(ccdr.peripheral.GPIOF);
let gpiog = dp.GPIOG.split(ccdr.peripheral.GPIOG);
// Note: ITM doesn't work beyond this, due to a pin conflict between:
// - FPGA_SPI: SCK (af5)
// - ST_LINK SWO (af0)
// Both demands PB3
trace!("Flashing configuration bitstream to iCE40 HX8K on Humpback.");
trace!("Flashing configuration bitstream to iCE40 HX8K on Humpback.");
// Using SPI_1 alternate functions (af5)
let fpga_sck = gpiob.pb3.into_alternate_af5();
let fpga_sdo = gpiob.pb4.into_alternate_af5();
let fpga_sdi = gpiob.pb5.into_alternate_af5();
// Using SPI_1 alternate functions (af5)
let fpga_sck = gpiob.pb3.into_alternate_af5();
let fpga_sdo = gpiob.pb4.into_alternate_af5();
let fpga_sdi = gpiob.pb5.into_alternate_af5();
// Setup SPI_SS_B and CRESET_B
let fpga_ss = gpioa.pa4.into_push_pull_output();
let fpga_creset = gpiof.pf3.into_open_drain_output();
// Setup SPI_SS_B and CRESET_B
let fpga_ss = gpioa.pa4.into_push_pull_output();
let fpga_creset = gpiof.pf3.into_open_drain_output();
// Setup CDONE
let fpga_cdone = gpiod.pd15.into_pull_up_input();
// Setup CDONE
let fpga_cdone = gpiod.pd15.into_pull_up_input();
// Setup SPI interface
let fpga_cfg_spi = dp.SPI1.spi(
(fpga_sck, fpga_sdo, fpga_sdi),
spi::MODE_3,
12.mhz(),
ccdr.peripheral.SPI1,
&ccdr.clocks,
);
// Setup SPI interface
let fpga_cfg_spi = dp.SPI1.spi(
(fpga_sck, fpga_sdo, fpga_sdi),
spi::MODE_3,
12.mhz(),
ccdr.peripheral.SPI1,
&ccdr.clocks,
);
flash_ice40_fpga(fpga_cfg_spi, fpga_ss, fpga_creset, fpga_cdone, delay).unwrap();
flash_ice40_fpga(fpga_cfg_spi, fpga_ss, fpga_creset, fpga_cdone, delay).unwrap();
// Configure ethernet IO
{
@ -183,46 +182,45 @@ fn main() -> ! {
.routes(routes)
.finalize();
/*
* Using SPI6
* SCLK -> PA5 (af8)
* MOSI -> PG14 (af5)
* MISO -> PA6 (af8)
* CS -> 0: PB12, 1: PA15, 2: PC7
*/
let sclk = gpioa.pa5.into_alternate_af8().set_speed(Speed::VeryHigh);
let mosi = gpiog.pg14.into_alternate_af5().set_speed(Speed::VeryHigh);
let miso = gpioa.pa6.into_alternate_af8().set_speed(Speed::VeryHigh);
let (cs0, cs1, cs2) = (
gpiob.pb12.into_push_pull_output(),
gpioa.pa15.into_push_pull_output(),
gpioc.pc7.into_push_pull_output(),
);
/*
* Using SPI6
* SCLK -> PA5 (af8)
* MOSI -> PG14 (af5)
* MISO -> PA6 (af8)
* CS -> 0: PB12, 1: PA15, 2: PC7
*/
let sclk = gpioa.pa5.into_alternate_af8().set_speed(Speed::VeryHigh);
let mosi = gpiog.pg14.into_alternate_af5().set_speed(Speed::VeryHigh);
let miso = gpioa.pa6.into_alternate_af8().set_speed(Speed::VeryHigh);
let (cs0, cs1, cs2) = (
gpiob.pb12.into_push_pull_output(),
gpioa.pa15.into_push_pull_output(),
gpioc.pc7.into_push_pull_output(),
);
/*
* I/O_Update -> PB15
*/
let io_update = gpiob.pb15.into_push_pull_output();
/*
* I/O_Update -> PB15
*/
let io_update = gpiob.pb15.into_push_pull_output();
let spi = dp.SPI6.spi(
(sclk, miso, mosi),
spi::MODE_0,
10.mhz(),
ccdr.peripheral.SPI6,
&ccdr.clocks,
);
let spi = dp.SPI6.spi(
(sclk, miso, mosi),
spi::MODE_0,
2.mhz(),
ccdr.peripheral.SPI6,
&ccdr.clocks,
);
let switch = CPLD::new(spi, (cs0, cs1, cs2), io_update);
let parts = switch.split();
let switch = CPLD::new(spi, (cs0, cs1, cs2), io_update);
let parts = switch.split();
let mut urukul = Urukul::new(
parts.spi1, parts.spi2, parts.spi3, parts.spi4, parts.spi5, parts.spi6, parts.spi7
