Merge pull request #48 from mattico/add_float_quickcheck

Add float quickcheck implementations (fixes #45)
This commit is contained in:
Jorge Aparicio 2016-09-30 16:26:30 -05:00 committed by GitHub
commit e34a6058df
3 changed files with 158 additions and 115 deletions

View File

@ -9,27 +9,27 @@ macro_rules! add {
#[allow(unused_parens)] #[allow(unused_parens)]
#[cfg_attr(not(test), no_mangle)] #[cfg_attr(not(test), no_mangle)]
pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty { pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty {
let one = Wrapping(1 as <$ty as Float>::Int); let one = Wrapping(1 as <$ty as Float>::Int);
let zero = Wrapping(0 as <$ty as Float>::Int); let zero = Wrapping(0 as <$ty as Float>::Int);
let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int); let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int); let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
let exponent_bits = bits - significand_bits - one; let exponent_bits = Wrapping(<$ty>::exponent_bits() as <$ty as Float>::Int);
let max_exponent = (one << exponent_bits.0 as usize) - one; let max_exponent = (one << exponent_bits.0 as usize) - one;
let implicit_bit = one << significand_bits.0 as usize; let implicit_bit = one << significand_bits.0 as usize;
let significand_mask = implicit_bit - one; let significand_mask = implicit_bit - one;
let sign_bit = one << (significand_bits + exponent_bits).0 as usize; let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
let abs_mask = sign_bit - one; let abs_mask = sign_bit - one;
let exponent_mask = abs_mask ^ significand_mask; let exponent_mask = abs_mask ^ significand_mask;
let inf_rep = exponent_mask; let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1; let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit; let qnan_rep = exponent_mask | quiet_bit;
let mut a_rep = Wrapping(a.repr()); let mut a_rep = Wrapping(a.repr());
let mut b_rep = Wrapping(b.repr()); let mut b_rep = Wrapping(b.repr());
let a_abs = a_rep & abs_mask; let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask; let b_abs = b_rep & abs_mask;
// Detect if a or b is zero, infinity, or NaN. // Detect if a or b is zero, infinity, or NaN.
if a_abs - one >= inf_rep - one || if a_abs - one >= inf_rep - one ||
@ -188,7 +188,7 @@ mod tests {
use core::{f32, f64}; use core::{f32, f64};
use float::Float; use float::Float;
use qc::{U32, U64}; use qc::{F32, F64};
// NOTE The tests below have special handing for NaN values. // NOTE The tests below have special handing for NaN values.
// Because NaN != NaN, the floating-point representations must be used // Because NaN != NaN, the floating-point representations must be used
@ -212,107 +212,18 @@ mod tests {
} }
} }
// TODO: Add F32/F64 to qc so that they print the right values (at the very least)
check! { check! {
fn __addsf3(f: extern fn(f32, f32) -> f32, fn __addsf3(f: extern fn(f32, f32) -> f32,
a: U32, a: F32,
b: U32) b: F32)
-> Option<FRepr<f32> > { -> Option<FRepr<f32> > {
let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0)); Some(FRepr(f(a.0, b.0)))
Some(FRepr(f(a, b)))
} }
fn __adddf3(f: extern fn(f64, f64) -> f64, fn __adddf3(f: extern fn(f64, f64) -> f64,
a: U64, a: F64,
b: U64) -> Option<FRepr<f64> > { b: F64) -> Option<FRepr<f64> > {
let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0)); Some(FRepr(f(a.0, b.0)))
Some(FRepr(f(a, b)))
} }
} }
// More tests for special float values
#[test]
fn test_float_tiny_plus_tiny() {
let tiny = f32::from_repr(1);
let r = super::__addsf3(tiny, tiny);
assert!(r.eq_repr(tiny + tiny));
}
#[test]
fn test_double_tiny_plus_tiny() {
let tiny = f64::from_repr(1);
let r = super::__adddf3(tiny, tiny);
assert!(r.eq_repr(tiny + tiny));
}
#[test]
fn test_float_small_plus_small() {
let a = f32::from_repr(327);
let b = f32::from_repr(256);
let r = super::__addsf3(a, b);
assert!(r.eq_repr(a + b));
}
#[test]
fn test_double_small_plus_small() {
let a = f64::from_repr(327);
let b = f64::from_repr(256);
let r = super::__adddf3(a, b);
assert!(r.eq_repr(a + b));
}
#[test]
fn test_float_one_plus_one() {
let r = super::__addsf3(1f32, 1f32);
assert!(r.eq_repr(1f32 + 1f32));
}
#[test]
fn test_double_one_plus_one() {
let r = super::__adddf3(1f64, 1f64);
assert!(r.eq_repr(1f64 + 1f64));
}
#[test]
fn test_float_different_nan() {
let a = f32::from_repr(1);
let b = f32::from_repr(0b11111111100100010001001010101010);
let x = super::__addsf3(a, b);
let y = a + b;
assert!(x.eq_repr(y));
}
#[test]
fn test_double_different_nan() {
let a = f64::from_repr(1);
let b = f64::from_repr(0b1111111111110010001000100101010101001000101010000110100011101011);
let x = super::__adddf3(a, b);
let y = a + b;
assert!(x.eq_repr(y));
}
#[test]
fn test_float_nan() {
let r = super::__addsf3(f32::NAN, 1.23);
assert_eq!(r.repr(), f32::NAN.repr());
}
#[test]
fn test_double_nan() {
let r = super::__adddf3(f64::NAN, 1.23);
assert_eq!(r.repr(), f64::NAN.repr());
}
#[test]
fn test_float_inf() {
let r = super::__addsf3(f32::INFINITY, -123.4);
assert_eq!(r, f32::INFINITY);
}
#[test]
fn test_double_inf() {
let r = super::__adddf3(f64::INFINITY, -123.4);
assert_eq!(r, f64::INFINITY);
}
} }

