fix tab/space

This commit is contained in:
occheung 2020-09-25 14:24:33 +08:00
parent 84eec58ee1
commit dff726d121
9 changed files with 1424 additions and 1425 deletions

View File

@ -4,123 +4,123 @@ use core::assert;
use crate::urukul::Error; use crate::urukul::Error;
pub struct Attenuator<SPI> { pub struct Attenuator<SPI> {
spi: SPI, spi: SPI,
data: [u8; 4], data: [u8; 4],
} }
impl<SPI, E> Attenuator<SPI> impl<SPI, E> Attenuator<SPI>
where where
SPI: Transfer<u8, Error = E> SPI: Transfer<u8, Error = E>
{ {
pub fn new(spi: SPI) -> Self { pub fn new(spi: SPI) -> Self {
Attenuator { Attenuator {
spi, spi,
// data[y] refers to the yth byte for SPI communication // data[y] refers to the yth byte for SPI communication
data: [0, 0, 0, 0], data: [0, 0, 0, 0],
} }
} }
/* /*
* Set attenuations of all attenuators * Set attenuations of all attenuators
* att[x] refers to the attenuation for channel x * att[x] refers to the attenuation for channel x
*/ */
pub fn set_attenuation(&mut self, att: [f32; 4]) -> Result<(), Error<E>> { pub fn set_attenuation(&mut self, att: [f32; 4]) -> Result<(), Error<E>> {
for i in 0..4 { for i in 0..4 {
let mut atten = att[i]; let mut atten = att[i];
if att[i] > 31.5 { if att[i] > 31.5 {
atten = 31.5; atten = 31.5;
} }
if att[i] < 0.0 { if att[i] < 0.0 {
atten = 0.0; atten = 0.0;
} }
// Set data as attenuation * 2 // Set data as attenuation * 2
// Flip data using bitwise XOR, active low data // Flip data using bitwise XOR, active low data
// Data is most signifant attenuator first // Data is most signifant attenuator first
self.data[3-i] = (((atten * 2.0) as u8) ^ 0xFF) << 2 self.data[3-i] = (((atten * 2.0) as u8) ^ 0xFF) << 2
} }
let mut clone = self.data.clone(); let mut clone = self.data.clone();
// Transmit SPI once to set attenuation // Transmit SPI once to set attenuation
self.spi.transfer(&mut clone) self.spi.transfer(&mut clone)
.map(|_| ()) .map(|_| ())
.map_err(|_| Error::AttenuatorError) .map_err(|_| Error::AttenuatorError)
} }
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> { pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
assert!(channel < 4); assert!(channel < 4);
let mut arr: [f32; 4] = self.get_attenuation()?; let mut arr: [f32; 4] = self.get_attenuation()?;
arr[channel as usize] = attenuation; arr[channel as usize] = attenuation;
self.set_attenuation(arr).map(|_| ()) self.set_attenuation(arr).map(|_| ())
} }
pub fn get_channel_attenuation(&mut self, channel: u8) -> Result<f32, Error<E>> { pub fn get_channel_attenuation(&mut self, channel: u8) -> Result<f32, Error<E>> {
assert!(channel < 4); assert!(channel < 4);
match self.get_attenuation() { match self.get_attenuation() {
Ok(arr) => Ok(arr[channel as usize]), Ok(arr) => Ok(arr[channel as usize]),
Err(e) => Err(e), Err(e) => Err(e),
} }
} }
pub fn get_attenuation(&mut self) -> Result<[f32; 4], Error<E>> { pub fn get_attenuation(&mut self) -> Result<[f32; 4], Error<E>> {
let mut clone = self.data.clone(); let mut clone = self.data.clone();
match self.spi.transfer(&mut clone).map_err(Error::SPI) { match self.spi.transfer(&mut clone).map_err(Error::SPI) {
Ok(arr) => { Ok(arr) => {
let mut ret :[f32; 4] = [0.0; 4]; let mut ret :[f32; 4] = [0.0; 4];
for index in 0..4 { for index in 0..4 {
ret[index] = ((arr[3 - index] ^ 0xFC) as f32) / 8.0; ret[index] = ((arr[3 - index] ^ 0xFC) as f32) / 8.0;
} }
Ok(ret) Ok(ret)
}, },
Err(e) => Err(e), Err(e) => Err(e),
} }
} }
/* /*
* Test method for Attenuators. * Test method for Attenuators.
* Return the number of test failed. * Return the number of test failed.
*/ */
pub fn test(&mut self) -> Result<u32, Error<E>> { pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test attenuators by getting back the attenuation // Test attenuators by getting back the attenuation
let mut error_count = 0; let mut error_count = 0;
// Convert cached SPI data into attenuation floats // Convert cached SPI data into attenuation floats
let att_floats :[f32; 4] = [ let att_floats :[f32; 4] = [
((self.data[3] ^ 0xFC) as f32) / 8.0, ((self.data[3] ^ 0xFC) as f32) / 8.0,
((self.data[2] ^ 0xFC) as f32) / 8.0, ((self.data[2] ^ 0xFC) as f32) / 8.0,
((self.data[1] ^ 0xFC) as f32) / 8.0, ((self.data[1] ^ 0xFC) as f32) / 8.0,
((self.data[0] ^ 0xFC) as f32) / 8.0, ((self.data[0] ^ 0xFC) as f32) / 8.0,
]; ];
// Set the attenuation to an arbitrary value, then read the attenuation // Set the attenuation to an arbitrary value, then read the attenuation
self.set_attenuation([ self.set_attenuation([
3.5, 9.5, 20.0, 28.5 3.5, 9.5, 20.0, 28.5
])?; ])?;
match self.get_attenuation() { match self.get_attenuation() {
Ok(arr) => { Ok(arr) => {
if arr[0] != 3.5 { if arr[0] != 3.5 {
error_count += 1; error_count += 1;
} }
if arr[1] != 9.5 { if arr[1] != 9.5 {
error_count += 1; error_count += 1;
} }
if arr[2] != 20.0 { if arr[2] != 20.0 {
error_count += 1; error_count += 1;
} }
if arr[3] != 28.5 { if arr[3] != 28.5 {
error_count += 1; error_count += 1;
} }
}, },
Err(_) => return Err(Error::AttenuatorError), Err(_) => return Err(Error::AttenuatorError),
}; };
self.set_attenuation(att_floats)?; self.set_attenuation(att_floats)?;
Ok(error_count) Ok(error_count)
} }
} }
impl<SPI, E> Transfer<u8> for Attenuator<SPI> impl<SPI, E> Transfer<u8> for Attenuator<SPI>
where where
SPI: Transfer<u8, Error = E> SPI: Transfer<u8, Error = E>
{ {
type Error = Error<E>; type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> { fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI) self.spi.transfer(words).map_err(Error::SPI)
} }
} }