);
urukul.reset().unwrap();
// info!("Test value: {}", urukul.test().unwrap());
urukul.reset().unwrap();
let mut mqtt_mux = MqttMux::new(urukul);
let mut mqtt_mux = MqttMux::new(urukul);
// Time unit in ms
let mut time: u32 = 0;
@ -238,9 +236,6 @@ fn main() -> ! {
let tcp_stack = NetworkStack::new(&mut net_interface, sockets);
// Case dealt: Ethernet connection break down, neither side has timeout
// Limitation: Timeout inequality will cause TCP socket state to desync
// Probably fixed in latest smoltcp commit
let mut client = MqttClient::<consts::U256, _>::new(
IpAddr::V4(Ipv4Addr::new(192, 168, 1, 125)),
"Urukul",
@ -269,9 +264,8 @@ fn main() -> ! {
// Process MQTT messages about Urukul/Control
let connection = client
.poll(|_client, topic, message, _properties| {
// info!("On {:?}, received: {:?}", topic, message);
// Why is topic a string while message is a slice?
mqtt_mux.process_mqtt(topic, message).is_ok();
mqtt_mux.process_mqtt(topic, message).unwrap();
}).is_ok();
if connection && !has_subscribed && tick {

View File

@ -56,7 +56,7 @@ impl<'a, 'b, 'c, 'n> NetworkStack<'a, 'b, 'c, 'n> {
self.network_interface.poll_delay(
&mut self.sockets.borrow_mut(),
net::time::Instant::from_millis(time as i64),
).map_or(1000, |next_poll_time| next_poll_time.total_millis() as u32)
).map_or(0, |next_poll_time| next_poll_time.total_millis() as u32)
}
pub fn update(&mut self, time: u32) -> bool {
@ -120,6 +120,8 @@ impl<'a, 'b, 'c, 'n> embedded_nal::TcpStack for NetworkStack<'a, 'b, 'c, 'n> {
internal_socket
.connect((address, remote.port()), self.get_ephemeral_port())
.map_err(|_| NetworkError::ConnectionFailure)?;
internal_socket
.set_keep_alive(Some(net::time::Duration::from_millis(1000)));
}
embedded_nal::IpAddr::V6(addr) => {
let address = {
@ -132,6 +134,8 @@ impl<'a, 'b, 'c, 'n> embedded_nal::TcpStack for NetworkStack<'a, 'b, 'c, 'n> {
internal_socket
.connect((address, remote.port()), self.get_ephemeral_port())
.map_err(|_| NetworkError::ConnectionFailure)?;
internal_socket
.set_keep_alive(Some(net::time::Duration::from_millis(1000)));
}
};

View File

@ -1,61 +1,61 @@
use embedded_hal::{
blocking::spi::Transfer,
digital::v2::OutputPin,
blocking::spi::Transfer,
digital::v2::OutputPin,
};
use crate::cpld::CPLD;
use crate::urukul::Error;
pub struct SPISlave<'a, SPI, CS0, CS1, CS2, GPIO> (
// SPI device to be multiplexed
&'a CPLD<SPI, CS0, CS1, CS2, GPIO>,
// Channel of SPI slave
u8,
// Need I/O Update
bool,
// SPI device to be multiplexed
&'a CPLD<SPI, CS0, CS1, CS2, GPIO>,
// Channel of SPI slave
u8,
// Need I/O Update
bool,
);
pub struct Parts<'a, SPI, CS0, CS1, CS2, GPIO> {
pub spi1: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi2: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi3: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi4: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi5: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi6: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi7: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi1: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi2: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi3: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi4: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi5: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi6: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi7: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
