dds: add ram control

pull/4/head
occheung 2021-01-29 16:47:28 +08:00
parent d0d475bfbf
commit 7729362d52
4 changed files with 580 additions and 303 deletions

View File

@ -35,11 +35,32 @@ pub struct ChannelConfig {
pub sw: bool,
pub att: f32,
pub sys_clk: f64,
pub freq: f64,
pub asf: f64,
pub profile: ProfileSetup,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SingleTone {
pub freq: f64,
pub phase: f64,
pub asf: f64,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct RAM {
pub start: u16,
pub end: u16,
pub stride: u16,
pub op_mode: u8,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum ProfileSetup {
Singletone(SingleTone),
RAM(RAM),
}
pub fn get_net_config(store: &mut FlashStore) -> NetConfig {
let net_config = NetConfig {
ip_cidr: {

View File

@ -4,7 +4,7 @@ use core::mem::size_of;
use core::convert::TryInto;
use heapless::Vec;
use heapless::consts::*;
use log::{ trace, debug, warn };
use log::debug;
/*
* Bitmask for all configurations (Order: CFR3, CFR2, CFR1)
@ -66,9 +66,10 @@ construct_bitmask!(DDSCFRMask; u32;
const WRITE_MASK :u8 = 0x00;
const READ_MASK :u8 = 0x80;
#[link_section = ".sram2.ram"]
static mut RAM_VEC: Vec<u8, U8192> = Vec(heapless::i::Vec::new());
#[derive(Clone, PartialEq)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum RAMDestination {
Frequency = 0,
Phase = 1,
@ -76,7 +77,7 @@ pub enum RAMDestination {
Polar = 3,
}
#[derive(Clone)]
#[derive(Clone, Debug)]
pub enum RAMOperationMode {
DirectSwitch = 0,
RampUp = 1,
@ -89,6 +90,7 @@ pub struct DDS<SPI> {
spi: SPI,
f_ref_clk: f64,
f_sys_clk: f64,
ram_dest: RAMDestination
}
impl<SPI, E> DDS<SPI>
@ -100,6 +102,7 @@ where
spi,
f_ref_clk,
f_sys_clk: f_ref_clk,
ram_dest: RAMDestination::Frequency,
}
}
}
@ -508,6 +511,41 @@ where
])
}
// Helper function to configure the default frequency in the FTW register (0x07)
pub fn set_default_ftw(&mut self, frequency: f64) -> Result<(), Error<E>> {
let mut ftw: [u8; 4] = self.frequency_to_ftw(frequency).to_be_bytes();
self.write_register(0x07, &mut ftw)
}
// Helper function to configure the default amplitude in the ASF register (0x09)
pub fn set_default_asf(&mut self, amplitude: f64) -> Result<(), Error<E>> {
let shifted_asf: [u8; 2] = (self.amplitude_to_asf(amplitude) << 2).to_be_bytes();
let mut asf_register: [u8; 4] = [0; 4];
self.read_register(0x09, &mut asf_register)?;
// Override original ASF
asf_register[2] = shifted_asf[0];
asf_register[3] = (shifted_asf[1] & 0xFC) | (asf_register[3] & 0x03);
self.write_register(0x09, &mut asf_register)
}
pub fn get_default_ftw(&mut self) -> Result<f64, Error<E>> {
let mut ftw_bytes: [u8; 4] = [0; 4];
self.read_register(0x07, &mut ftw_bytes)?;
let ftw: u64 = (ftw_bytes[0] as u64) << 24 |
(ftw_bytes[1] as u64) << 16 |
(ftw_bytes[2] as u64) << 8 |
(ftw_bytes[3] as u64);
Ok(((ftw as f64)/(((1_u64) << 32) as f64))*self.f_sys_clk)
}
pub fn get_default_asf(&mut self) -> Result<f64, Error<E>> {
let mut asf_register: [u8; 4] = [0; 4];
self.read_register(0x09, &mut asf_register)?;
let asf: u64 = ((asf_register[2] as u64) << 6) |
((asf_register[3] as u64) >> 2);
Ok((asf as f64)/(((1_u64) << 14) as f64))
}
// Helper function to switch into RAM mode
// Need to setup configuration registers before writing into RAM profile register
fn enable_ram_configuration(&mut self, ram_dst: RAMDestination) -> Result<(), Error<E>> {
@ -525,275 +563,51 @@ where
])
}
/*
* Configure a RAM mode profile, wrt supplied frequency data
* This will setup the static RAM_VEC by converting frequency to ftw
*/
pub unsafe fn set_frequency_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16,
no_dwell_high: bool, zero_crossing: bool, op_mode: RAMOperationMode, playback_rate: f64,
frequency_data: &[f64]
) -> Result<(), Error<E>> {
// Check the legality of the profile setup
// Setup a RAM profile
pub fn set_up_ram_profile(&mut self, profile: u8, start_addr: u16,
end_addr: u16, no_dwell_high: bool, zero_crossing: bool,
op_mode: RAMOperationMode, ramp_rate: u16
)-> Result<(), Error<E>>
{
assert!(profile <= 7);
assert!(end_addr >= start_addr);
assert!(end_addr < 1024);
assert_eq!(frequency_data.len() as u16, end_addr - start_addr + 1);
// Clear RAM vector, and add address byte
RAM_VEC.clear();
RAM_VEC.push(0x16)
.map_err(|_| Error::DDSRAMError)?;
self.enable_ram_configuration(self.ram_dest)?;
// Convert frequency data into bytes recognized by DDS
for freq in frequency_data.iter() {
let ftw = self.frequency_to_ftw(*freq);
RAM_VEC.push(((ftw >> 24) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((ftw >> 16) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((ftw >> 8) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((ftw >> 0) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
