Add Quickcheck types for float tests
This commit is contained in:
parent
9b1fed8d3f
commit
010d153966
103
src/float/add.rs
103
src/float/add.rs
@ -188,7 +188,7 @@ mod tests {
|
||||
use core::{f32, f64};
|
||||
|
||||
use float::Float;
|
||||
use qc::{U32, U64};
|
||||
use qc::{F32, F64};
|
||||
|
||||
// NOTE The tests below have special handing for NaN values.
|
||||
// Because NaN != NaN, the floating-point representations must be used
|
||||
@ -212,107 +212,18 @@ mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Add F32/F64 to qc so that they print the right values (at the very least)
|
||||
check! {
|
||||
fn __addsf3(f: extern fn(f32, f32) -> f32,
|
||||
a: U32,
|
||||
b: U32)
|
||||
a: F32,
|
||||
b: F32)
|
||||
-> Option<FRepr<f32> > {
|
||||
let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0));
|
||||
Some(FRepr(f(a, b)))
|
||||
Some(FRepr(f(a.0, b.0)))
|
||||
}
|
||||
|
||||
fn __adddf3(f: extern fn(f64, f64) -> f64,
|
||||
a: U64,
|
||||
b: U64) -> Option<FRepr<f64> > {
|
||||
let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0));
|
||||
Some(FRepr(f(a, b)))
|
||||
a: F64,
|
||||
b: F64) -> Option<FRepr<f64> > {
|
||||
Some(FRepr(f(a.0, b.0)))
|
||||
}
|
||||
}
|
||||
|
||||
// More tests for special float values
|
||||
|
||||
#[test]
|
||||
fn test_float_tiny_plus_tiny() {
|
||||
let tiny = f32::from_repr(1);
|
||||
let r = super::__addsf3(tiny, tiny);
|
||||
assert!(r.eq_repr(tiny + tiny));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_tiny_plus_tiny() {
|
||||
let tiny = f64::from_repr(1);
|
||||
let r = super::__adddf3(tiny, tiny);
|
||||
assert!(r.eq_repr(tiny + tiny));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_small_plus_small() {
|
||||
let a = f32::from_repr(327);
|
||||
let b = f32::from_repr(256);
|
||||
let r = super::__addsf3(a, b);
|
||||
assert!(r.eq_repr(a + b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_small_plus_small() {
|
||||
let a = f64::from_repr(327);
|
||||
let b = f64::from_repr(256);
|
||||
let r = super::__adddf3(a, b);
|
||||
assert!(r.eq_repr(a + b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_one_plus_one() {
|
||||
let r = super::__addsf3(1f32, 1f32);
|
||||
assert!(r.eq_repr(1f32 + 1f32));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_one_plus_one() {
|
||||
let r = super::__adddf3(1f64, 1f64);
|
||||
assert!(r.eq_repr(1f64 + 1f64));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_different_nan() {
|
||||
let a = f32::from_repr(1);
|
||||
let b = f32::from_repr(0b11111111100100010001001010101010);
|
||||
let x = super::__addsf3(a, b);
|
||||
let y = a + b;
|
||||
assert!(x.eq_repr(y));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_different_nan() {
|
||||
let a = f64::from_repr(1);
|
||||
let b = f64::from_repr(0b1111111111110010001000100101010101001000101010000110100011101011);
|
||||
let x = super::__adddf3(a, b);
|
||||
let y = a + b;
|
||||
assert!(x.eq_repr(y));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_nan() {
|
||||
let r = super::__addsf3(f32::NAN, 1.23);
|
||||
assert_eq!(r.repr(), f32::NAN.repr());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_nan() {
|
||||
let r = super::__adddf3(f64::NAN, 1.23);
|
||||
assert_eq!(r.repr(), f64::NAN.repr());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_float_inf() {
|
||||
let r = super::__addsf3(f32::INFINITY, -123.4);
|
||||
assert_eq!(r, f32::INFINITY);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_double_inf() {
|
||||
let r = super::__adddf3(f64::INFINITY, -123.4);
|
||||
assert_eq!(r, f64::INFINITY);
|
||||
}
|
||||
}
|
||||
|
@ -16,17 +16,14 @@ pub trait Float: Sized + Copy {
|
||||
/// Returns the bitwidth of the significand
|
||||
fn significand_bits() -> u32;
|
||||
|
||||
/// Returns `self` transmuted to `Self::Int`
|
||||
fn repr(self) -> Self::Int;
|
||||
/// Returns a mask for the sign bit of `self`
|
||||
fn sign_mask() -> Self::Int;
|
||||
|
||||
#[cfg(test)]
|
||||
/// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
|
||||
/// represented in multiple different ways. This methods returns `true` if two NaNs are
|
||||
/// compared.