}
impl<'a, SPI, CS0, CS1, CS2, GPIO> Parts<'a, SPI, CS0, CS1, CS2, GPIO> {
pub(crate) fn new(cpld: &'a CPLD<SPI, CS0, CS1, CS2, GPIO>) -> Self {
Parts {
spi1: SPISlave(&cpld, 1, false),
spi2: SPISlave(&cpld, 2, false),
spi3: SPISlave(&cpld, 3, false),
spi4: SPISlave(&cpld, 4, true),
spi5: SPISlave(&cpld, 5, true),
spi6: SPISlave(&cpld, 6, true),
spi7: SPISlave(&cpld, 7, true),
}
}
pub(crate) fn new(cpld: &'a CPLD<SPI, CS0, CS1, CS2, GPIO>) -> Self {
Parts {
spi1: SPISlave(&cpld, 1, false),
spi2: SPISlave(&cpld, 2, false),
spi3: SPISlave(&cpld, 3, false),
spi4: SPISlave(&cpld, 4, true),
spi5: SPISlave(&cpld, 5, true),
spi6: SPISlave(&cpld, 6, true),
spi7: SPISlave(&cpld, 7, true),
}
}
}
impl<'a, SPI, CS0, CS1, CS2, GPIO, E> Transfer<u8> for SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>
where
CS2: OutputPin,
CS1: OutputPin,
CS0: OutputPin,
SPI: Transfer<u8, Error = E>,
GPIO: OutputPin,
CS2: OutputPin,
CS1: OutputPin,
CS0: OutputPin,
SPI: Transfer<u8, Error = E>,
GPIO: OutputPin,
{
type Error = Error<E>;
type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut[u8]) -> Result<&'w [u8], Self::Error> {
let mut dev = self.0.data.try_borrow_mut().map_err(|_| Error::GetRefMutDataError)?;
dev.select_chip(self.1).map_err(|_| Error::CSError)?;
let result = dev.spi.transfer(words).map_err(Error::SPI)?;
dev.select_chip(0).map_err(|_| Error::CSError)?;
if self.2 {
dev.issue_io_update().map_err(|_| Error::IOUpdateError)?;
}
Ok(result)
}
fn transfer<'w>(&mut self, words: &'w mut[u8]) -> Result<&'w [u8], Self::Error> {
let mut dev = self.0.data.try_borrow_mut().map_err(|_| Error::GetRefMutDataError)?;
dev.select_chip(self.1).map_err(|_| Error::CSError)?;
let result = dev.spi.transfer(words).map_err(Error::SPI)?;
dev.select_chip(0).map_err(|_| Error::CSError)?;
if self.2 {
dev.issue_io_update().map_err(|_| Error::IOUpdateError)?;
}
Ok(result)
}
}

View File

@ -1,338 +1,346 @@
extern crate embedded_hal;
use embedded_hal::{
blocking::spi::Transfer,
blocking::spi::Transfer,
};
use crate::config_register::ConfigRegister;
use crate::config_register::CFGMask;
use crate::config_register::StatusMask;
use crate::attenuator::Attenuator;
use crate::dds::DDS;
use crate::dds::{ DDS, RAMOperationMode };
/*
* Enum for structuring error
* Enum for structuring error
*/
#[derive(Debug)]
pub enum Error<E> {
SPI(E),
CSError,
GetRefMutDataError,
AttenuatorError,
IOUpdateError,
DDSError,
ConfigRegisterError,
DDSCLKError,
DDSRAMError,
ParameterError,
MqttTopicError,
MqttCommandError,
SPI(E),
CSError,
GetRefMutDataError,
AttenuatorError,
IOUpdateError,
DDSError,
ConfigRegisterError,
DDSCLKError,
DDSRAMError,
ParameterError,
MqttTopicError,
MqttCommandError,
}
#[derive(Debug, Clone)]
pub enum ClockSource {
OSC,
SMA,
MMCX,
OSC,
SMA,
MMCX,
}
/*
* Struct for Urukul master device
*/
pub struct Urukul<SPI> {
config_register: ConfigRegister<SPI>,
attenuator: Attenuator<SPI>,
multi_dds: DDS<SPI>,
dds: [DDS<SPI>; 4],
f_master_clk: f64,