}
self.set_ram_profile(profile, start_addr, end_addr, RAMDestination::Frequency,
no_dwell_high, zero_crossing, op_mode, playback_rate)
}
/*
* Configure a RAM mode profile, wrt supplied amplitude data
* This will setup the static RAM_VEC by converting amplitude to asf
*/
pub unsafe fn set_amplitude_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16,
no_dwell_high: bool, zero_crossing: bool, op_mode: RAMOperationMode, playback_rate: f64,
amplitude_data: &[f64]
) -> Result<(), Error<E>> {
// Check the legality of the profile setup
assert!(profile <= 7);
assert!(end_addr >= start_addr);
assert!(end_addr < 1024);
assert_eq!(amplitude_data.len() as u16, end_addr - start_addr + 1);
// Clear RAM vector, and add address byte
RAM_VEC.clear();
RAM_VEC.push(0x16)
.map_err(|_| Error::DDSRAMError)?;
// Convert amplitude data into bytes recognized by DDS
for amp in amplitude_data.iter() {
let asf = self.amplitude_to_asf(*amp);
RAM_VEC.push(((asf >> 8) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((asf << 2) & 0xFC) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(0)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(0)
.map_err(|_| Error::DDSRAMError)?;
}
self.set_ram_profile(profile, start_addr, end_addr, RAMDestination::Amplitude,
no_dwell_high, zero_crossing, op_mode, playback_rate)
}
/*
* Configure a RAM mode profile, wrt supplied phase data
* This will setup the static RAM_VEC by converting phase to ftw
*/
pub unsafe fn set_phase_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16,
no_dwell_high: bool, zero_crossing: bool, op_mode: RAMOperationMode, playback_rate: f64,
phase_data: &[f64]
) -> Result<(), Error<E>> {
// Check the legality of the profile setup
assert!(profile <= 7);
assert!(end_addr >= start_addr);
assert!(end_addr < 1024);
assert_eq!(phase_data.len() as u16, end_addr - start_addr + 1);
// Clear RAM vector, and add address byte
RAM_VEC.clear();
RAM_VEC.push(0x16)
.map_err(|_| Error::DDSRAMError)?;
// Convert phase data into bytes recognized by DDS
for deg in phase_data.iter() {
let pow = self.degree_to_pow(*deg);
RAM_VEC.push(((pow >> 8) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((pow >> 0) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(0)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(0)
.map_err(|_| Error::DDSRAMError)?;
}
self.set_ram_profile(profile, start_addr, end_addr, RAMDestination::Phase,
no_dwell_high, zero_crossing, op_mode, playback_rate)
}
/*
* Configure a RAM mode profile, wrt supplied phase data
* This will setup the static RAM_VEC by converting phase to ftw
*/
pub unsafe fn set_polar_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16,
no_dwell_high: bool, zero_crossing: bool, op_mode: RAMOperationMode, playback_rate: f64,
polar_data: &[(f64, f64)]
) -> Result<(), Error<E>> {
// Check the legality of the profile setup
assert!(profile <= 7);
assert!(end_addr >= start_addr);
assert!(end_addr < 1024);
assert_eq!(polar_data.len() as u16, end_addr - start_addr + 1);
// Clear RAM vector, and add address byte
RAM_VEC.clear();
RAM_VEC.push(0x16)
.map_err(|_| Error::DDSRAMError)?;
// Convert amplitude data into bytes recognized by DDS
for (deg, amp) in polar_data.iter() {
let pow = self.degree_to_pow(*deg);
let asf = self.amplitude_to_asf(*amp);
RAM_VEC.push(((pow >> 8) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((pow >> 0) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((asf >> 8) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((asf << 2) & 0xFC) as u8)
.map_err(|_| Error::DDSRAMError)?;
}
self.set_ram_profile(profile, start_addr, end_addr, RAMDestination::Phase,
no_dwell_high, zero_crossing, op_mode, playback_rate)
}
/*
* Configure a frequency sweep RAM mode profile
*/
pub unsafe fn set_frequency_sweep_profile(&mut self, profile: u8, start_addr: u16,
lower_boundary: f64, upper_boundary: f64, f_resolution: f64,
no_dwell_high: bool, op_mode: RAMOperationMode, playback_rate: f64
) -> Result<(), Error<E>> {
// Check the legality of the profile setup
assert!(profile <= 7);
assert!(start_addr < 1024);
// Find out the required RAM size
// Frequencies may have to be repeated if the playback rate is too low
// Reject impossible setups
// E.g. Higher playback rate than f_dds_clk, insufficient RAM allocation
let nominal_step_rate = self.f_sys_clk/(4.0 * playback_rate);
if nominal_step_rate < 1.0 {
return Err(Error::DDSRAMError);
}
// TODO: Handle unfortunate scenario: step_rate / 0xFFFF gives a round number
// Current implmentation unnecessarily allocates 1 extra RAM space for each data
let duplication = (nominal_step_rate / (0xFFFF as f64)) as u64 + 1;
// Acquire the RAM size needed by multiplying duplication.
