mirror of
https://github.com/m-labs/artiq.git
synced 2024-12-29 05:03:34 +08:00
environment,worker_db: mutate datasets from experiments via dedicated method instead of Notifier. Closes #345
This commit is contained in:
parent
a545598d4c
commit
84d50c4caf
@ -9,6 +9,8 @@ unreleased
|
||||
* The CPU speed in the pipistrello gateware has been reduced from 83 1/3 MHz to
|
||||
75 MHz. This will reduce the achievable sustained pulse rate and latency
|
||||
accordingly. ISE was intermittently failing to meet timing (#341).
|
||||
* set_dataset in broadcast mode no longer returns a Notifier. Mutating datasets
|
||||
should be done with mutate_dataset instead (#345).
|
||||
|
||||
|
||||
1.0rc1
|
||||
|
@ -221,13 +221,11 @@ class HasEnvironment:
|
||||
broadcast=False, persist=False, save=True):
|
||||
"""Sets the contents and handling modes of a dataset.
|
||||
|
||||
If the dataset is broadcasted, it must be PYON-serializable.
|
||||
If the dataset is saved, it must be a scalar (``bool``, ``int``,
|
||||
``float`` or NumPy scalar) or a NumPy array.
|
||||
Datasets must be scalars (``bool``, ``int``, ``float`` or NumPy scalar)
|
||||
or NumPy arrays.
|
||||
|
||||
:param broadcast: the data is sent in real-time to the master, which
|
||||
dispatches it. Returns a Notifier that can be used to mutate the
|
||||
dataset.
|
||||
dispatches it.
|
||||
:param persist: the master should store the data on-disk. Implies
|
||||
broadcast.
|
||||
:param save: the data is saved into the local storage of the current
|
||||
@ -238,7 +236,19 @@ class HasEnvironment:
|
||||
return
|
||||
if self.__dataset_mgr is None:
|
||||
raise ValueError("Dataset manager not present")
|
||||
return self.__dataset_mgr.set(key, value, broadcast, persist, save)
|
||||
self.__dataset_mgr.set(key, value, broadcast, persist, save)
|
||||
|
||||
def mutate_dataset(self, key, index, value):
|
||||
"""Mutate an existing dataset at the given index (e.g. set a value at
|
||||
a given position in a NumPy array)
|
||||
|
||||
If the dataset was created in broadcast mode, the modification is
|
||||
immediately transmitted."""
|
||||
if self.__parent is not None:
|
||||
self.__parent.mutate_dataset(key, index, value)
|
||||
if self.__dataset_mgr is None:
|
||||
raise ValueError("Dataset manager not present")
|
||||
self.__dataset_mgr.mutate(key, index, value)
|
||||
|
||||
def get_dataset(self, key, default=NoDefault):
|
||||
"""Returns the contents of a dataset.
|
||||
|
@ -228,20 +228,26 @@ class DatasetManager:
|
||||
def set(self, key, value, broadcast=False, persist=False, save=True):
|
||||
if persist:
|
||||
broadcast = True
|
||||
r = None
|
||||
if broadcast:
|
||||
self.broadcast[key] = (persist, value)
|
||||
r = self.broadcast[key][1]
|
||||
self.broadcast[key] = persist, value
|
||||
if save:
|
||||
self.local[key] = value
|
||||
return r
|
||||
|
||||
def mutate(self, key, index, value):
|
||||
target = None
|
||||
if key in self.local:
|
||||
target = self.local[key]
|
||||
if key in self.broadcast.read:
|
||||
target = self.broadcast[key][1]
|
||||
if target is None:
|
||||
raise KeyError("Cannot mutate non-existing dataset")
|
||||
target[index] = value
|
||||
|
||||
def get(self, key):
|
||||
try:
|
||||
if key in self.local:
|
||||
return self.local[key]
|
||||
except KeyError:
|
||||
pass
|
||||
return self.ddb.get(key)
|
||||
else:
|
||||
return self.ddb.get(key)
|
||||
|
||||
def write_hdf5(self, f):
|
||||
result_dict_to_hdf5(f, self.local)
|
||||
|
@ -38,19 +38,19 @@ class FloppingF(EnvExperiment):
|
||||
|
||||
def run(self):
|
||||
l = len(self.frequency_scan)
|
||||
frequency = self.set_dataset("flopping_f_frequency",
|
||||
np.full(l, np.nan),
|
||||
broadcast=True, save=False)
|
||||
brightness = self.set_dataset("flopping_f_brightness",
|
||||
np.full(l, np.nan),
|
||||
broadcast=True)
|
||||
self.set_dataset("flopping_f_frequency",
|
||||
np.full(l, np.nan),
|
||||
broadcast=True, save=False)
|
||||
self.set_dataset("flopping_f_brightness",
|
||||
np.full(l, np.nan),
|
||||
broadcast=True)
|
||||
self.set_dataset("flopping_f_fit", np.full(l, np.nan),
|
||||
broadcast=True, save=False)
|
||||
|
||||
for i, f in enumerate(self.frequency_scan):
|
||||
m_brightness = model(f, self.F0) + self.noise_amplitude*random.random()
|
||||
frequency[i] = f
|
||||
brightness[i] = m_brightness
|
||||
self.mutate_dataset("flopping_f_frequency", i, f)
|
||||
self.mutate_dataset("flopping_f_brightness", i, m_brightness)
|
||||
time.sleep(0.1)
|
||||
self.scheduler.submit(self.scheduler.pipeline_name, self.scheduler.expid,
|
||||
self.scheduler.priority, time.time() + 20, False)
|
||||
|
Loading…
Reference in New Issue
Block a user