|
||||
fn eq_repr(self, rhs: Self) -> bool;
|
||||
/// Returns a mask for the exponent portion of `self`
|
||||
fn exponent_mask() -> Self::Int;
|
||||
|
||||
/// Returns a `Self::Int` transmuted back to `Self`
|
||||
fn from_repr(a: Self::Int) -> Self;
|
||||
/// Returns a mask for the significand portion of `self`
|
||||
fn significand_mask() -> Self::Int;
|
||||
|
||||
/// Returns the sign bit of `self`
|
||||
fn sign(self) -> bool;
|
||||
@ -37,6 +34,21 @@ pub trait Float: Sized + Copy {
|
||||
/// Returns the significand portion of `self`
|
||||
fn significand(self) -> Self::Int;
|
||||
|
||||
/// Returns `self` transmuted to `Self::Int`
|
||||
fn repr(self) -> Self::Int;
|
||||
|
||||
#[cfg(test)]
|
||||
/// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
|
||||
/// represented in multiple different ways. This method returns `true` if two NaNs are
|
||||
/// compared.
|
||||
fn eq_repr(self, rhs: Self) -> bool;
|
||||
|
||||
/// Returns a `Self::Int` transmuted back to `Self`
|
||||
fn from_repr(a: Self::Int) -> Self;
|
||||
|
||||
/// Constructs a `Self` from its parts
|
||||
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self;
|
||||
|
||||
/// Returns (normalized exponent, normalized significand)
|
||||
fn normalize(significand: Self::Int) -> (i32, Self::Int);
|
||||
}
|
||||
@ -52,6 +64,15 @@ impl Float for f32 {
|
||||
fn significand_bits() -> u32 {
|
||||
23
|
||||
}
|
||||
fn sign_mask() -> Self::Int {
|
||||
1 << (Self::bits() - 1)
|
||||
}
|
||||
fn exponent_mask() -> Self::Int {
|
||||
((1 << Self::exponent_bits()) - 1) << Self::significand_bits()
|
||||
}
|
||||
fn significand_mask() -> Self::Int {
|
||||
(1 << Self::significand_bits()) - 1
|
||||
}
|
||||
fn repr(self) -> Self::Int {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
@ -66,15 +87,20 @@ impl Float for f32 {
|
||||
fn from_repr(a: Self::Int) -> Self {
|
||||
unsafe { mem::transmute(a) }
|
||||
}
|
||||
|
||||
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
|
||||
Self::from_repr(((sign as Self::Int) << (Self::bits() - 1)) |
|
||||
exponent & Self::exponent_mask() |
|
||||
significand & Self::significand_mask())
|
||||
}
|
||||
fn sign(self) -> bool {
|
||||
(self.repr() & 1 << Self::bits()) != 0
|
||||
(self.repr() & Self::sign_mask()) != 0
|
||||
}
|
||||
fn exponent(self) -> Self::Int {
|
||||
self.repr() >> Self::significand_bits()
|
||||
& ((1 << Self::exponent_bits()) - 1)
|
||||
self.repr() >> Self::significand_bits() & Self::exponent_mask()
|
||||
}
|
||||
fn significand(self) -> Self::Int {
|
||||
self.repr() & ((1 << Self::significand_bits()) - 1)
|
||||
self.repr() & Self::significand_mask()
|
||||
}
|
||||
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
|
||||
let shift = significand.leading_zeros()
|
||||
@ -93,6 +119,15 @@ impl Float for f64 {
|
||||
fn significand_bits() -> u32 {
|
||||
52
|
||||
}
|
||||
fn sign_mask() -> Self::Int {
|
||||
1 << (Self::bits() - 1)
|
||||
}
|
||||
fn exponent_mask() -> Self::Int {
|
||||
((1 << Self::exponent_bits()) - 1) << Self::significand_bits()
|
||||
}
|
||||
fn significand_mask() -> Self::Int {
|
||||
(1 << Self::significand_bits()) - 1
|
||||
}
|
||||
fn repr(self) -> Self::Int {
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
@ -107,15 +142,19 @@ impl Float for f64 {
|
||||
fn from_repr(a: Self::Int) -> Self {
|
||||
unsafe { mem::transmute(a) }
|
||||
}
|
||||
fn from_parts(sign: bool, exponent: Self::Int, significand: Self::Int) -> Self {
|
||||