// All data needs to be duplicated such that a desired step_rate can be reached
// Return DDS RAM Error if it does not fix into the RAM
let span = upper_boundary - lower_boundary;
let data_size = if core::intrinsics::roundf64(span/f_resolution) == (span/f_resolution) {
(span/f_resolution) as u64 + 1
} else {
(span/f_resolution) as u64
};
let ram_size = data_size * duplication;
let end_addr = (start_addr as u64) + ram_size - 1;
trace!("Required RAM size: {}", ram_size);
if end_addr >= 1024 {
warn!("RAM address out of bound");
return Err(Error::DDSRAMError);
}
// Clear RAM vector, and add address byte
RAM_VEC.clear();
RAM_VEC.push(0x16)
.map_err(|_| Error::DDSRAMError)?;
// Drop in the data into RAM_VEC
for data_index in 0..data_size {
let freq = lower_boundary + f_resolution * (data_index as f64);
for _ in 0..duplication {
let ftw = self.frequency_to_ftw(freq);
RAM_VEC.push(((ftw >> 24) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((ftw >> 16) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((ftw >> 8) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
RAM_VEC.push(((ftw >> 0) & 0xFF) as u8)
.map_err(|_| Error::DDSRAMError)?;
}
}
debug!("start_addr: {}\nend_addr: {}\n, duplication: {}\n, data_size: {}\n",
start_addr, end_addr, duplication, data_size);
self.set_ram_profile(profile, start_addr, end_addr.try_into().unwrap(), RAMDestination::Frequency,
no_dwell_high, true, op_mode, playback_rate * (duplication as f64))
}
/*
* Configure a RAM mode profile, w.r.t static vector (RAM_VEC)
*/
fn set_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16,
ram_dst: RAMDestination, no_dwell_high: bool, zero_crossing: bool,
op_mode: RAMOperationMode, playback_rate: f64
) -> Result<(), Error<E>> {
// Check the legality of the profile setup
assert!(profile <= 7);
assert!(end_addr >= start_addr);
assert!(end_addr < 1024);
// assert_eq! RAM_VEC.len() as u16, ((end_addr - start_addr + 1) * 4) + 1);
// Calculate address step rate, and check legality
let step_rate = (self.f_sys_clk/(4.0 * playback_rate)) as u64;
trace!("Setting up RAM profile, step_rate: {}", step_rate);
if step_rate == 0 || step_rate > 0xFFFF {
return Err(Error::DDSRAMError);
}
// Before setting up RAM, disable RAM_ENABLE
self.enable_ram_configuration(ram_dst.clone())?;
// Write a RAM profile, but include all data in RAM
self.write_register(0x0E + profile, &mut [
0x00,
((step_rate >> 8) & 0xFF).try_into().unwrap(),
((step_rate >> 0) & 0xFF).try_into().unwrap(),
((ramp_rate >> 8) & 0xFF).try_into().unwrap(),
((ramp_rate >> 0) & 0xFF).try_into().unwrap(),
((end_addr >> 2) & 0xFF).try_into().unwrap(),
((end_addr & 0x3) << 6).try_into().unwrap(),
((start_addr >> 2) & 0xFF).try_into().unwrap(),
((start_addr & 0x3) << 6).try_into().unwrap(),
((no_dwell_high as u8) << 5) | ((zero_crossing as u8) << 3) | (op_mode as u8)
])?;
])
}
pub fn get_ram_profile(&mut self, profile: u8) -> Result<(u16, u16, u16, u8), Error<E>> {
assert!(profile <= 7);
// Temporarily disable RAM mode while accessing into RAM
self.disable_ram_configuration()?;
unsafe {
self.write_ram()?;
}
let mut buffer: [u8; 8] = [0; 8];
self.read_register(0x0E + profile, &mut buffer)?;
let start = u16::from_be_bytes([buffer[5], buffer[6]]) >> 6;
let end = u16::from_be_bytes([buffer[3], buffer[4]]) >> 6;
let stride = u16::from_be_bytes([buffer[1], buffer[2]]);
let op_mode = buffer[7] & 0x07;
// Properly configure start_addr and end_addr
self.enable_ram_configuration(ram_dst)
Ok((start, end, stride, op_mode))
}
pub fn ram_mode_enabled(&mut self) -> Result<bool, Error<E>> {
let mut ram_query = [(DDSCFRMask::RAM_ENABLE, 0)];
self.get_configurations(&mut ram_query)?;
Ok(ram_query[0].1 != 0)
}
// Calculate ftw (frequency tuning word)
fn frequency_to_ftw(&mut self, f_out: f64) -> u32 {
pub fn frequency_to_ftw(&mut self, f_out: f64) -> u32 {
let f_res: u64 = 1 << 32;