config_register: ConfigRegister<SPI>,
attenuator: Attenuator<SPI>,
multi_dds: DDS<SPI>,
dds: [DDS<SPI>; 4],
f_master_clk: f64,
}
impl<SPI, E> Urukul<SPI>
where
SPI: Transfer<u8, Error = E>,
SPI: Transfer<u8, Error = E>,
{
/*
* Master constructor for the entire Urukul device
* Supply 7 SPI channels to Urukul and 4 reference clock frequencies
*/
pub fn new(spi1: SPI, spi2: SPI, spi3: SPI, spi4: SPI, spi5: SPI, spi6: SPI, spi7: SPI) -> Self {
// Construct Urukul
Urukul {
config_register: ConfigRegister::new(spi1),
attenuator: Attenuator::new(spi2),
// Create a multi-channel DDS with predefined 25MHz clock
multi_dds: DDS::new(spi3, 25_000_000.0),
// Create 4 DDS instances with predefined 25MHz clock
// Counter-intuitive to assign urukul clock before having a urukul
dds: [
DDS::new(spi4, 25_000_000.0),
DDS::new(spi5, 25_000_000.0),
DDS::new(spi6, 25_000_000.0),
DDS::new(spi7, 25_000_000.0),
],
// Default clock selection: OSC, predefined 100MHz speed
f_master_clk: 100_000_000.0,
}
}
/*
* Master constructor for the entire Urukul device
* Supply 7 SPI channels to Urukul and 4 reference clock frequencies
*/
pub fn new(spi1: SPI, spi2: SPI, spi3: SPI, spi4: SPI, spi5: SPI, spi6: SPI, spi7: SPI) -> Self {
// Construct Urukul
Urukul {
config_register: ConfigRegister::new(spi1),
attenuator: Attenuator::new(spi2),
// Create a multi-channel DDS with predefined 25MHz clock
multi_dds: DDS::new(spi3, 25_000_000.0),
// Create 4 DDS instances with predefined 25MHz clock
// Counter-intuitive to assign urukul clock before having a urukul
dds: [
DDS::new(spi4, 25_000_000.0),
DDS::new(spi5, 25_000_000.0),
DDS::new(spi6, 25_000_000.0),
DDS::new(spi7, 25_000_000.0),
],
// Default clock selection: OSC, predefined 100MHz speed
f_master_clk: 100_000_000.0,
}
}
/*
* Reset method. To be invoked by initialization and manual reset.
* Only Urukul struct provides reset method.
* DDS reset is controlled by Urukul (RST).
* Attenuators only have shift register reset, which does not affect its data
* CPLD only has a "all-zero" default state.
*/
pub fn reset(&mut self) -> Result<(), Error<E>> {
// Reset DDS and attenuators
self.config_register.set_configurations(&mut [
(CFGMask::RST, 1),
(CFGMask::IO_RST, 1),
(CFGMask::IO_UPDATE, 0)
])?;
// Set 0 to all fields on configuration register.
self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, 0),
(CFGMask::LED, 0),
(CFGMask::PROFILE, 0),
(CFGMask::IO_UPDATE, 0),
(CFGMask::MASK_NU, 0),
(CFGMask::CLK_SEL0, 0),
(CFGMask::SYNC_SEL, 0),
(CFGMask::RST, 0),
(CFGMask::IO_RST, 0),
(CFGMask::CLK_SEL1, 0),
(CFGMask::DIV, 0),
])?;
// Init all DDS chips. Configure SDIO as input only.
for chip_no in 0..4 {
self.dds[chip_no].init()?;
}
// Clock tree reset. OSC clock source by default
self.f_master_clk = 100_000_000.0;
// CPLD divides clock frequency by 4 by default.
for chip_no in 0..4 {
self.dds[chip_no].set_ref_clk_frequency(self.f_master_clk / 4.0)?;
}
Ok(())
}
/*
* Reset method. To be invoked by initialization and manual reset.
* Only Urukul struct provides reset method.
* DDS reset is controlled by Urukul (RST).
* Attenuators only have shift register reset, which does not affect its data
* CPLD only has a "all-zero" default state.
