mirror of
https://github.com/m-labs/artiq.git
synced 2025-01-27 10:58:12 +08:00
Sebastien Bourdeauducq
938e1c2842
The only advantage of UP is to support the Papilio Pro, but that port is also very limited in other ways and the Pipistrello provides a more reasonable platform that also supports AMP. On the other hand, RPCs on UP are difficult to implement with the session.c protocol system (without an operating system or coroutines), along with many other minor difficulties and maintainance issues. Planned features such as watchdogs in the core device are also difficult on UP.
204 lines
7.5 KiB
ReStructuredText
204 lines
7.5 KiB
ReStructuredText
Installing ARTIQ
|
|
================
|
|
|
|
Preparing the core device FPGA board
|
|
------------------------------------
|
|
|
|
These steps are required to generate bitstream (``.bit``) files, build the MiSoC BIOS and ARTIQ runtime, and flash FPGA boards. If the board is already flashed, you may skip those steps and go directly to `Installing the host-side software`.
|
|
|
|
* Install the FPGA vendor tools (e.g. Xilinx ISE and/or Vivado):
|
|
|
|
* Get Xilinx tools from http://www.xilinx.com/support/download/index.htm. ISE can build bitstreams both for boards using the Spartan-6 (Pipistrello) and 7-series devices (KC705), while Vivado supports only boards using 7-series devices.
|
|
|
|
* The Pipistrello is supported by Webpack, the KC705 is not.
|
|
|
|
* During the Xilinx toolchain installation, uncheck ``Install cable drivers`` (they are not required as we use better and open source alternatives).
|
|
|
|
* Create a development directory: ::
|
|
|
|
$ mkdir ~/artiq-dev
|
|
|
|
* Install Migen: ::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/m-labs/migen
|
|
$ cd ~/artiq-dev/migen
|
|
$ python3 setup.py develop --user
|
|
|
|
.. note::
|
|
The options ``develop`` and ``--user`` are for setup.py to install Migen in ``~/.local/lib/python3.4``.
|
|
|
|
* Install OpenRISC GCC/binutils toolchain (or1k-elf-...): ::
|
|
|
|
$ mkdir ~/artiq-dev
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/openrisc/or1k-src
|
|
$ mkdir ~/artiq-dev/or1k-src/build
|
|
$ cd ~/artiq-dev/or1k-src/build
|
|
$ ../configure --target=or1k-elf --enable-shared --disable-itcl \
|
|
--disable-tk --disable-tcl --disable-winsup \
|
|
--disable-gdbtk --disable-libgui --disable-rda \
|
|
--disable-sid --disable-sim --disable-gdb \
|
|
--disable-newlib --disable-libgloss --disable-werror
|
|
$ make -j4
|
|
$ sudo make install
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/openrisc/or1k-gcc
|
|
$ mkdir ~/artiq-dev/or1k-gcc/build
|
|
$ cd ~/artiq-dev/or1k-gcc/build
|
|
$ ../configure --target=or1k-elf --enable-languages=c \
|
|
--disable-shared --disable-libssp
|
|
$ make -j4
|
|
$ sudo make install
|
|
|
|
* Install JTAG tools needed to program the Pipistrello and KC705:
|
|
|
|
::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ svn co https://xc3sprog.svn.sourceforge.net/svnroot/xc3sprog/trunk xc3sprog
|
|
$ cd ~/artiq-dev/xc3sprog
|
|
$ cmake . && make
|
|
$ sudo make install
|
|
|
|
.. note::
|
|
It is safe to ignore the message "Could NOT find LIBFTD2XX" (libftd2xx is different from libftdi, and is not required).
|
|
|
|
* Install the required flash proxy bitstreams:
|
|
|
|
The purpose of the flash proxy bitstream is to give programming software fast JTAG access to the flash connected to the FPGA.
|
|
|
|
* Pipistrello:
|
|
|
|
::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ wget http://www.phys.ethz.ch/~robertjo/bscan_spi_lx45_csg324.bit
|
|
|
|
Then copy ``~/artiq-dev/bscan_spi_lx45_csg324.bit`` to ``~/.migen``, ``/usr/local/share/migen`` or ``/usr/share/migen``.
|
|
|
|
* KC705:
|
|
|
|
::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/m-labs/bscan_spi_kc705
|
|
|
|
Build the bitstream and copy it to one of the folders above.