((f_res as f64) * f_out / self.f_sys_clk) as u32
}
@ -811,11 +625,36 @@ where
((amp_res as f64) * amplitude) as u16
}
// Write data in RAM
unsafe fn write_ram(&mut self) -> Result<(), Error<E>> {
// Write RAM bytes into DDS channel
// Assume profile 7 is selected by the CPLD in prior
pub unsafe fn commit_ram_buffer(&mut self, start_addr: u16, ram_dest: RAMDestination) -> Result<(), Error<E>> {
let ram_size = ((RAM_VEC.len() - 1) as u16)/4;
if RAM_VEC.len() == 0 || RAM_VEC[0] != 0x16 ||
(start_addr + ram_size) > 1024 || start_addr >= 1024 {
return Err(Error::DDSRAMError)
}
let end_addr: [u8; 2] = ((ram_size + start_addr - 1) << 6).to_be_bytes();
// Use profile 7 to setup a temperory RAM profile
self.enable_ram_configuration(ram_dest.clone())?;
self.write_register(0x15, &mut [
0x00,
0x00, 0x01,
end_addr[0], end_addr[1],
((start_addr >> 2) & 0xFF).try_into().unwrap(),
((start_addr & 0x3) << 6).try_into().unwrap(),
0x00
])?;
self.disable_ram_configuration()?;
log::info!("RAM buffer: {:?}", RAM_VEC);
self.spi.transfer(&mut RAM_VEC)
.map(|_| ())
.map_err(Error::SPI)
.map(|_| ())
.map_err(Error::SPI)?;
RAM_VEC.clear();
self.ram_dest = ram_dest;
self.enable_ram_configuration(ram_dest)
}
/*
@ -954,3 +793,19 @@ impl_register_io!(
0x14, 8,
0x15, 8
);
// Append bytes to the RAM buffer
pub unsafe fn append_ram_byte(data: &[u8]) {
assert!(data.len() <= 4096);
// Add RAM address if needed
if RAM_VEC.len() == 0 {
RAM_VEC.push(0x16).unwrap();
} else if RAM_VEC[0] != 0x16 || (data.len() + RAM_VEC.len()) >= RAM_VEC.capacity() {
RAM_VEC.clear();
RAM_VEC.push(0x16).unwrap();
}
RAM_VEC.extend_from_slice(data).unwrap();
log::info!("RAM buffer: {:?}", RAM_VEC);
}

View File

@ -15,9 +15,10 @@ use crate::urukul::Urukul;
use crate::urukul::Error;
use crate::flash_store::{ FlashStore, update_flash };
use crate::flash::Flash;
use crate::config::{ UrukulConfig, ChannelConfig };
use crate::config::{ UrukulConfig, ChannelConfig, ProfileSetup, SingleTone, RAM };
use crate::dds::{ RAMDestination, RAMOperationMode };
#[derive(Debug, Clone)]
#[derive(Debug, Clone, PartialEq)]
pub enum MqttTopic {
Reset,
Switch(u8),
@ -34,6 +35,11 @@ pub enum MqttTopic {
Profile,
Save,
Load,
DefaultFTW(u8),
DefaultASF(u8),
AppendBytes,
CommitBuffer,
RAM(u8, u8),
}
// Prossible change: Make this enum public to all comm protocol (if any)
@ -56,6 +62,11 @@ pub enum MqttCommand {
Profile(u8),
Save,
Load,
DefaultFTW(u8, f64),
DefaultASF(u8, f64),
AppendBytes(usize),
CommitBuffer(RAMDestination, u16, u8),
RAM(u8, u8, u16, u16, RAMOperationMode, u16),
}
pub struct MqttMux<'s, SPI> {
@ -118,13 +129,39 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
channel as u8,
channel_config.sys_clk
)?;
self.urukul.set_channel_single_tone_profile(
self.urukul.set_channel_default_ftw(
channel as u8,
profile,
channel_config.freq,
channel_config.phase,
channel_config.asf,
channel_config.freq
)?;
self.urukul.set_channel_default_asf(
channel as u8,
channel_config.asf
)?;
if let ProfileSetup::Singletone(singletone) = channel_config.profile {
self.urukul.set_channel_single_tone_profile(
channel as u8,
profile,
singletone.freq,
singletone.phase,
singletone.asf
)?;
} else if let ProfileSetup::RAM(ram) = channel_config.profile {
let op_mode = match ram.op_mode {
0 => RAMOperationMode::DirectSwitch,
1 => RAMOperationMode::RampUp,
2 => RAMOperationMode::BidirectionalRamp,
3 => RAMOperationMode::ContinuousBidirectionalRamp,
_ => RAMOperationMode::ContinuousRecirculate,
};
self.urukul.set_channel_ram_profile(
channel as u8,
profile,
ram.start,
ram.end,
op_mode,
ram.stride
)?;
}
},
None => ()
};
@ -151,10 +188,26 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
unsafe { self.flash_store.write_value("urukul", &urukul_config, &mut SERDE_BUFFER).unwrap(); }
for channel in 0..4 {
let (freq, phase, asf) = self.urukul.get_channel_single_tone_profile(