View File

@ -7,51 +7,51 @@
*/ */
macro_rules! construct_bitmask { macro_rules! construct_bitmask {
($collection: ident; $unsigned_type: ty; $($name: ident, $shift: expr, $width: expr),+) => { ($collection: ident; $unsigned_type: ty; $($name: ident, $shift: expr, $width: expr),+) => {
#[derive(Debug, Copy, Clone, PartialEq, Eq)] #[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[allow(non_camel_case_types)] #[allow(non_camel_case_types)]
pub enum $collection { pub enum $collection {
$( $(
$name, $name,
)* )*
} }
impl $collection { impl $collection {
pub(crate) fn get_width(self) -> u8 { pub(crate) fn get_width(self) -> u8 {
match self { match self {
$( $(
$collection::$name => $width, $collection::$name => $width,
)* )*
} }
} }
pub(crate) fn get_shift(self) -> u8 { pub(crate) fn get_shift(self) -> u8 {
match self { match self {
$( $(
$collection::$name => $shift, $collection::$name => $shift,
)* )*
} }
} }
pub(crate) fn get_bitmask(self) -> $unsigned_type { pub(crate) fn get_bitmask(self) -> $unsigned_type {
let mut mask: $unsigned_type = 0; let mut mask: $unsigned_type = 0;
for bit in 0..self.get_width() { for bit in 0..self.get_width() {
mask |= (1 << (self.get_shift() + bit) % ((size_of::<$unsigned_type>() as u8) * 8)); mask |= (1 << (self.get_shift() + bit) % ((size_of::<$unsigned_type>() as u8) * 8));
} }
mask mask
} }
pub(crate) fn get_shifted_bits(self, arg: $unsigned_type) -> $unsigned_type { pub(crate) fn get_shifted_bits(self, arg: $unsigned_type) -> $unsigned_type {
assert!(arg < (2 << self.get_width())); assert!(arg < (2 << self.get_width()));
(arg << (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8))) (arg << (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8)))
} }
#[allow(dead_code)] #[allow(dead_code)]
pub(crate) fn set_data_by_arg(self, data: &mut $unsigned_type, arg: $unsigned_type) { pub(crate) fn set_data_by_arg(self, data: &mut $unsigned_type, arg: $unsigned_type) {
// Clear bits in field, then insert shifted argument // Clear bits in field, then insert shifted argument
*data &= (!self.get_bitmask()); *data &= (!self.get_bitmask());
*data |= self.get_shifted_bits(arg); *data |= self.get_shifted_bits(arg);
} }
pub(crate) fn get_filtered_content(self, data: $unsigned_type) -> $unsigned_type { pub(crate) fn get_filtered_content(self, data: $unsigned_type) -> $unsigned_type {
// Filter everything then shift bits // Filter everything then shift bits
((data & self.get_bitmask()) >> (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8))) ((data & self.get_bitmask()) >> (self.get_shift() % ((size_of::<$unsigned_type>() as u8) * 8)))
} }
} }
} }
} }

View File

@ -4,121 +4,121 @@ use core::mem::size_of;
// Bitmasks for CFG // Bitmasks for CFG
construct_bitmask!(CFGMask; u32; construct_bitmask!(CFGMask; u32;
RF_SW, 0, 4, RF_SW, 0, 4,
LED, 4, 4, LED, 4, 4,
PROFILE, 8, 3, PROFILE, 8, 3,
IO_UPDATE, 12, 1, IO_UPDATE, 12, 1,
MASK_NU, 13, 4, MASK_NU, 13, 4,
CLK_SEL0, 17, 1, CLK_SEL0, 17, 1,
SYNC_SEL, 18, 1, SYNC_SEL, 18, 1,
RST, 19, 1, RST, 19, 1,
IO_RST, 20, 1, IO_RST, 20, 1,
CLK_SEL1, 21, 1, CLK_SEL1, 21, 1,
DIV, 22, 2 DIV, 22, 2
); );
// BitMasks for CFG read // BitMasks for CFG read
construct_bitmask!(StatusMask; u32; construct_bitmask!(StatusMask; u32;
RF_SW, 0, 4, RF_SW, 0, 4,
SMP_ERR, 4, 4, SMP_ERR, 4, 4,
PLL_LOCK, 8, 4, PLL_LOCK, 8, 4,
IFC_MODE, 12, 4, IFC_MODE, 12, 4,
PROTO_KEY, 16, 7 PROTO_KEY, 16, 7
); );
pub struct ConfigRegister<SPI> { pub struct ConfigRegister<SPI> {
spi: SPI, spi: SPI,
data: u32, data: u32,
} }
impl<SPI, E> ConfigRegister<SPI> impl<SPI, E> ConfigRegister<SPI>
where where
SPI: Transfer<u8, Error = E> SPI: Transfer<u8, Error = E>
{ {
pub fn new(spi: SPI) -> Self { pub fn new(spi: SPI) -> Self {
ConfigRegister { ConfigRegister {
spi, spi,
data: 0, data: 0,
} }
} }
/* /*
* Set configuration bits according to data field * Set configuration bits according to data field
* Return status * Return status
*/ */
fn set_all_configurations(&mut self) -> Result<u32, Error<E>> { fn set_all_configurations(&mut self) -> Result<u32, Error<E>> {
match self.spi.transfer(&mut [ match self.spi.transfer(&mut [
((self.data & 0x00FF0000) >> 16) as u8, ((self.data & 0x00FF0000) >> 16) as u8,
((self.data & 0x0000FF00) >> 8) as u8, ((self.data & 0x0000FF00) >> 8) as u8,
((self.data & 0x000000FF) >> 0) as u8, ((self.data & 0x000000FF) >> 0) as u8,
]).map_err(Error::SPI) { ]).map_err(Error::SPI) {
Ok(arr) => Ok( Ok(arr) => Ok(
((arr[0] as u32) << 16) | ((arr[0] as u32) << 16) |
((arr[1] as u32) << 8) | ((arr[1] as u32) << 8) |
arr[2] as u32 arr[2] as u32
), ),
Err(e) => Err(e), Err(e) => Err(e),
} }
} }
/* /*
* Set configuration bits according to supplied configs * Set configuration bits according to supplied configs
* Return status * Return status
*/ */
pub fn set_configurations(&mut self, configs: &mut[(CFGMask, u32)]) -> Result<u32, Error<E>> { pub fn set_configurations(&mut self, configs: &mut[(CFGMask, u32)]) -> Result<u32, Error<E>> {
for config in configs.into_iter() { for config in configs.into_iter() {
config.0.set_data_by_arg(&mut self.data, config.1) config.0.set_data_by_arg(&mut self.data, config.1)
} }
// Write all configurations at the same time // Write all configurations at the same time
self.set_all_configurations() self.set_all_configurations()
} }
/* /*
* Return selected configuration field * Return selected configuration field
*/ */
pub fn get_configuration(&mut self, config_type: CFGMask) -> u8 { pub fn get_configuration(&mut self, config_type: CFGMask) -> u8 {
config_type.get_filtered_content(self.data) as u8 config_type.get_filtered_content(self.data) as u8
} }
/* /*
* Return status using mask * Return status using mask
*/ */
pub fn get_status(&mut self, status_type: StatusMask) -> Result<u8, Error<E>> { pub fn get_status(&mut self, status_type: StatusMask) -> Result<u8, Error<E>> {
match self.set_all_configurations() { match self.set_all_configurations() {
Ok(val) => Ok(status_type.get_filtered_content(val) as u8), Ok(val) => Ok(status_type.get_filtered_content(val) as u8),
Err(e) => Err(e), Err(e) => Err(e),
} }
} }
/* /*
* Return entire status register * Return entire status register
*/ */
pub fn get_all_status(&mut self) -> Result<u32, Error<E>> { pub fn get_all_status(&mut self) -> Result<u32, Error<E>> {
return self.set_all_configurations(); return self.set_all_configurations();
} }
/* /*
* Test method for Configuration Register. * Test method for Configuration Register.
* Return the number of test failed. * Return the number of test failed.
*/ */
pub fn test(&mut self) -> Result<u32, Error<E>> { pub fn test(&mut self) -> Result<u32, Error<E>> {
// Test configuration register by getting PROTO_KEY. // Test configuration register by getting PROTO_KEY.
match self.get_status(StatusMask::PROTO_KEY) { match self.get_status(StatusMask::PROTO_KEY) {
Ok(8) => Ok(0), Ok(8) => Ok(0),
Ok(_) => Ok(1), Ok(_) => Ok(1),
Err(_) => Err(Error::ConfigRegisterError), Err(_) => Err(Error::ConfigRegisterError),
} }
} }
} }
impl<SPI, E> Transfer<u8> for ConfigRegister<SPI> impl<SPI, E> Transfer<u8> for ConfigRegister<SPI>
where where
SPI: Transfer<u8, Error = E> SPI: Transfer<u8, Error = E>
{ {
type Error = Error<E>; type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> { fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
self.spi.transfer(words).map_err(Error::SPI) self.spi.transfer(words).map_err(Error::SPI)
} }
} }