|
|
|
|
* Download MiSoC: ::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone --recursive https://github.com/m-labs/misoc
|
|
$ export MSCDIR=~/artiq-dev/misoc # append this line to .bashrc
|
|
|
|
* Download and install ARTIQ: ::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/m-labs/artiq
|
|
$ python3 setup.py develop --user
|
|
|
|
* Build and flash the bitstream and BIOS by running `from the MiSoC top-level directory`: ::
|
|
|
|
$ cd ~/artiq-dev/misoc
|
|
$ ./make.py -X ~/artiq-dev/artiq/soc -t artiq_ppro all
|
|
|
|
* Then, build and flash the ARTIQ runtime: ::
|
|
|
|
$ cd ~/artiq-dev/artiq/soc/runtime && make runtime.fbi
|
|
$ ~/artiq-dev/artiq/artiq/frontend/artiq_flash.sh -t pipistrello -d $PWD -r
|
|
|
|
.. note:: The `-t` option specifies the board your are targeting. Available options are ``kc705`` and ``pipistrello``.
|
|
|
|
* Check that the board boots by running a serial terminal program (you may need to press its FPGA reconfiguration button or power-cycle it to load the bitstream that was newly written into the flash): ::
|
|
|
|
$ make -C ~/artiq-dev/misoc/tools # do only once
|
|
$ ~/artiq-dev/misoc/tools/flterm --port /dev/ttyUSB1
|
|
MiSoC BIOS http://m-labs.hk
|
|
[...]
|
|
Booting from flash...
|
|
Loading xxxxx bytes from flash...
|
|
Executing booted program.
|
|
ARTIQ runtime built <date/time>
|
|
|
|
The communication parameters are 115200 8-N-1.
|
|
|
|
Installing the host-side software
|
|
---------------------------------
|
|
|
|
* Install LLVM and the llvmlite Python bindings: ::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/openrisc/llvm-or1k
|
|
$ cd ~/artiq-dev/llvm-or1k/tools
|
|
$ git clone https://github.com/openrisc/clang-or1k clang
|
|
|
|
$ cd ~/artiq-dev/llvm-or1k
|
|
$ mkdir build
|
|
$ cd ~/artiq-dev/llvm-or1k/build
|
|
$ cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local/llvm-or1k -DLLVM_TARGETS_TO_BUILD=OR1K -DCMAKE_BUILD_TYPE=Debug -DBUILD_SHARED_LIBS=ON
|
|
$ make -j4
|
|
$ sudo make install
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/numba/llvmlite
|
|
$ cd ~/artiq-dev/llvmlite
|
|
$ patch -p1 < ~/artiq-dev/artiq/misc/llvmlite-add-all-targets.patch
|
|
$ PATH=/usr/local/llvm-or1k/bin:$PATH sudo -E python3 setup.py install
|
|
|
|
.. note::
|
|
llvmlite is in development and its API is not stable yet. Commit ID ``11a8303d02e3d6dd2d1e0e9065701795cd8a979f`` is known to work.
|
|
|
|
.. note::
|
|
Compilation of LLVM can take more than 30 min on some machines.
|
|
|
|
* Install ARTIQ (without the GUI): ::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/m-labs/artiq # if not already done
|
|
$ cd artiq
|
|
$ python3 setup.py develop --user
|
|
|
|
* Install ARTIQ (with the GUI): ::
|
|
|
|
$ cd ~/artiq-dev
|
|
$ git clone https://github.com/m-labs/cairoplot3
|
|
$ cd cairoplot3
|
|
$ python3 setup.py install --user
|
|
$ cd -
|
|
$ git clone https://github.com/m-labs/gbulb
|
|
$ cd gbulb
|
|
$ python3 setup.py install --user
|
|
$ cd -
|
|
$ git clone https://github.com/m-labs/artiq # if not already done
|
|
$ cd artiq
|
|
$ ARTIQ_GUI=1 python3 setup.py develop --user
|
|
|
|
.. note::
|
|
Use ARTIQ_GUI=1 to install GUI dependencies which are only supported on Linux for now, to install ARTIQ on Windows do not set ARTIQ_GUI.
|
|
|
|
* Build the documentation: ::
|
|
|
|
$ cd ~/artiq-dev/artiq/doc/manual
|
|
$ make html
|
|
|
|
Ubuntu 14.04 specific instructions
|
|
----------------------------------
|
|
|
|
This command installs all the required packages: ::
|
|
|
|
$ sudo apt-get install build-essential autotools-dev file git patch perl xutils-devs python3-pip texinfo flex bison libmpc-dev python3-serial python3-dateutil python3-prettytable python3-setuptools python3-numpy python3-scipy python3-sphinx python3-h5py python3-gi python3-dev python-dev subversion cmake libusb-dev libftdi-dev pkg-config
|
|
|
|
Note that ARTIQ requires Python 3.4 or above.
|
|
|
|
To set user permissions on the JTAG and serial ports of the Pipistrello, create a ``/etc/udev/rules.d/30-usb-papilio.rules`` file containing the following: ::
|
|
|
|
SUBSYSTEM=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6010", GROUP="dialout"
|
|
|
|
Then reload ``udev``, add your user to the ``dialout`` group, and log out and log in again: ::
|
|
|
|
$ sudo invoke-rc.d udev reload
|
|
$ sudo adduser <your username> dialout
|
|
$ logout
|