*/
pub fn reset(&mut self) -> Result<(), Error<E>> {
// Reset DDS and attenuators
self.config_register.set_configurations(&mut [
(CFGMask::RST, 1),
(CFGMask::IO_RST, 1),
(CFGMask::IO_UPDATE, 0)
])?;
// Set 0 to all fields on configuration register.
self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, 0),
(CFGMask::LED, 0),
(CFGMask::PROFILE, 0),
(CFGMask::IO_UPDATE, 0),
(CFGMask::MASK_NU, 0),
(CFGMask::CLK_SEL0, 0),
(CFGMask::SYNC_SEL, 0),
(CFGMask::RST, 0),
(CFGMask::IO_RST, 0),
(CFGMask::CLK_SEL1, 0),
(CFGMask::DIV, 0),
])?;
// Init all DDS chips. Configure SDIO as input only.
for chip_no in 0..4 {
self.dds[chip_no].init()?;
}
// Clock tree reset. OSC clock source by default
self.f_master_clk = 100_000_000.0;
// CPLD divides clock frequency by 4 by default.
for chip_no in 0..4 {
self.dds[chip_no].set_ref_clk_frequency(self.f_master_clk / 4.0)?;
}
Ok(())
}
/*
* Test method fo Urukul.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
let mut count = self.config_register.test()?;
count += self.attenuator.test()?;
for chip_no in 0..4 {
count += self.dds[chip_no].test()?;
}
Ok(count)
}
/*
* Test method fo Urukul.
* Return the number of test failed.
*/
pub fn test(&mut self) -> Result<u32, Error<E>> {
let mut count = self.config_register.test()?;
count += self.attenuator.test()?;
for chip_no in 0..4 {
count += self.dds[chip_no].test()?;
}
Ok(count)
}
}
impl<SPI, E> Urukul<SPI>
where
SPI: Transfer<u8, Error = E>
SPI: Transfer<u8, Error = E>
{
pub fn get_channel_switch_status(&mut self, channel: u32) -> Result<bool, Error<E>> {
if channel < 4 {
self.config_register.get_status(StatusMask::RF_SW).map(|val| (val & (1 << channel)) != 0)
} else {
Err(Error::ParameterError)
}
}
pub fn get_channel_switch_status(&mut self, channel: u32) -> Result<bool, Error<E>> {
if channel < 4 {
self.config_register.get_status(StatusMask::RF_SW).map(|val| (val & (1 << channel)) != 0)
} else {
Err(Error::ParameterError)
}
}
pub fn set_channel_switch(&mut self, channel: u32, status: bool) -> Result<(), Error<E>> {
if channel < 4 {
let prev = u32::from(self.config_register.get_status(StatusMask::RF_SW)?);
let next = {
if status {
prev | (1 << channel)
} else {
prev & (!(1 << channel))
}
};
self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, next),
]).map(|_| ())
} else {
Err(Error::ParameterError)
}
}
pub fn set_channel_switch(&mut self, channel: u32, status: bool) -> Result<(), Error<E>> {
if channel < 4 {
let prev = u32::from(self.config_register.get_status(StatusMask::RF_SW)?);
let next = {
if status {
prev | (1 << channel)
} else {
prev & (!(1 << channel))
}
};
self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, next),
]).map(|_| ())
} else {
Err(Error::ParameterError)
}
}
pub fn set_clock(&mut self, source: ClockSource, frequency: f64, division: u8) -> Result<(), Error<E>> {
// Change clock source through configuration register
self.set_clock_source(source)?;
pub fn set_clock(&mut self, source: ClockSource, frequency: f64, division: u8) -> Result<(), Error<E>> {
// Change clock source through configuration register
self.set_clock_source(source)?;
// Modify the master clock frequency
// Prevent redundunt call to change f_ref_clk
self.f_master_clk = frequency;
// Modify the master clock frequency
// Prevent redundunt call to change f_ref_clk
self.f_master_clk = frequency;
self.set_clock_division(division)
}
self.set_clock_division(division)
}
pub fn set_clock_source(&mut self, source: ClockSource) -> Result<(), Error<E>> {
// Change clock source through configuration register
match source {
ClockSource::OSC => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 0),
]),
ClockSource::MMCX => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 1),
]),
ClockSource::SMA => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 1),
]),
}.map(|_| ())
}
pub fn set_clock_source(&mut self, source: ClockSource) -> Result<(), Error<E>> {
// Change clock source through configuration register
match source {
ClockSource::OSC => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 0),
]),
ClockSource::MMCX => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 1),
]),
ClockSource::SMA => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 1),
]),
}.map(|_| ())
}
pub fn set_clock_frequency(&mut self, frequency: f64) -> Result<(), Error<E>> {
// Update master clock frequency
self.f_master_clk = frequency;
pub fn set_clock_frequency(&mut self, frequency: f64) -> Result<(), Error<E>> {
// Update master clock frequency
self.f_master_clk = frequency;
// Update all DDS f_ref_clk
self.set_dds_ref_clk()
}
// Update all DDS f_ref_clk
self.set_dds_ref_clk()
}
pub fn set_clock_division(&mut self, division: u8) -> Result<(), Error<E>> {
match division {
1 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 1),
]),
2 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 2),
]),
4 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 3),
]),
_ => Err(Error::ParameterError),
}?;
pub fn set_clock_division(&mut self, division: u8) -> Result<(), Error<E>> {
match division {
1 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 1),