View File

@ -2,14 +2,14 @@ use crate::urukul::Error;
use crate::spi_slave::Parts; use crate::spi_slave::Parts;
use embedded_hal::{ use embedded_hal::{
digital::v2::OutputPin, digital::v2::OutputPin,
blocking::spi::Transfer, blocking::spi::Transfer,
}; };
use core::cell; use core::cell;
/* /*
* Basic structure for CPLD signal multiplexing * Basic structure for CPLD signal multiplexing
*/ */
#[derive(Debug)] #[derive(Debug)]
pub struct CPLDData<SPI, CS0, CS1, CS2, GPIO> { pub struct CPLDData<SPI, CS0, CS1, CS2, GPIO> {

1524
src/dds.rs

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
use embedded_hal::{ use embedded_hal::{
digital::v2::{OutputPin, InputPin}, digital::v2::{OutputPin, InputPin},
blocking::spi::Transfer, blocking::spi::Transfer,
blocking::delay::DelayUs, blocking::delay::DelayUs,
}; };
@ -21,65 +21,65 @@ pub fn flash_ice40_fpga<SPI: Transfer<u8>,
DONE: InputPin> DONE: InputPin>
(mut spi: SPI, mut ss: SS, mut creset: RST, cdone: DONE, mut delay: DELAY) -> Result<(), FPGAFlashError> (mut spi: SPI, mut ss: SS, mut creset: RST, cdone: DONE, mut delay: DELAY) -> Result<(), FPGAFlashError>
{ {
// Data buffer setup // Data buffer setup
let mut dummy_byte :[u8; 1] = [0x00]; let mut dummy_byte :[u8; 1] = [0x00];
let mut dummy_13_bytes :[u8; 13] = [0x00; 13]; let mut dummy_13_bytes :[u8; 13] = [0x00; 13];
// Drive CRESET_B low // Drive CRESET_B low
creset.set_low() creset.set_low()
.map_err(|_| FPGAFlashError::NegotiationError)?; .map_err(|_| FPGAFlashError::NegotiationError)?;
// Drive SPI_SS_B low // Drive SPI_SS_B low
ss.set_low() ss.set_low()
.map_err(|_| FPGAFlashError::NegotiationError)?; .map_err(|_| FPGAFlashError::NegotiationError)?;
// Wait at least 200ns // Wait at least 200ns
delay.delay_us(1_u32); delay.delay_us(1_u32);
// Drive CRESET_B high // Drive CRESET_B high
creset.set_high() creset.set_high()
.map_err(|_| FPGAFlashError::NegotiationError)?; .map_err(|_| FPGAFlashError::NegotiationError)?;
// Wait at least another 1200us to clear internal config memory // Wait at least another 1200us to clear internal config memory
delay.delay_us(1200_u32); delay.delay_us(1200_u32);
// Before data transmission starts, check if C_DONE is truly low // Before data transmission starts, check if C_DONE is truly low
// If C_DONE is high, the FPGA reset procedure is unsuccessful // If C_DONE is high, the FPGA reset procedure is unsuccessful
match cdone.is_low() { match cdone.is_low() {
Ok(true) => {}, Ok(true) => {},
_ => return Err(FPGAFlashError::ResetStatusError), _ => return Err(FPGAFlashError::ResetStatusError),
}; };
// Set SPI_SS_B high // Set SPI_SS_B high
ss.set_high() ss.set_high()
.map_err(|_| FPGAFlashError::NegotiationError)?; .map_err(|_| FPGAFlashError::NegotiationError)?;
// Send 8 dummy clock, effectively 1 byte of 0x00 // Send 8 dummy clock, effectively 1 byte of 0x00
spi.transfer(&mut dummy_byte) spi.transfer(&mut dummy_byte)
.map_err(|_| FPGAFlashError::SPICommunicationError)?; .map_err(|_| FPGAFlashError::SPICommunicationError)?;
// Drive SPI_SS_B low // Drive SPI_SS_B low
ss.set_low() ss.set_low()
.map_err(|_| FPGAFlashError::NegotiationError)?; .map_err(|_| FPGAFlashError::NegotiationError)?;
// Send the whole image without interruption // Send the whole image without interruption
for byte in DATA.into_iter() { for byte in DATA.into_iter() {
let mut single_byte_slice = [*byte]; let mut single_byte_slice = [*byte];
spi.transfer(&mut single_byte_slice) spi.transfer(&mut single_byte_slice)
.map_err(|_| FPGAFlashError::SPICommunicationError)?; .map_err(|_| FPGAFlashError::SPICommunicationError)?;
} }
// Drive SPI_SS_B high // Drive SPI_SS_B high
ss.set_high() ss.set_high()
.map_err(|_| FPGAFlashError::NegotiationError)?; .map_err(|_| FPGAFlashError::NegotiationError)?;
// Send at another 100 dummy clocks (choosing 13 bytes) // Send at another 100 dummy clocks (choosing 13 bytes)
spi.transfer(&mut dummy_13_bytes) spi.transfer(&mut dummy_13_bytes)
.map_err(|_| FPGAFlashError::SPICommunicationError)?; .map_err(|_| FPGAFlashError::SPICommunicationError)?;
// Check the CDONE output from FPGA // Check the CDONE output from FPGA
// CDONE needs to be high // CDONE needs to be high
match cdone.is_high() { match cdone.is_high() {
Ok(true) => {}, Ok(true) => {},
_ => return Err(FPGAFlashError::ResetStatusError), _ => return Err(FPGAFlashError::ResetStatusError),
}; };