View File

@ -10,21 +10,45 @@ pub trait Float: Sized + Copy {
/// Returns the bitwidth of the float type /// Returns the bitwidth of the float type
fn bits() -> u32; fn bits() -> u32;
/// Returns the bitwidth of the exponent
fn exponent_bits() -> u32;
/// Returns the bitwidth of the significand /// Returns the bitwidth of the significand
fn significand_bits() -> u32; fn significand_bits() -> u32;
/// Returns a mask for the sign bit of `self`
fn sign_mask() -> Self::Int;
/// Returns a mask for the exponent portion of `self`
fn exponent_mask() -> Self::Int;
/// Returns a mask for the significand portion of `self`
fn significand_mask() -> Self::Int;
/// Returns the sign bit of `self`
fn sign(self) -> bool;
/// Returns the exponent portion of `self`, shifted to the right
fn exponent(self) -> Self::Int;
/// Returns the significand portion of `self`
fn significand(self) -> Self::Int;
/// Returns `self` transmuted to `Self::Int` /// Returns `self` transmuted to `Self::Int`
fn repr(self) -> Self::Int; fn repr(self) -> Self::Int;
#[cfg(test)] #[cfg(test)]
/// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
/// represented in multiple different ways. This methods returns `true` if two NaNs are /// represented in multiple different ways. This method returns `true` if two NaNs are
/// compared. /// compared.
fn eq_repr(self, rhs: Self) -> bool; fn eq_repr(self, rhs: Self) -> bool;
/// Returns a `Self::Int` transmuted back to `Self` /// Returns a `Self::Int` transmuted back to `Self`
fn from_repr(a: Self::Int) -> Self; fn from_repr(a: Self::Int) -> Self;
/// Constructs a `Self` from its parts
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self;
/// Returns (normalized exponent, normalized significand) /// Returns (normalized exponent, normalized significand)
fn normalize(significand: Self::Int) -> (i32, Self::Int); fn normalize(significand: Self::Int) -> (i32, Self::Int);
} }
@ -34,9 +58,21 @@ impl Float for f32 {
fn bits() -> u32 { fn bits() -> u32 {
32 32
} }
fn exponent_bits() -> u32 {
8
}
fn significand_bits() -> u32 { fn significand_bits() -> u32 {
23 23
} }
fn sign_mask() -> Self::Int {
1 << (Self::bits() - 1)
}
fn exponent_mask() -> Self::Int {
((1 << Self::exponent_bits()) - 1) << Self::significand_bits()
}
fn significand_mask() -> Self::Int {
(1 << Self::significand_bits()) - 1
}
fn repr(self) -> Self::Int { fn repr(self) -> Self::Int {
unsafe { mem::transmute(self) } unsafe { mem::transmute(self) }
} }
@ -51,6 +87,21 @@ impl Float for f32 {
fn from_repr(a: Self::Int) -> Self { fn from_repr(a: Self::Int) -> Self {
unsafe { mem::transmute(a) } unsafe { mem::transmute(a) }
} }
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
Self::from_repr(((sign as Self::Int) << (Self::bits() - 1)) |
exponent & Self::exponent_mask() |
significand & Self::significand_mask())
}
fn sign(self) -> bool {
(self.repr() & Self::sign_mask()) != 0
}
fn exponent(self) -> Self::Int {
self.repr() >> Self::significand_bits() & Self::exponent_mask()
}
fn significand(self) -> Self::Int {
self.repr() & Self::significand_mask()
}
fn normalize(significand: Self::Int) -> (i32, Self::Int) { fn normalize(significand: Self::Int) -> (i32, Self::Int) {
let shift = significand.leading_zeros() let shift = significand.leading_zeros()
.wrapping_sub((1u32 << Self::significand_bits()).leading_zeros()); .wrapping_sub((1u32 << Self::significand_bits()).leading_zeros());
@ -62,9 +113,21 @@ impl Float for f64 {
fn bits() -> u32 { fn bits() -> u32 {
64 64
} }
fn exponent_bits() -> u32 {
11
}
fn significand_bits() -> u32 { fn significand_bits() -> u32 {
52 52
} }
fn sign_mask() -> Self::Int {
1 << (Self::bits() - 1)
}
fn exponent_mask() -> Self::Int {
((1 << Self::exponent_bits()) - 1) << Self::significand_bits()
}
fn significand_mask() -> Self::Int {
(1 << Self::significand_bits()) - 1
}
fn repr(self) -> Self::Int { fn repr(self) -> Self::Int {
unsafe { mem::transmute(self) } unsafe { mem::transmute(self) }
} }
@ -79,6 +142,20 @@ impl Float for f64 {
fn from_repr(a: Self::Int) -> Self { fn from_repr(a: Self::Int) -> Self {
unsafe { mem::transmute(a) } unsafe { mem::transmute(a) }
} }
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
Self::from_repr(((sign as Self::Int) << (Self::bits() - 1)) |
exponent & Self::exponent_mask() |
significand & Self::significand_mask())
}
fn sign(self) -> bool {
(self.repr() & Self::sign_mask()) != 0
}
fn exponent(self) -> Self::Int {
self.repr() >> Self::significand_bits() & Self::exponent_mask()
}
fn significand(self) -> Self::Int {
self.repr() & Self::significand_mask()
}
fn normalize(significand: Self::Int) -> (i32, Self::Int) { fn normalize(significand: Self::Int) -> (i32, Self::Int) {
let shift = significand.leading_zeros() let shift = significand.leading_zeros()
.wrapping_sub((1u64 << Self::significand_bits()).leading_zeros()); .wrapping_sub((1u64 << Self::significand_bits()).leading_zeros());