channel as u8,
urukul_config.profile
)?;
let ram = self.urukul.get_channel_ram_mode_enabled(channel as u8)?;
let profile_setup = if ram {
let (start, end, stride, op_mode) = self.urukul.get_channel_ram_profile(
channel as u8,
urukul_config.profile
)?;
let ram_profile = RAM {
start, end, stride, op_mode
};
ProfileSetup::RAM(ram_profile)
} else {
let (freq, phase, asf) = self.urukul.get_channel_single_tone_profile(
channel as u8,
urukul_config.profile
)?;
let singletone_profile = SingleTone {
freq, phase, asf
};
ProfileSetup::Singletone(singletone_profile)
};
let channel_config = ChannelConfig {
sw: {
self.urukul.get_channel_switch_status(channel as u32)?
@ -165,9 +218,13 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
sys_clk: {
self.urukul.get_channel_sys_clk(channel as u8)?
},
freq,
phase,
asf
freq: {
self.urukul.get_channel_default_ftw(channel as u8)?
},
asf: {
self.urukul.get_channel_default_asf(channel as u8)?
},
profile: profile_setup
};
unsafe {
self.flash_store.write_value(CHANNELS[channel], &channel_config, &mut SERDE_BUFFER).unwrap();
@ -188,13 +245,26 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
return;
}
};
let command = match self.parse_message(topic, message) {
Ok((_, cmd)) => cmd,
Err(_) => {
self.yet_to_respond = Some(MqttCommand::ProcessError("Cannot parse MQTT message"));
// All MQTT messages should be parsed except appending bytes to buffer
// Directly pass the buffer to urukul in this case
let command = if topic == MqttTopic::AppendBytes {
let length = message.len();
if self.urukul.append_dds_ram_buffer(message).is_err() {
self.yet_to_respond = Some(MqttCommand::ProcessError("Cannot push bytes to buffer"));
return;
}
MqttCommand::AppendBytes(length)
} else {
match self.parse_message(topic, message) {
Ok((_, cmd)) => cmd,
Err(_) => {
self.yet_to_respond = Some(MqttCommand::ProcessError("Cannot parse MQTT message"));
return;
}
}
};
self.yet_to_respond = match self.execute(command.clone()) {
Err(_) => Some(MqttCommand::ProcessError("Cannot execute MQTT command")),
Ok(()) => Some(command)
@ -409,6 +479,110 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
)).map_err(|_| Error::VectorOutOfSpace)?;
Ok(vec)
}
MqttCommand::DefaultFTW(ch, _freq) => {
vec.push((
{
let mut topic_string = String::from(self.name);
topic_string.push_str("/Feedback/Channel")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string.push(char::from_digit(ch.into(), 10).unwrap())
.map_err(|_| Error::StringOutOfSpace)?;
topic_string.push_str("/Background/Frequency")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string
},
{
let freq = self.urukul.get_channel_default_ftw(ch)?;
let mut message_str = String::from(
self.float_buffer.format_finite(freq)
);
message_str.push_str(" Hz")
.map_err(|_| Error::StringOutOfSpace)?;
message_str
}
)).map_err(|_| Error::VectorOutOfSpace)?;
Ok(vec)
}
MqttCommand::DefaultASF(ch, _ampl) => {
vec.push((
{
let mut topic_string = String::from(self.name);
topic_string.push_str("/Feedback/Channel")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string.push(char::from_digit(ch.into(), 10).unwrap())
.map_err(|_| Error::StringOutOfSpace)?;
topic_string.push_str("/Background/Amplitude")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string
},
{
let ampl = self.urukul.get_channel_default_asf(ch)?;
let message_str = String::from(
self.float_buffer.format_finite(ampl)
);
message_str
}
)).map_err(|_| Error::VectorOutOfSpace)?;
Ok(vec)
}
MqttCommand::AppendBytes(len) => {
vec.push((
{
let mut topic_string = String::from(self.name);
topic_string.push_str("/Feedback/Buffer/Append")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string
},
{
let mut message_str = String::from("Pushed ");
message_str.push_str(self.float_buffer.format_finite(len as f64))
.map_err(|_| Error::StringOutOfSpace)?;
message_str.push_str(" bytes to buffer.")