View File

@ -1,15 +1,16 @@
#![no_main] #![no_main]
#![no_std] #![no_std]
#![feature(str_strip)] #![feature(str_strip)]
use log::{ trace, debug, info, warn }; #![feature(core_intrinsics)]
use stm32h7xx_hal::hal::digital::v2::InputPin;
use log::{ trace };
use stm32h7xx_hal::gpio::Speed; use stm32h7xx_hal::gpio::Speed;
use stm32h7xx_hal::{pac, prelude::*, spi}; use stm32h7xx_hal::{pac, prelude::*, spi};
use stm32h7xx_hal::ethernet; use stm32h7xx_hal::ethernet;
use smoltcp as net; use smoltcp as net;
use minimq::{ use minimq::{
embedded_nal::{IpAddr, Ipv4Addr, TcpStack}, embedded_nal::{ IpAddr, Ipv4Addr },
MqttClient, QoS MqttClient, QoS
}; };
@ -17,7 +18,6 @@ use cortex_m;
use cortex_m_rt::entry; use cortex_m_rt::entry;
use rtic::cyccnt::{Instant, U32Ext}; use rtic::cyccnt::{Instant, U32Ext};
use heapless::Vec;
use heapless::consts; use heapless::consts;
#[macro_use] #[macro_use]
@ -70,30 +70,30 @@ macro_rules! add_socket {
#[entry] #[entry]
fn main() -> ! { fn main() -> ! {
let mut cp = cortex_m::Peripherals::take().unwrap(); let mut cp = cortex_m::Peripherals::take().unwrap();
let dp = pac::Peripherals::take().unwrap(); let dp = pac::Peripherals::take().unwrap();
unsafe { unsafe {
logger::enable_itm(&dp.DBGMCU, &mut cp.DCB, &mut cp.ITM); logger::enable_itm(&dp.DBGMCU, &mut cp.DCB, &mut cp.ITM);
} }
logger::init(); logger::init();
// Enable SRAM3 for the descriptor ring. // Enable SRAM3 for the descriptor ring.
dp.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit()); dp.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
// // Reset RCC clock // // Reset RCC clock
// dp.RCC.rsr.write(|w| w.rmvf().set_bit()); // dp.RCC.rsr.write(|w| w.rmvf().set_bit());
let pwr = dp.PWR.constrain(); let pwr = dp.PWR.constrain();
let vos = pwr.freeze(); let vos = pwr.freeze();
let rcc = dp.RCC.constrain(); let rcc = dp.RCC.constrain();
let ccdr = rcc let ccdr = rcc
.use_hse(8.mhz()) .use_hse(8.mhz())
.sys_ck(400.mhz()) .sys_ck(400.mhz())
.hclk(200.mhz()) .hclk(200.mhz())
.pll1_q_ck(48.mhz()) .pll1_q_ck(48.mhz())
.pll1_r_ck(400.mhz()) .pll1_r_ck(400.mhz())
.freeze(vos, &dp.SYSCFG); .freeze(vos, &dp.SYSCFG);
let delay = cp.SYST.delay(ccdr.clocks); let delay = cp.SYST.delay(ccdr.clocks);
@ -102,42 +102,42 @@ fn main() -> ! {
cp.DWT.enable_cycle_counter(); cp.DWT.enable_cycle_counter();
let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA); let gpioa = dp.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB); let gpiob = dp.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC); let gpioc = dp.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD); let gpiod = dp.GPIOD.split(ccdr.peripheral.GPIOD);
let gpioe = dp.GPIOE.split(ccdr.peripheral.GPIOE); let _gpioe = dp.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = dp.GPIOF.split(ccdr.peripheral.GPIOF); let gpiof = dp.GPIOF.split(ccdr.peripheral.GPIOF);
let gpiog = dp.GPIOG.split(ccdr.peripheral.GPIOG); let gpiog = dp.GPIOG.split(ccdr.peripheral.GPIOG);
// Note: ITM doesn't work beyond this, due to a pin conflict between: // Note: ITM doesn't work beyond this, due to a pin conflict between:
// - FPGA_SPI: SCK (af5) // - FPGA_SPI: SCK (af5)
// - ST_LINK SWO (af0) // - ST_LINK SWO (af0)
// Both demands PB3 // Both demands PB3
trace!("Flashing configuration bitstream to iCE40 HX8K on Humpback."); trace!("Flashing configuration bitstream to iCE40 HX8K on Humpback.");
// Using SPI_1 alternate functions (af5) // Using SPI_1 alternate functions (af5)
let fpga_sck = gpiob.pb3.into_alternate_af5(); let fpga_sck = gpiob.pb3.into_alternate_af5();
let fpga_sdo = gpiob.pb4.into_alternate_af5(); let fpga_sdo = gpiob.pb4.into_alternate_af5();
let fpga_sdi = gpiob.pb5.into_alternate_af5(); let fpga_sdi = gpiob.pb5.into_alternate_af5();
// Setup SPI_SS_B and CRESET_B // Setup SPI_SS_B and CRESET_B
let fpga_ss = gpioa.pa4.into_push_pull_output(); let fpga_ss = gpioa.pa4.into_push_pull_output();
let fpga_creset = gpiof.pf3.into_open_drain_output(); let fpga_creset = gpiof.pf3.into_open_drain_output();
// Setup CDONE // Setup CDONE
let fpga_cdone = gpiod.pd15.into_pull_up_input(); let fpga_cdone = gpiod.pd15.into_pull_up_input();
// Setup SPI interface // Setup SPI interface
let fpga_cfg_spi = dp.SPI1.spi( let fpga_cfg_spi = dp.SPI1.spi(
(fpga_sck, fpga_sdo, fpga_sdi), (fpga_sck, fpga_sdo, fpga_sdi),
spi::MODE_3, spi::MODE_3,
12.mhz(), 12.mhz(),
ccdr.peripheral.SPI1, ccdr.peripheral.SPI1,
&ccdr.clocks, &ccdr.clocks,
); );
flash_ice40_fpga(fpga_cfg_spi, fpga_ss, fpga_creset, fpga_cdone, delay).unwrap(); flash_ice40_fpga(fpga_cfg_spi, fpga_ss, fpga_creset, fpga_cdone, delay).unwrap();
// Configure ethernet IO // Configure ethernet IO
{ {
@ -183,46 +183,46 @@ fn main() -> ! {
.routes(routes) .routes(routes)
.finalize(); .finalize();
/* /*
* Using SPI6 * Using SPI6
* SCLK -> PA5 (af8) * SCLK -> PA5 (af8)
* MOSI -> PG14 (af5) * MOSI -> PG14 (af5)
* MISO -> PA6 (af8) * MISO -> PA6 (af8)
* CS -> 0: PB12, 1: PA15, 2: PC7 * CS -> 0: PB12, 1: PA15, 2: PC7
*/ */
let sclk = gpioa.pa5.into_alternate_af8().set_speed(Speed::VeryHigh); let sclk = gpioa.pa5.into_alternate_af8().set_speed(Speed::VeryHigh);
let mosi = gpiog.pg14.into_alternate_af5().set_speed(Speed::VeryHigh); let mosi = gpiog.pg14.into_alternate_af5().set_speed(Speed::VeryHigh);
let miso = gpioa.pa6.into_alternate_af8().set_speed(Speed::VeryHigh); let miso = gpioa.pa6.into_alternate_af8().set_speed(Speed::VeryHigh);
let (cs0, cs1, cs2) = ( let (cs0, cs1, cs2) = (
gpiob.pb12.into_push_pull_output(), gpiob.pb12.into_push_pull_output(),
gpioa.pa15.into_push_pull_output(), gpioa.pa15.into_push_pull_output(),
gpioc.pc7.into_push_pull_output(), gpioc.pc7.into_push_pull_output(),
); );
/* /*
* I/O_Update -> PB15 * I/O_Update -> PB15
*/ */
let io_update = gpiob.pb15.into_push_pull_output(); let io_update = gpiob.pb15.into_push_pull_output();
let spi = dp.SPI6.spi( let spi = dp.SPI6.spi(
(sclk, miso, mosi), (sclk, miso, mosi),
spi::MODE_0, spi::MODE_0,
10.mhz(), 2.mhz(),
ccdr.peripheral.SPI6, ccdr.peripheral.SPI6,
&ccdr.clocks, &ccdr.clocks,
); );
let switch = CPLD::new(spi, (cs0, cs1, cs2), io_update); let switch = CPLD::new(spi, (cs0, cs1, cs2), io_update);
let parts = switch.split(); let parts = switch.split();
let mut urukul = Urukul::new( let mut urukul = Urukul::new(
parts.spi1, parts.spi2, parts.spi3, parts.spi4, parts.spi5, parts.spi6, parts.spi7 parts.spi1, parts.spi2, parts.spi3, parts.spi4, parts.spi5, parts.spi6, parts.spi7
); );
urukul.reset().unwrap(); urukul.reset().unwrap();
// info!("Test value: {}", urukul.test().unwrap()); // info!("Test value: {}", urukul.test().unwrap());
let mut mqtt_mux = MqttMux::new(urukul); let mut mqtt_mux = MqttMux::new(urukul);
// Time unit in ms // Time unit in ms
let mut time: u32 = 0; let mut time: u32 = 0;
@ -271,7 +271,7 @@ fn main() -> ! {
.poll(|_client, topic, message, _properties| { .poll(|_client, topic, message, _properties| {
// info!("On {:?}, received: {:?}", topic, message); // info!("On {:?}, received: {:?}", topic, message);
// Why is topic a string while message is a slice? // Why is topic a string while message is a slice?
mqtt_mux.process_mqtt(topic, message).is_ok(); mqtt_mux.process_mqtt(topic, message).unwrap();
}).is_ok(); }).is_ok();
if connection && !has_subscribed && tick { if connection && !has_subscribed && tick {