View File

@ -5,10 +5,12 @@
use std::boxed::Box; use std::boxed::Box;
use std::fmt; use std::fmt;
use core::{f32, f64};
use quickcheck::{Arbitrary, Gen}; use quickcheck::{Arbitrary, Gen};
use int::LargeInt; use int::LargeInt;
use float::Float;
// Generates values in the full range of the integer type // Generates values in the full range of the integer type
macro_rules! arbitrary { macro_rules! arbitrary {
@ -71,6 +73,7 @@ macro_rules! arbitrary {
arbitrary!(I32: i32); arbitrary!(I32: i32);
arbitrary!(U32: u32); arbitrary!(U32: u32);
// These integers are "too large". If we generate e.g. `u64` values in the full range then there's // These integers are "too large". If we generate e.g. `u64` values in the full range then there's
// only `1 / 2^32` chance of seeing a value smaller than `2^32` (i.e. whose higher "word" (32-bits) // only `1 / 2^32` chance of seeing a value smaller than `2^32` (i.e. whose higher "word" (32-bits)
// is `0`)! But this is an important group of values to tests because we have special code paths for // is `0`)! But this is an important group of values to tests because we have special code paths for
@ -143,6 +146,57 @@ macro_rules! arbitrary_large {
arbitrary_large!(I64: i64); arbitrary_large!(I64: i64);
arbitrary_large!(U64: u64); arbitrary_large!(U64: u64);
macro_rules! arbitrary_float {
($TY:ident : $ty:ident) => {
#[derive(Clone, Copy)]
pub struct $TY(pub $ty);
impl Arbitrary for $TY {
fn arbitrary<G>(g: &mut G) -> $TY
where G: Gen
{
let special = [
-0.0, 0.0, $ty::NAN, $ty::INFINITY, -$ty::INFINITY
];
if g.gen_weighted_bool(10) { // Random special case
$TY(*g.choose(&special).unwrap())
} else if g.gen_weighted_bool(10) { // NaN variants
let sign: bool = g.gen();
let exponent: <$ty as Float>::Int = g.gen();
let significand: <$ty as Float>::Int = 0;
$TY($ty::from_parts(sign, exponent, significand))
} else if g.gen() { // Denormalized
let sign: bool = g.gen();
let exponent: <$ty as Float>::Int = 0;
let significand: <$ty as Float>::Int = g.gen();
$TY($ty::from_parts(sign, exponent, significand))
} else { // Random anything
let sign: bool = g.gen();
let exponent: <$ty as Float>::Int = g.gen();
let significand: <$ty as Float>::Int = g.gen();
$TY($ty::from_parts(sign, exponent, significand))
}
}
fn shrink(&self) -> Box<Iterator<Item=$TY>> {
::quickcheck::empty_shrinker()
}
}
impl fmt::Debug for $TY {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.0, f)
}
}
}
}
arbitrary_float!(F32: f32);
arbitrary_float!(F64: f64);
// Convenience macro to test intrinsics against their reference implementations. // Convenience macro to test intrinsics against their reference implementations.
// //
// Each intrinsic is tested against both the `gcc_s` library as well as // Each intrinsic is tested against both the `gcc_s` library as well as
@ -263,3 +317,4 @@ macro_rules! check {
} }
) )
} }