.map_err(|_| Error::StringOutOfSpace)?;
message_str
}
)).map_err(|_| Error::VectorOutOfSpace)?;
Ok(vec)
}
MqttCommand::CommitBuffer(_dest, _start_addr, ch) => {
vec.push((
{
let mut topic_string = String::from(self.name);
topic_string.push_str("/Feedback/Buffer/Commit")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string
},
{
let mut message_str = String::from("Pushed bytes to channel ");
message_str.push(char::from_digit(ch.into(), 10).unwrap())
.map_err(|_| Error::StringOutOfSpace)?;
message_str
}
)).map_err(|_| Error::VectorOutOfSpace)?;
Ok(vec)
}
MqttCommand::RAM(ch, _pr, _start_addr, _end_addr, _op_mode, _) => {
vec.push((
{
let mut topic_string = String::from(self.name);
topic_string.push_str("/Feedback/RAM")
.map_err(|_| Error::StringOutOfSpace)?;
topic_string
},
{
let mut message_str = String::from("Selected RAM profile for channel ");
message_str.push(char::from_digit(ch.into(), 10).unwrap())
.map_err(|_| Error::StringOutOfSpace)?;
message_str
}
)).map_err(|_| Error::VectorOutOfSpace)?;
Ok(vec)
}
},
None => Ok(vec),
}
@ -605,6 +779,41 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
return Ok(MqttTopic::Load);
}
"Background/Frequency" => {
if !assigned_channel || assigned_profile {
return Err(Error::MqttCommandError)
}
return Ok(MqttTopic::DefaultFTW(channel));
}
"Background/Amplitude" => {
if !assigned_channel || assigned_profile {
return Err(Error::MqttCommandError)
}
return Ok(MqttTopic::DefaultASF(channel));
}
"Buffer/Append" => {
if assigned_channel || assigned_profile {
return Err(Error::MqttCommandError)
}
return Ok(MqttTopic::AppendBytes);
}
"Buffer/Commit" => {
if assigned_channel || assigned_profile {
return Err(Error::MqttCommandError)
}
return Ok(MqttTopic::CommitBuffer);
}
"RAM" => {
if !assigned_channel || !assigned_profile {
return Err(Error::MqttCommandError)
}
return Ok(MqttTopic::RAM(channel, profile));
}
_ => return Err(Error::MqttCommandError),
};
}
@ -627,6 +836,11 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
MqttTopic::Profile => profile_message(message),
MqttTopic::Save => Ok((message, MqttCommand::Save)),
MqttTopic::Load => Ok((message, MqttCommand::Load)),
MqttTopic::DefaultFTW(ch) => default_frequency_message(ch, message),
MqttTopic::DefaultASF(ch) => default_amplitude_message(ch, message),
MqttTopic::AppendBytes => unreachable!(), // This topic should not be parsed
MqttTopic::CommitBuffer => commit_buffer_message(message),
MqttTopic::RAM(ch, pr) => ram_message(ch, pr, message),
}
}
@ -648,6 +862,13 @@ impl<'s, SPI, E> MqttMux<'s, SPI> where SPI: Transfer<u8, Error = E> {
MqttCommand::Profile(prof) => self.urukul.set_profile(prof),
MqttCommand::Save => self.save_device(),
MqttCommand::Load => self.load_device(),
MqttCommand::DefaultFTW(ch, freq) => self.urukul.set_channel_default_ftw(ch, freq),
MqttCommand::DefaultASF(ch, ampl) => self.urukul.set_channel_default_asf(ch, ampl),
MqttCommand::AppendBytes(_) => Ok(()), // The bytes were not parsed and pushed
MqttCommand::CommitBuffer(dest, start_addr, ch) => self.urukul.commit_ram_buffer_to_channel(ch, start_addr, dest),
MqttCommand::RAM(ch, pr, start_addr, end_addr, op_mode, ramp_rate) => {
self.urukul.set_channel_ram_profile(ch, pr, start_addr, end_addr, op_mode, ramp_rate)
}
}
}
@ -951,7 +1172,17 @@ fn singletone_frequency_message(channel: u8, profile: u8, message: &[u8]) -> IRe
)(message)
}
// Parser for Singletone AMplitude Command Message