View File

@ -1,61 +1,61 @@
use embedded_hal::{ use embedded_hal::{
blocking::spi::Transfer, blocking::spi::Transfer,
digital::v2::OutputPin, digital::v2::OutputPin,
}; };
use crate::cpld::CPLD; use crate::cpld::CPLD;
use crate::urukul::Error; use crate::urukul::Error;
pub struct SPISlave<'a, SPI, CS0, CS1, CS2, GPIO> ( pub struct SPISlave<'a, SPI, CS0, CS1, CS2, GPIO> (
// SPI device to be multiplexed // SPI device to be multiplexed
&'a CPLD<SPI, CS0, CS1, CS2, GPIO>, &'a CPLD<SPI, CS0, CS1, CS2, GPIO>,
// Channel of SPI slave // Channel of SPI slave
u8, u8,
// Need I/O Update // Need I/O Update
bool, bool,
); );
pub struct Parts<'a, SPI, CS0, CS1, CS2, GPIO> { pub struct Parts<'a, SPI, CS0, CS1, CS2, GPIO> {
pub spi1: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi1: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi2: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi2: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi3: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi3: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi4: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi4: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi5: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi5: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi6: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi6: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
pub spi7: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>, pub spi7: SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>,
} }
impl<'a, SPI, CS0, CS1, CS2, GPIO> Parts<'a, SPI, CS0, CS1, CS2, GPIO> { impl<'a, SPI, CS0, CS1, CS2, GPIO> Parts<'a, SPI, CS0, CS1, CS2, GPIO> {
pub(crate) fn new(cpld: &'a CPLD<SPI, CS0, CS1, CS2, GPIO>) -> Self { pub(crate) fn new(cpld: &'a CPLD<SPI, CS0, CS1, CS2, GPIO>) -> Self {
Parts { Parts {
spi1: SPISlave(&cpld, 1, false), spi1: SPISlave(&cpld, 1, false),
spi2: SPISlave(&cpld, 2, false), spi2: SPISlave(&cpld, 2, false),
spi3: SPISlave(&cpld, 3, false), spi3: SPISlave(&cpld, 3, false),
spi4: SPISlave(&cpld, 4, true), spi4: SPISlave(&cpld, 4, true),
spi5: SPISlave(&cpld, 5, true), spi5: SPISlave(&cpld, 5, true),
spi6: SPISlave(&cpld, 6, true), spi6: SPISlave(&cpld, 6, true),
spi7: SPISlave(&cpld, 7, true), spi7: SPISlave(&cpld, 7, true),
} }
} }
} }
impl<'a, SPI, CS0, CS1, CS2, GPIO, E> Transfer<u8> for SPISlave<'a, SPI, CS0, CS1, CS2, GPIO> impl<'a, SPI, CS0, CS1, CS2, GPIO, E> Transfer<u8> for SPISlave<'a, SPI, CS0, CS1, CS2, GPIO>
where where
CS2: OutputPin, CS2: OutputPin,
CS1: OutputPin, CS1: OutputPin,
CS0: OutputPin, CS0: OutputPin,
SPI: Transfer<u8, Error = E>, SPI: Transfer<u8, Error = E>,
GPIO: OutputPin, GPIO: OutputPin,
{ {
type Error = Error<E>; type Error = Error<E>;
fn transfer<'w>(&mut self, words: &'w mut[u8]) -> Result<&'w [u8], Self::Error> { fn transfer<'w>(&mut self, words: &'w mut[u8]) -> Result<&'w [u8], Self::Error> {
let mut dev = self.0.data.try_borrow_mut().map_err(|_| Error::GetRefMutDataError)?; let mut dev = self.0.data.try_borrow_mut().map_err(|_| Error::GetRefMutDataError)?;
dev.select_chip(self.1).map_err(|_| Error::CSError)?; dev.select_chip(self.1).map_err(|_| Error::CSError)?;
let result = dev.spi.transfer(words).map_err(Error::SPI)?; let result = dev.spi.transfer(words).map_err(Error::SPI)?;
dev.select_chip(0).map_err(|_| Error::CSError)?; dev.select_chip(0).map_err(|_| Error::CSError)?;
if self.2 { if self.2 {
dev.issue_io_update().map_err(|_| Error::IOUpdateError)?; dev.issue_io_update().map_err(|_| Error::IOUpdateError)?;
} }
Ok(result) Ok(result)
} }
} }