]),
2 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 2),
]),
4 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 3),
]),
_ => Err(Error::ParameterError),
}?;
self.set_dds_ref_clk()
}
self.set_dds_ref_clk()
}
fn set_dds_ref_clk(&mut self) -> Result<(), Error<E>> {
// Calculate reference clock frequency after clock division from configuration register
let f_ref_clk = self.f_master_clk / (self.get_master_clock_division() as f64);
fn set_dds_ref_clk(&mut self) -> Result<(), Error<E>> {
// Calculate reference clock frequency after clock division from configuration register
let f_ref_clk = self.f_master_clk / (self.get_master_clock_division() as f64);
// Update all DDS chips on reference clock frequency
for dds_channel in 0..4 {
self.dds[dds_channel].set_ref_clk_frequency(f_ref_clk)?;
}
Ok(())
}
// Update all DDS chips on reference clock frequency
for dds_channel in 0..4 {
self.dds[dds_channel].set_ref_clk_frequency(f_ref_clk)?;
}
Ok(())
}
fn get_master_clock_division(&mut self) -> u8 {
match self.config_register.get_configuration(CFGMask::DIV) {
0 | 3 => 4,
1 => 1,
2 => 2,
_ => panic!("Divisor out of range, when reading configuration register (CPLD)."),
}
}
fn get_master_clock_division(&mut self) -> u8 {
match self.config_register.get_configuration(CFGMask::DIV) {
0 | 3 => 4,
1 => 1,
2 => 2,
_ => panic!("Divisor out of range, when reading configuration register (CPLD)."),
}
}
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
if channel >= 4 || attenuation < 0.0 || attenuation > 31.5 {
return Err(Error::ParameterError);
}
self.attenuator.set_channel_attenuation(channel, attenuation)
}
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
if channel >= 4 || attenuation < 0.0 || attenuation > 31.5 {
return Err(Error::ParameterError);
}
self.attenuator.set_channel_attenuation(channel, attenuation)
}
pub fn set_profile(&mut self, profile: u8) -> Result<(), Error<E>> {
if profile >= 8 {
return Err(Error::ParameterError);
}
self.config_register.set_configurations(&mut [
(CFGMask::PROFILE, profile.into())
]).map(|_| ())
}
pub fn set_profile(&mut self, profile: u8) -> Result<(), Error<E>> {
if profile >= 8 {
return Err(Error::ParameterError);
}
self.config_register.set_configurations(&mut [
(CFGMask::PROFILE, profile.into())
]).map(|_| ())
}
pub fn set_channel_single_tone_profile(&mut self, channel: u8, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile(profile, frequency, phase, amplitude)
}
pub fn set_channel_single_tone_profile(&mut self, channel: u8, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile(profile, frequency, phase, amplitude)
}
pub fn set_channel_single_tone_profile_frequency(&mut self, channel: u8, profile: u8, frequency: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_frequency(profile, frequency)
}
pub fn set_channel_single_tone_profile_frequency(&mut self, channel: u8, profile: u8, frequency: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_frequency(profile, frequency)
}
pub fn set_channel_single_tone_profile_phase(&mut self, channel: u8, profile: u8, phase: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || phase >= 360.0 || phase < 0.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_phase(profile, phase)
}
pub fn set_channel_single_tone_profile_phase(&mut self, channel: u8, profile: u8, phase: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || phase >= 360.0 || phase < 0.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_phase(profile, phase)
}
pub fn set_channel_single_tone_profile_amplitude(&mut self, channel: u8, profile: u8, amplitude: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_amplitude(profile, amplitude)
}
pub fn set_channel_single_tone_profile_amplitude(&mut self, channel: u8, profile: u8, amplitude: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
self.dds[usize::from(channel)].set_single_tone_profile_amplitude(profile, amplitude)
}
pub fn set_channel_sys_clk(&mut self, channel: u8, f_sys_clk: f64) -> Result<(), Error<E>> {
self.dds[usize::from(channel)].set_sys_clk_frequency(f_sys_clk).map(|_| ())
}
pub fn set_channel_frequency_sweep_profile(&mut self, channel: u8, profile: u8, start_addr: u16, lower_boundary: f64,
upper_boundary: f64, f_resolution: f64, playback_rate: f64) -> Result<(), Error<E>>
{
unsafe {
self.dds[usize::from(channel)]
.set_frequency_sweep_profile(profile, start_addr, lower_boundary, upper_boundary,
f_resolution, true, RAMOperationMode::ContinuousRecirculate, playback_rate)
}
}
// Multi-dds channel functions
// Do not allow reading of DDS registers
// Make sure only 1 SPI transaction is compelted per function call
pub fn set_channel_sys_clk(&mut self, channel: u8, f_sys_clk: f64) -> Result<(), Error<E>> {
self.dds[usize::from(channel)].set_sys_clk_frequency(f_sys_clk).map(|_| ())
}
// Setup NU_MASK in configuration register
// This selects the DDS channels that will be covered by multi_channel DDS (spi3)
// Note: If a channel is masked, io_update must be completed through configuration register (IO_UPDATE bit-field)
// Implication: Deselect such channel if individual communication is needed.