// Parser for default frequency Command Message
fn default_frequency_message(channel: u8, message: &[u8]) -> IResult<&[u8], MqttCommand> {
all_consuming(
map(
read_frequency,
|freq: f64| MqttCommand::DefaultFTW(channel, freq)
)
)(message)
}
// Parser for Singletone Amplitude Command Message
fn singletone_amplitude_message(channel: u8, profile: u8, message: &[u8]) -> IResult<&[u8], MqttCommand> {
all_consuming(
map(
@ -961,6 +1192,16 @@ fn singletone_amplitude_message(channel: u8, profile: u8, message: &[u8]) -> IRe
)(message)
}
// Parser for Default Amplitude Command Message
fn default_amplitude_message(channel: u8, message: &[u8]) -> IResult<&[u8], MqttCommand> {
all_consuming(
map(
double,
|ampl: f64| MqttCommand::DefaultASF(channel, ampl)
)
)(message)
}
// Parser for Phase Command Message
fn singletone_phase_message(channel: u8, profile: u8, message: &[u8]) -> IResult<&[u8], MqttCommand> {
all_consuming(
@ -994,24 +1235,6 @@ fn singletone_message(channel: u8, profile: u8, message: &[u8]) -> IResult<&[u8]
)
)
),
preceded(
tag_no_case("phase:"),
preceded(
whitespace,
terminated(
double,
preceded(
opt(
preceded(
whitespace,
tag_no_case("deg")
)
),
message_separator
)
)
)
),
preceded(
tag_no_case("amplitude:"),
preceded(
@ -1021,9 +1244,29 @@ fn singletone_message(channel: u8, profile: u8, message: &[u8]) -> IResult<&[u8]
message_separator
)
)
),
opt(
preceded(
tag_no_case("phase:"),
preceded(
whitespace,
terminated(
double,
preceded(
opt(
preceded(
whitespace,
tag_no_case("deg")
)
),
message_separator
)
)
)
)
)
)),
|(freq, phase, ampl): (f64, f64, f64)| MqttCommand::Singletone(channel, profile, freq, phase, ampl)
|(freq, ampl, phase): (f64, f64, Option<f64>)| MqttCommand::Singletone(channel, profile, freq, phase.unwrap_or(0.0), ampl)
)
)(message)
}
@ -1040,3 +1283,123 @@ fn profile_message(message: &[u8]) -> IResult<&[u8], MqttCommand> {
)
)(message)
}
fn commit_buffer_message(message: &[u8]) -> IResult<&[u8], MqttCommand> {
all_consuming(
map(
permutation((
preceded(
tag_no_case("dest:"),
preceded(
whitespace,
terminated(
alt((
value(RAMDestination::Frequency, tag_no_case("frequency")),
value(RAMDestination::Amplitude, tag_no_case("amplitude")),
value(RAMDestination::Phase, tag_no_case("phase")),
value(RAMDestination::Polar, tag_no_case("polar")),
)),
message_separator
)
)
),
preceded(
tag_no_case("start:"),
preceded(
whitespace,
terminated(
map_res(
digit1,
|start_addr: &[u8]| u16::from_str_radix(core::str::from_utf8(start_addr).unwrap(), 10)
),
message_separator
)
)
),
preceded(
tag_no_case("ch:"),
preceded(
whitespace,
terminated(
map_res(
digit1,
|ch: &[u8]| u8::from_str_radix(core::str::from_utf8(ch).unwrap(), 10)
),
message_separator
)
)
)
)),
|(dest, start_addr, ch): (RAMDestination, u16, u8)| {
MqttCommand::CommitBuffer(dest, start_addr, ch)
}
)
)(message)
}
fn ram_message(channel: u8, profile: u8, message: &[u8]) -> IResult<&[u8], MqttCommand> {
all_consuming(
map(
permutation((
preceded(
tag_no_case("start:"),
preceded(
whitespace,
terminated(
map_res(
digit1,
|ch: &[u8]| u16::from_str_radix(core::str::from_utf8(ch).unwrap(), 10)
),
message_separator
)
)
),
preceded(
tag_no_case("end:"),
preceded(
whitespace,
terminated(
map_res(
digit1,
|ch: &[u8]| u16::from_str_radix(core::str::from_utf8(ch).unwrap(), 10)
),
message_separator
)
)
),
preceded(
tag_no_case("op_mode:"),
preceded(
whitespace,
terminated(
alt((
value(RAMOperationMode::DirectSwitch, tag_no_case("DS")),