View File

@ -1,6 +1,6 @@
extern crate embedded_hal; extern crate embedded_hal;
use embedded_hal::{ use embedded_hal::{
blocking::spi::Transfer, blocking::spi::Transfer,
}; };
use crate::config_register::ConfigRegister; use crate::config_register::ConfigRegister;
@ -10,329 +10,328 @@ use crate::attenuator::Attenuator;
use crate::dds::DDS; use crate::dds::DDS;
/* /*
* Enum for structuring error * Enum for structuring error
*/ */
#[derive(Debug)] #[derive(Debug)]
pub enum Error<E> { pub enum Error<E> {
SPI(E), SPI(E),
CSError, CSError,
GetRefMutDataError, GetRefMutDataError,
AttenuatorError, AttenuatorError,
IOUpdateError, IOUpdateError,
DDSError, DDSError,
ConfigRegisterError, ConfigRegisterError,
DDSCLKError, DDSCLKError,
DDSRAMError, DDSRAMError,
ParameterError, ParameterError,
MqttTopicError, MqttTopicError,
MqttCommandError, MqttCommandError,
} }
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub enum ClockSource { pub enum ClockSource {
OSC, OSC,
SMA, SMA,
MMCX, MMCX,
} }
/* /*
* Struct for Urukul master device * Struct for Urukul master device
*/ */
pub struct Urukul<SPI> { pub struct Urukul<SPI> {
config_register: ConfigRegister<SPI>, config_register: ConfigRegister<SPI>,
attenuator: Attenuator<SPI>, attenuator: Attenuator<SPI>,
multi_dds: DDS<SPI>, multi_dds: DDS<SPI>,
dds: [DDS<SPI>; 4], dds: [DDS<SPI>; 4],
f_master_clk: f64, f_master_clk: f64,
} }
impl<SPI, E> Urukul<SPI> impl<SPI, E> Urukul<SPI>
where where
SPI: Transfer<u8, Error = E>, SPI: Transfer<u8, Error = E>,
{ {
/* /*
* Master constructor for the entire Urukul device * Master constructor for the entire Urukul device
* Supply 7 SPI channels to Urukul and 4 reference clock frequencies * Supply 7 SPI channels to Urukul and 4 reference clock frequencies
*/ */
pub fn new(spi1: SPI, spi2: SPI, spi3: SPI, spi4: SPI, spi5: SPI, spi6: SPI, spi7: SPI) -> Self { pub fn new(spi1: SPI, spi2: SPI, spi3: SPI, spi4: SPI, spi5: SPI, spi6: SPI, spi7: SPI) -> Self {
// Construct Urukul // Construct Urukul
Urukul { Urukul {
config_register: ConfigRegister::new(spi1), config_register: ConfigRegister::new(spi1),
attenuator: Attenuator::new(spi2), attenuator: Attenuator::new(spi2),
// Create a multi-channel DDS with predefined 25MHz clock // Create a multi-channel DDS with predefined 25MHz clock
multi_dds: DDS::new(spi3, 25_000_000.0), multi_dds: DDS::new(spi3, 25_000_000.0),
// Create 4 DDS instances with predefined 25MHz clock // Create 4 DDS instances with predefined 25MHz clock
// Counter-intuitive to assign urukul clock before having a urukul // Counter-intuitive to assign urukul clock before having a urukul
dds: [ dds: [
DDS::new(spi4, 25_000_000.0), DDS::new(spi4, 25_000_000.0),
DDS::new(spi5, 25_000_000.0), DDS::new(spi5, 25_000_000.0),
DDS::new(spi6, 25_000_000.0), DDS::new(spi6, 25_000_000.0),
DDS::new(spi7, 25_000_000.0), DDS::new(spi7, 25_000_000.0),
], ],
// Default clock selection: OSC, predefined 100MHz speed // Default clock selection: OSC, predefined 100MHz speed
f_master_clk: 100_000_000.0, f_master_clk: 100_000_000.0,
} }
} }
/* /*
* Reset method. To be invoked by initialization and manual reset. * Reset method. To be invoked by initialization and manual reset.
* Only Urukul struct provides reset method. * Only Urukul struct provides reset method.
* DDS reset is controlled by Urukul (RST). * DDS reset is controlled by Urukul (RST).
* Attenuators only have shift register reset, which does not affect its data * Attenuators only have shift register reset, which does not affect its data
* CPLD only has a "all-zero" default state. * CPLD only has a "all-zero" default state.
*/ */
pub fn reset(&mut self) -> Result<(), Error<E>> { pub fn reset(&mut self) -> Result<(), Error<E>> {
// Reset DDS and attenuators // Reset DDS and attenuators
self.config_register.set_configurations(&mut [ self.config_register.set_configurations(&mut [
(CFGMask::RST, 1), (CFGMask::RST, 1),
(CFGMask::IO_RST, 1), (CFGMask::IO_RST, 1),
(CFGMask::IO_UPDATE, 0) (CFGMask::IO_UPDATE, 0)
])?; ])?;
// Set 0 to all fields on configuration register. // Set 0 to all fields on configuration register.
self.config_register.set_configurations(&mut [ self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, 0), (CFGMask::RF_SW, 0),
(CFGMask::LED, 0), (CFGMask::LED, 0),
(CFGMask::PROFILE, 0), (CFGMask::PROFILE, 0),
(CFGMask::IO_UPDATE, 0), (CFGMask::IO_UPDATE, 0),
(CFGMask::MASK_NU, 0), (CFGMask::MASK_NU, 0),
(CFGMask::CLK_SEL0, 0), (CFGMask::CLK_SEL0, 0),
(CFGMask::SYNC_SEL, 0), (CFGMask::SYNC_SEL, 0),
(CFGMask::RST, 0), (CFGMask::RST, 0),
(CFGMask::IO_RST, 0), (CFGMask::IO_RST, 0),
(CFGMask::CLK_SEL1, 0), (CFGMask::CLK_SEL1, 0),
(CFGMask::DIV, 0), (CFGMask::DIV, 0),
])?; ])?;
// Init all DDS chips. Configure SDIO as input only. // Init all DDS chips. Configure SDIO as input only.
for chip_no in 0..4 { for chip_no in 0..4 {
self.dds[chip_no].init()?; self.dds[chip_no].init()?;
} }
// Clock tree reset. OSC clock source by default // Clock tree reset. OSC clock source by default
self.f_master_clk = 100_000_000.0; self.f_master_clk = 100_000_000.0;
// CPLD divides clock frequency by 4 by default. // CPLD divides clock frequency by 4 by default.
for chip_no in 0..4 { for chip_no in 0..4 {
self.dds[chip_no].set_ref_clk_frequency(self.f_master_clk / 4.0)?; self.dds[chip_no].set_ref_clk_frequency(self.f_master_clk / 4.0)?;
} }
Ok(()) Ok(())
} }
/* /*
* Test method fo Urukul. * Test method fo Urukul.
* Return the number of test failed. * Return the number of test failed.
*/ */
pub fn test(&mut self) -> Result<u32, Error<E>> { pub fn test(&mut self) -> Result<u32, Error<E>> {
let mut count = self.config_register.test()?; let mut count = self.config_register.test()?;
count += self.attenuator.test()?; count += self.attenuator.test()?;
for chip_no in 0..4 { for chip_no in 0..4 {
count += self.dds[chip_no].test()?; count += self.dds[chip_no].test()?;
} }
Ok(count) Ok(count)
} }
} }
impl<SPI, E> Urukul<SPI> impl<SPI, E> Urukul<SPI>
where where
SPI: Transfer<u8, Error = E> SPI: Transfer<u8, Error = E>
{ {
pub fn get_channel_switch_status(&mut self, channel: u32) -> Result<bool, Error<E>> { pub fn get_channel_switch_status(&mut self, channel: u32) -> Result<bool, Error<E>> {
if channel < 4 { if channel < 4 {
