2
0
mirror of https://github.com/m-labs/artiq.git synced 2025-01-09 18:43:34 +08:00
artiq/artiq/compiler/validators/local_access.py

176 lines
7.7 KiB
Python

"""
:class:`LocalAccessValidator` verifies that local variables
are not accessed before being used.
"""
from functools import reduce
from pythonparser import diagnostic
from .. import ir, analyses
def is_special_variable(name):
return "$" in name
class LocalAccessValidator:
def __init__(self, engine):
self.engine = engine
def process(self, functions):
for func in functions:
self.process_function(func)
def process_function(self, func):
# Find all environments and closures allocated in this func.
environments, closures = [], []
for insn in func.instructions():
if isinstance(insn, ir.Alloc) and ir.is_environment(insn.type):
environments.append(insn)
elif isinstance(insn, ir.Closure):
closures.append(insn)
# Compute initial state of interesting environments.
# Environments consisting only of internal variables (containing a ".")
# are ignored.
initial_state = {}
for env in environments:
env_state = {var: False for var in env.type.params if "." not in var}
if any(env_state):
initial_state[env] = env_state
# Traverse the acyclic graph made of basic blocks and forward edges only,
# while updating the environment state.
domtree = analyses.DominatorTree(func)
state = {}
def traverse(block):
# Have we computed the state of this block already?
if block in state:
return state[block]
# No! Which forward edges lead to this block?
# If we dominate a predecessor, it's a back edge instead.
forward_edge_preds = [pred for pred in block.predecessors()
if block not in domtree.dominators(pred)]
# Figure out what the state is before the leader
# instruction of this block.
pred_states = [traverse(pred) for pred in forward_edge_preds]
block_state = {}
if len(pred_states) > 1:
for env in initial_state:
# The variable has to be initialized in all predecessors
# in order to be initialized in this block.
def merge_state(a, b):
return {var: a[var] and b[var] for var in a}
block_state[env] = reduce(merge_state,
[state[env] for state in pred_states])
elif len(pred_states) == 1:
# The state is the same as at the terminator of predecessor.
# We'll mutate it, so copy.
pred_state = pred_states[0]
for env in initial_state:
env_state = pred_state[env]
block_state[env] = {var: env_state[var] for var in env_state}
else:
# This is the entry block.
for env in initial_state:
env_state = initial_state[env]
block_state[env] = {var: env_state[var] for var in env_state}
# Update the state based on block contents, while validating
# that no access to uninitialized variables will be done.
for insn in block.instructions:
def pred_at_fault(env, var_name):
# Find out where the uninitialized state comes from.
for pred, pred_state in zip(forward_edge_preds, pred_states):
if not pred_state[env][var_name]:
return pred
# It's the entry block and it was never initialized.
return None
set_local_in_this_frame = False
if (isinstance(insn, (ir.SetLocal, ir.GetLocal)) and
not is_special_variable(insn.var_name)):
env, var_name = insn.environment(), insn.var_name
# Make sure that the variable is defined in the scope of this function.
if env in block_state and var_name in block_state[env]:
if isinstance(insn, ir.SetLocal):
# We've just initialized it.
block_state[env][var_name] = True
set_local_in_this_frame = True
else: # isinstance(insn, ir.GetLocal)
if not block_state[env][var_name]:
# Oops, accessing it uninitialized.
self._uninitialized_access(insn, var_name,
pred_at_fault(env, var_name))
closures_to_check = []
if (isinstance(insn, (ir.SetLocal, ir.SetAttr, ir.SetElem)) and
not set_local_in_this_frame):
# Closures may escape via these mechanisms and be invoked elsewhere.
if isinstance(insn.value(), ir.Closure):
closures_to_check.append(insn.value())
if isinstance(insn, (ir.Call, ir.Invoke)):
# We can't always trace the flow of closures from point of
# definition to point of call; however, we know that, by transitiveness
# of this analysis, only closures defined in this function can contain
# uninitialized variables.
#
# Thus, enumerate the closures, and check all of them during any operation
# that may eventually result in the closure being called.
closures_to_check = closures
for closure in closures_to_check:
env = closure.environment()
# Make sure this environment has any interesting variables.
if env in block_state:
for var_name in block_state[env]:
if not block_state[env][var_name] and not is_special_variable(var_name):
# A closure would capture this variable while it is not always
# initialized. Note that this check is transitive.
self._uninitialized_access(closure, var_name,
pred_at_fault(env, var_name))
# Save the state.
state[block] = block_state
return block_state
for block in func.basic_blocks:
traverse(block)
def _uninitialized_access(self, insn, var_name, pred_at_fault):
if pred_at_fault is not None:
uninitialized_loc = None
for pred_insn in reversed(pred_at_fault.instructions):
if pred_insn.loc is not None:
uninitialized_loc = pred_insn.loc.begin()
break
assert uninitialized_loc is not None
note = diagnostic.Diagnostic("note",
"variable is not initialized when control flows from this point", {},
uninitialized_loc)
else:
note = None
if note is not None:
notes = [note]
else:
notes = []
if isinstance(insn, ir.Closure):
diag = diagnostic.Diagnostic("error",
"variable '{name}' can be captured in a closure uninitialized here",
{"name": var_name},
insn.loc, notes=notes)
else:
diag = diagnostic.Diagnostic("error",
"variable '{name}' is not always initialized here",
{"name": var_name},
insn.loc, notes=notes)
self.engine.process(diag)