pub fn set_multi_channel_coverage(&mut self, channel: u8) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::MASK_NU, channel.into())
]).map(|_| ())
}
// Multi-dds channel functions
// Do not allow reading of DDS registers
// Make sure only 1 SPI transaction is compelted per function call
// Difference from individual single tone setup function:
// - Remove the need of passing channel
// All selected channels must share the same f_sys_clk
pub fn set_multi_channel_single_tone_profile(&mut self, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
// Check f_sys_clk of all selected channels
let selected_channels = self.config_register.get_configuration(CFGMask::MASK_NU);
let mut found_a_selected_channel = false;
let mut reported_f_sys_clk: f64 = 0.0;
for channel_bit in 0..4 {
if (selected_channels & (1 << (channel_bit as u8))) != 0 {
if !found_a_selected_channel {
found_a_selected_channel = true;
reported_f_sys_clk = self.dds[channel_bit].get_f_sys_clk();
} else if reported_f_sys_clk != self.dds[channel_bit].get_f_sys_clk() {
return Err(Error::DDSError);
}
}
}
self.multi_dds.set_sys_clk_frequency(reported_f_sys_clk);
self.multi_dds.set_single_tone_profile(profile, frequency, phase, amplitude)?;
self.invoke_io_update()?;
Ok(())
}
// Setup NU_MASK in configuration register
// This selects the DDS channels that will be covered by multi_channel DDS (spi3)
// Note: If a channel is masked, io_update must be completed through configuration register (IO_UPDATE bit-field)
// Implication: Deselect such channel if individual communication is needed.
pub fn set_multi_channel_coverage(&mut self, channel: u8) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::MASK_NU, channel.into())
]).map(|_| ())
}
// Generate a pulse for io_update bit in configuration register
// This acts like io_update in CPLD struct, but for multi-dds channel
fn invoke_io_update(&mut self) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 1)
])?;
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 0)
]).map(|_| ())
}
// Difference from individual single tone setup function:
// - Remove the need of passing channel
// All selected channels must share the same f_sys_clk
pub fn set_multi_channel_single_tone_profile(&mut self, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError);
}
// Check f_sys_clk of all selected channels
let selected_channels = self.config_register.get_configuration(CFGMask::MASK_NU);
let mut found_a_selected_channel = false;
let mut reported_f_sys_clk: f64 = 0.0;
for channel_bit in 0..4 {
if (selected_channels & (1 << (channel_bit as u8))) != 0 {
if !found_a_selected_channel {
found_a_selected_channel = true;
reported_f_sys_clk = self.dds[channel_bit].get_f_sys_clk();
} else if reported_f_sys_clk != self.dds[channel_bit].get_f_sys_clk() {
return Err(Error::DDSError);
}
}
}
self.multi_dds.set_sys_clk_frequency(reported_f_sys_clk)?;
self.multi_dds.set_single_tone_profile(profile, frequency, phase, amplitude)?;
self.invoke_io_update()
}
// Generate a pulse for io_update bit in configuration register
// This acts like io_update in CPLD struct, but for multi-dds channel
fn invoke_io_update(&mut self) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 1)
])?;
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 0)
]).map(|_| ())
}
}