self.config_register.get_status(StatusMask::RF_SW).map(|val| (val & (1 << channel)) != 0) self.config_register.get_status(StatusMask::RF_SW).map(|val| (val & (1 << channel)) != 0)
} else { } else {
Err(Error::ParameterError) Err(Error::ParameterError)
} }
} }
pub fn set_channel_switch(&mut self, channel: u32, status: bool) -> Result<(), Error<E>> { pub fn set_channel_switch(&mut self, channel: u32, status: bool) -> Result<(), Error<E>> {
if channel < 4 { if channel < 4 {
let prev = u32::from(self.config_register.get_status(StatusMask::RF_SW)?); let prev = u32::from(self.config_register.get_status(StatusMask::RF_SW)?);
let next = { let next = {
if status { if status {
prev | (1 << channel) prev | (1 << channel)
} else { } else {
prev & (!(1 << channel)) prev & (!(1 << channel))
} }
}; };
self.config_register.set_configurations(&mut [ self.config_register.set_configurations(&mut [
(CFGMask::RF_SW, next), (CFGMask::RF_SW, next),
]).map(|_| ()) ]).map(|_| ())
} else { } else {
Err(Error::ParameterError) Err(Error::ParameterError)
} }
} }
pub fn set_clock(&mut self, source: ClockSource, frequency: f64, division: u8) -> Result<(), Error<E>> { pub fn set_clock(&mut self, source: ClockSource, frequency: f64, division: u8) -> Result<(), Error<E>> {
// Change clock source through configuration register // Change clock source through configuration register
self.set_clock_source(source)?; self.set_clock_source(source)?;
// Modify the master clock frequency // Modify the master clock frequency
// Prevent redundunt call to change f_ref_clk // Prevent redundunt call to change f_ref_clk
self.f_master_clk = frequency; self.f_master_clk = frequency;
self.set_clock_division(division) self.set_clock_division(division)
} }
pub fn set_clock_source(&mut self, source: ClockSource) -> Result<(), Error<E>> { pub fn set_clock_source(&mut self, source: ClockSource) -> Result<(), Error<E>> {
// Change clock source through configuration register // Change clock source through configuration register
match source { match source {
ClockSource::OSC => self.config_register.set_configurations(&mut [ ClockSource::OSC => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0), (CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 0), (CFGMask::CLK_SEL1, 0),
]), ]),
ClockSource::MMCX => self.config_register.set_configurations(&mut [ ClockSource::MMCX => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 0), (CFGMask::CLK_SEL0, 0),
(CFGMask::CLK_SEL1, 1), (CFGMask::CLK_SEL1, 1),
]), ]),
ClockSource::SMA => self.config_register.set_configurations(&mut [ ClockSource::SMA => self.config_register.set_configurations(&mut [
(CFGMask::CLK_SEL0, 1), (CFGMask::CLK_SEL0, 1),
]), ]),
}.map(|_| ()) }.map(|_| ())
} }
pub fn set_clock_frequency(&mut self, frequency: f64) -> Result<(), Error<E>> { pub fn set_clock_frequency(&mut self, frequency: f64) -> Result<(), Error<E>> {
// Update master clock frequency // Update master clock frequency
self.f_master_clk = frequency; self.f_master_clk = frequency;
// Update all DDS f_ref_clk // Update all DDS f_ref_clk
self.set_dds_ref_clk() self.set_dds_ref_clk()
} }
pub fn set_clock_division(&mut self, division: u8) -> Result<(), Error<E>> { pub fn set_clock_division(&mut self, division: u8) -> Result<(), Error<E>> {
match division { match division {
1 => self.config_register.set_configurations(&mut [ 1 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 1), (CFGMask::DIV, 1),
]), ]),
2 => self.config_register.set_configurations(&mut [ 2 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 2), (CFGMask::DIV, 2),
]), ]),
4 => self.config_register.set_configurations(&mut [ 4 => self.config_register.set_configurations(&mut [
(CFGMask::DIV, 3), (CFGMask::DIV, 3),
]), ]),
_ => Err(Error::ParameterError), _ => Err(Error::ParameterError),
}?; }?;
self.set_dds_ref_clk() self.set_dds_ref_clk()
} }
fn set_dds_ref_clk(&mut self) -> Result<(), Error<E>> { fn set_dds_ref_clk(&mut self) -> Result<(), Error<E>> {
// Calculate reference clock frequency after clock division from configuration register // Calculate reference clock frequency after clock division from configuration register
let f_ref_clk = self.f_master_clk / (self.get_master_clock_division() as f64); let f_ref_clk = self.f_master_clk / (self.get_master_clock_division() as f64);
// Update all DDS chips on reference clock frequency // Update all DDS chips on reference clock frequency
for dds_channel in 0..4 { for dds_channel in 0..4 {
self.dds[dds_channel].set_ref_clk_frequency(f_ref_clk)?; self.dds[dds_channel].set_ref_clk_frequency(f_ref_clk)?;
} }
Ok(()) Ok(())
} }
fn get_master_clock_division(&mut self) -> u8 { fn get_master_clock_division(&mut self) -> u8 {
match self.config_register.get_configuration(CFGMask::DIV) { match self.config_register.get_configuration(CFGMask::DIV) {
0 | 3 => 4, 0 | 3 => 4,
1 => 1, 1 => 1,
2 => 2, 2 => 2,
_ => panic!("Divisor out of range, when reading configuration register (CPLD)."), _ => panic!("Divisor out of range, when reading configuration register (CPLD)."),
} }
} }
pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> { pub fn set_channel_attenuation(&mut self, channel: u8, attenuation: f32) -> Result<(), Error<E>> {
if channel >= 4 || attenuation < 0.0 || attenuation > 31.5 { if channel >= 4 || attenuation < 0.0 || attenuation > 31.5 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
self.attenuator.set_channel_attenuation(channel, attenuation) self.attenuator.set_channel_attenuation(channel, attenuation)
} }
pub fn set_profile(&mut self, profile: u8) -> Result<(), Error<E>> { pub fn set_profile(&mut self, profile: u8) -> Result<(), Error<E>> {
if profile >= 8 { if profile >= 8 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
self.config_register.set_configurations(&mut [ self.config_register.set_configurations(&mut [
(CFGMask::PROFILE, profile.into()) (CFGMask::PROFILE, profile.into())
]).map(|_| ()) ]).map(|_| ())
} }
pub fn set_channel_single_tone_profile(&mut self, channel: u8, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> { pub fn set_channel_single_tone_profile(&mut self, channel: u8, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 || phase >= 360.0 || if channel >= 4 || profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 { phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