value(RAMOperationMode::RampUp, tag_no_case("RU")),
value(RAMOperationMode::BidirectionalRamp, tag_no_case("BDR")),
value(RAMOperationMode::ContinuousBidirectionalRamp, tag_no_case("CBDR")),
value(RAMOperationMode::ContinuousRecirculate, tag_no_case("CR")),
)),
message_separator
)
)
),
preceded(
tag_no_case("ramp:"),
preceded(
whitespace,
terminated(
map_res(
digit1,
|ch: &[u8]| u16::from_str_radix(core::str::from_utf8(ch).unwrap(), 10)
),
message_separator
)
)
)
)),
|(start_addr, end_addr, op_mode, ramp_rate): (u16, u16, RAMOperationMode, u16)| {
MqttCommand::RAM(channel, profile, start_addr, end_addr, op_mode, ramp_rate)
}
)
)(message)
}

View File

@ -9,7 +9,7 @@ use crate::config_register::ConfigRegister;
use crate::config_register::CFGMask;
use crate::config_register::StatusMask;
use crate::attenuator::Attenuator;
use crate::dds::{ DDS, RAMOperationMode };
use crate::dds::{ DDS, RAMOperationMode, RAMDestination };
/*
* Enum for structuring error
@ -56,7 +56,7 @@ pub struct Urukul<SPI> {
config_register: ConfigRegister<SPI>,
attenuator: Attenuator<SPI>,
multi_dds: DDS<SPI>,
dds: [DDS<SPI>; 4],
pub dds: [DDS<SPI>; 4],
f_master_clk: f64,
}
@ -329,14 +329,52 @@ where
self.dds[usize::from(channel)].set_single_tone_profile_amplitude(profile, amplitude)
}
pub fn set_channel_frequency_sweep_profile(&mut self, channel: u8, profile: u8, start_addr: u16, lower_boundary: f64,
upper_boundary: f64, f_resolution: f64, playback_rate: f64) -> Result<(), Error<E>>
{
pub fn append_dds_ram_buffer(&mut self, data: &[u8]) -> Result<(), Error<E>> {
unsafe {
Ok(crate::dds::append_ram_byte(data))
}
}
// Use profile 7 to write into the RAM
pub fn commit_ram_buffer_to_channel(&mut self, channel: u8, start_addr: u16, ram_dest: RAMDestination) -> Result<(), Error<E>> {
let profile = self.get_profile()?;
self.set_profile(7)?;
unsafe {
self.dds[usize::from(channel)]
.set_frequency_sweep_profile(profile, start_addr, lower_boundary, upper_boundary,
f_resolution, true, RAMOperationMode::ContinuousRecirculate, playback_rate)
.commit_ram_buffer(start_addr, ram_dest)?;
}
self.set_profile(profile)
}
pub fn set_channel_default_ftw(&mut self, channel: u8, frequency: f64) -> Result<(), Error<E>> {
self.dds[usize::from(channel)].set_default_ftw(frequency)
}
pub fn set_channel_default_asf(&mut self, channel: u8, amplitude_scale: f64) -> Result<(), Error<E>> {
self.dds[usize::from(channel)].set_default_asf(amplitude_scale)
}
pub fn get_channel_default_ftw(&mut self, channel: u8) -> Result<f64, Error<E>> {
self.dds[usize::from(channel)].get_default_ftw()
}
pub fn get_channel_default_asf(&mut self, channel: u8) -> Result<f64, Error<E>> {
self.dds[usize::from(channel)].get_default_asf()
}
pub fn set_channel_ram_profile(&mut self, channel: u8, profile: u8, start_addr: u16,
end_addr: u16, op_mode: RAMOperationMode, ramp_rate: u16
) -> Result<(), Error<E>> {
self.dds[usize::from(channel)]
.set_up_ram_profile(profile, start_addr, end_addr, true, false, op_mode, ramp_rate)
}
pub fn get_channel_ram_profile(&mut self, channel: u8, profile: u8) -> Result<(u16, u16, u16, u8), Error<E>> {
self.dds[usize::from(channel)].get_ram_profile(profile)
}
pub fn get_channel_ram_mode_enabled(&mut self, channel: u8) -> Result<bool, Error<E>> {
self.dds[usize::from(channel)].ram_mode_enabled()
}
pub fn set_channel_sys_clk(&mut self, channel: u8, f_sys_clk: f64) -> Result<(), Error<E>> {