Self::from_repr(((sign as Self::Int) << (Self::bits() - 1)) |
|
||||
exponent & Self::exponent_mask() |
|
||||
significand & Self::significand_mask())
|
||||
}
|
||||
fn sign(self) -> bool {
|
||||
(self.repr() & 1 << Self::bits()) != 0
|
||||
(self.repr() & Self::sign_mask()) != 0
|
||||
}
|
||||
fn exponent(self) -> Self::Int {
|
||||
self.repr() >> Self::significand_bits()
|
||||
& ((1 << Self::exponent_bits()) - 1)
|
||||
self.repr() >> Self::significand_bits() & Self::exponent_mask()
|
||||
}
|
||||
fn significand(self) -> Self::Int {
|
||||
self.repr() & ((1 << Self::significand_bits()) - 1)
|
||||
self.repr() & Self::significand_mask()
|
||||
}
|
||||
fn normalize(significand: Self::Int) -> (i32, Self::Int) {
|
||||
let shift = significand.leading_zeros()
|
||||
|
55
src/qc.rs
55
src/qc.rs
@ -5,10 +5,12 @@
|
||||
|
||||
use std::boxed::Box;
|
||||
use std::fmt;
|
||||
use core::{f32, f64};
|
||||
|
||||
use quickcheck::{Arbitrary, Gen};
|
||||
|
||||
use int::LargeInt;
|
||||
use float::Float;
|
||||
|
||||
// Generates values in the full range of the integer type
|
||||
macro_rules! arbitrary {
|
||||
@ -71,6 +73,7 @@ macro_rules! arbitrary {
|
||||
arbitrary!(I32: i32);
|
||||
arbitrary!(U32: u32);
|
||||
|
||||
|
||||
// These integers are "too large". If we generate e.g. `u64` values in the full range then there's
|
||||
// only `1 / 2^32` chance of seeing a value smaller than `2^32` (i.e. whose higher "word" (32-bits)
|
||||
// is `0`)! But this is an important group of values to tests because we have special code paths for
|
||||
@ -143,6 +146,57 @@ macro_rules! arbitrary_large {
|
||||
arbitrary_large!(I64: i64);
|
||||
arbitrary_large!(U64: u64);
|
||||
|
||||
|
||||
macro_rules! arbitrary_float {
|
||||
($TY:ident : $ty:ident) => {
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct $TY(pub $ty);
|
||||
|
||||
impl Arbitrary for $TY {
|
||||
fn arbitrary<G>(g: &mut G) -> $TY
|
||||
where G: Gen
|
||||
{
|
||||
let special = [
|
||||
-0.0, 0.0, $ty::NAN, $ty::INFINITY, -$ty::INFINITY
|
||||
];
|
||||
|
||||
if g.gen_weighted_bool(10) { // Random special case
|
||||
$TY(*g.choose(&special).unwrap())
|
||||
} else if g.gen_weighted_bool(10) { // NaN variants
|
||||
let sign: bool = g.gen();
|
||||
let exponent: <$ty as Float>::Int = g.gen();
|
||||
let significand: <$ty as Float>::Int = 0;
|
||||
$TY($ty::from_parts(sign, exponent, significand))
|
||||
} else if g.gen() { // Denormalized
|
||||
let sign: bool = g.gen();
|
||||
let exponent: <$ty as Float>::Int = 0;
|
||||
let significand: <$ty as Float>::Int = g.gen();
|
||||
$TY($ty::from_parts(sign, exponent, significand))
|
||||
} else { // Random anything
|
||||
let sign: bool = g.gen();
|
||||
let exponent: <$ty as Float>::Int = g.gen();
|
||||
let significand: <$ty as Float>::Int = g.gen();
|
||||
$TY($ty::from_parts(sign, exponent, significand))
|
||||
}
|
||||
}
|
||||
|
||||
fn shrink(&self) -> Box<Iterator<Item=$TY>> {
|
||||
::quickcheck::empty_shrinker()
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for $TY {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
fmt::Debug::fmt(&self.0, f)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
arbitrary_float!(F32: f32);
|
||||
arbitrary_float!(F64: f64);
|
||||
|
||||
|
||||
// Convenience macro to test intrinsics against their reference implementations.
|
||||
//
|
||||
// Each intrinsic is tested against both the `gcc_s` library as well as
|
||||
@ -263,3 +317,4 @@ macro_rules! check {
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user