self.dds[usize::from(channel)].set_single_tone_profile(profile, frequency, phase, amplitude) self.dds[usize::from(channel)].set_single_tone_profile(profile, frequency, phase, amplitude)
} }
pub fn set_channel_single_tone_profile_frequency(&mut self, channel: u8, profile: u8, frequency: f64)-> Result<(), Error<E>> { pub fn set_channel_single_tone_profile_frequency(&mut self, channel: u8, profile: u8, frequency: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || frequency < 0.0 { if channel >= 4 || profile >= 8 || frequency < 0.0 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
self.dds[usize::from(channel)].set_single_tone_profile_frequency(profile, frequency) self.dds[usize::from(channel)].set_single_tone_profile_frequency(profile, frequency)
} }
pub fn set_channel_single_tone_profile_phase(&mut self, channel: u8, profile: u8, phase: f64)-> Result<(), Error<E>> { pub fn set_channel_single_tone_profile_phase(&mut self, channel: u8, profile: u8, phase: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || phase >= 360.0 || phase < 0.0 { if channel >= 4 || profile >= 8 || phase >= 360.0 || phase < 0.0 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
self.dds[usize::from(channel)].set_single_tone_profile_phase(profile, phase) self.dds[usize::from(channel)].set_single_tone_profile_phase(profile, phase)
} }
pub fn set_channel_single_tone_profile_amplitude(&mut self, channel: u8, profile: u8, amplitude: f64)-> Result<(), Error<E>> { pub fn set_channel_single_tone_profile_amplitude(&mut self, channel: u8, profile: u8, amplitude: f64)-> Result<(), Error<E>> {
if channel >= 4 || profile >= 8 || amplitude < 0.0 || amplitude > 1.0 { if channel >= 4 || profile >= 8 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
self.dds[usize::from(channel)].set_single_tone_profile_amplitude(profile, amplitude) self.dds[usize::from(channel)].set_single_tone_profile_amplitude(profile, amplitude)
} }
pub fn set_channel_sys_clk(&mut self, channel: u8, f_sys_clk: f64) -> Result<(), Error<E>> { pub fn set_channel_sys_clk(&mut self, channel: u8, f_sys_clk: f64) -> Result<(), Error<E>> {
self.dds[usize::from(channel)].set_sys_clk_frequency(f_sys_clk).map(|_| ()) self.dds[usize::from(channel)].set_sys_clk_frequency(f_sys_clk).map(|_| ())
} }
// Multi-dds channel functions // Multi-dds channel functions
// Do not allow reading of DDS registers // Do not allow reading of DDS registers
// Make sure only 1 SPI transaction is compelted per function call // Make sure only 1 SPI transaction is compelted per function call
// Setup NU_MASK in configuration register // Setup NU_MASK in configuration register
// This selects the DDS channels that will be covered by multi_channel DDS (spi3) // This selects the DDS channels that will be covered by multi_channel DDS (spi3)
// Note: If a channel is masked, io_update must be completed through configuration register (IO_UPDATE bit-field) // Note: If a channel is masked, io_update must be completed through configuration register (IO_UPDATE bit-field)
// Implication: Deselect such channel if individual communication is needed. // Implication: Deselect such channel if individual communication is needed.
pub fn set_multi_channel_coverage(&mut self, channel: u8) -> Result<(), Error<E>> { pub fn set_multi_channel_coverage(&mut self, channel: u8) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [ self.config_register.set_configurations(&mut [
(CFGMask::MASK_NU, channel.into()) (CFGMask::MASK_NU, channel.into())
]).map(|_| ()) ]).map(|_| ())
} }
// Difference from individual single tone setup function: // Difference from individual single tone setup function:
// - Remove the need of passing channel // - Remove the need of passing channel
// All selected channels must share the same f_sys_clk // All selected channels must share the same f_sys_clk
pub fn set_multi_channel_single_tone_profile(&mut self, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> { pub fn set_multi_channel_single_tone_profile(&mut self, profile: u8, frequency: f64, phase: f64, amplitude: f64) -> Result<(), Error<E>> {
if profile >= 8 || frequency < 0.0 || phase >= 360.0 || if profile >= 8 || frequency < 0.0 || phase >= 360.0 ||
phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 { phase < 0.0 || amplitude < 0.0 || amplitude > 1.0 {
return Err(Error::ParameterError); return Err(Error::ParameterError);
} }
// Check f_sys_clk of all selected channels // Check f_sys_clk of all selected channels
let selected_channels = self.config_register.get_configuration(CFGMask::MASK_NU); let selected_channels = self.config_register.get_configuration(CFGMask::MASK_NU);
let mut found_a_selected_channel = false; let mut found_a_selected_channel = false;
let mut reported_f_sys_clk: f64 = 0.0; let mut reported_f_sys_clk: f64 = 0.0;
for channel_bit in 0..4 { for channel_bit in 0..4 {
if (selected_channels & (1 << (channel_bit as u8))) != 0 { if (selected_channels & (1 << (channel_bit as u8))) != 0 {
if !found_a_selected_channel { if !found_a_selected_channel {
found_a_selected_channel = true; found_a_selected_channel = true;
reported_f_sys_clk = self.dds[channel_bit].get_f_sys_clk(); reported_f_sys_clk = self.dds[channel_bit].get_f_sys_clk();
} else if reported_f_sys_clk != self.dds[channel_bit].get_f_sys_clk() { } else if reported_f_sys_clk != self.dds[channel_bit].get_f_sys_clk() {
return Err(Error::DDSError); return Err(Error::DDSError);
} }
} }
} }
self.multi_dds.set_sys_clk_frequency(reported_f_sys_clk); self.multi_dds.set_sys_clk_frequency(reported_f_sys_clk)?;
self.multi_dds.set_single_tone_profile(profile, frequency, phase, amplitude)?; self.multi_dds.set_single_tone_profile(profile, frequency, phase, amplitude)?;
self.invoke_io_update()?; self.invoke_io_update()?;
Ok(()) Ok(())
} }
// Generate a pulse for io_update bit in configuration register
// This acts like io_update in CPLD struct, but for multi-dds channel
fn invoke_io_update(&mut self) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 1)
])?;
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 0)
]).map(|_| ())
}
// Generate a pulse for io_update bit in configuration register
// This acts like io_update in CPLD struct, but for multi-dds channel
fn invoke_io_update(&mut self) -> Result<(), Error<E>> {
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 1)
])?;
self.config_register.set_configurations(&mut [
(CFGMask::IO_UPDATE, 0)
]).map(|_| ())
}
} }