2
0
mirror of https://github.com/m-labs/artiq.git synced 2025-01-15 05:18:54 +08:00
artiq/examples/master/repository/flopping_f_simulation.py

72 lines
2.5 KiB
Python
Raw Normal View History

2015-01-13 19:12:35 +08:00
from math import sqrt, cos, pi
import time
import random
import numpy as np
from scipy.optimize import curve_fit
2015-01-13 19:12:35 +08:00
from artiq import *
def model(x, F0):
t = 0.02
tpi = 0.03
A = 80
B = 40
2015-01-13 19:12:35 +08:00
return A+(B-A)/2/(4*tpi**2*(x-F0)**2+1)*(1-cos(pi*t/tpi*sqrt(4*tpi**2*(x-F0)**2+1)))
def model_numpy(xdata, F0):
r = np.zeros(len(xdata))
for i, x in enumerate(xdata):
r[i] = model(x, F0)
return r
2015-07-14 04:08:20 +08:00
class FloppingF(EnvExperiment):
"""Flopping F simulation"""
2015-07-14 04:08:20 +08:00
def build(self):
2015-10-04 00:18:21 +08:00
self.setattr_argument("frequency_scan", Scannable(
default=LinearScan(1000, 2000, 100)))
2015-01-13 19:12:35 +08:00
2015-10-04 00:18:21 +08:00
self.setattr_argument("F0", NumberValue(1500, min=1000, max=2000))
self.setattr_argument("noise_amplitude", NumberValue(0.1, min=0, max=100,
step=0.01))
2015-01-13 19:12:35 +08:00
2015-10-04 00:18:21 +08:00
self.setattr_device("scheduler")
2015-01-13 19:12:35 +08:00
def run(self):
l = len(self.frequency_scan)
frequency = self.set_dataset("flopping_f_frequency",
np.full(l, np.nan),
broadcast=True, save=False)
brightness = self.set_dataset("flopping_f_brightness",
np.full(l, np.nan),
broadcast=True)
self.set_dataset("flopping_f_fit", np.full(l, np.nan),
broadcast=True, save=False)
for i, f in enumerate(self.frequency_scan):
m_brightness = model(f, self.F0) + self.noise_amplitude*random.random()
frequency[i] = f
brightness[i] = m_brightness
2015-01-13 19:12:35 +08:00
time.sleep(0.1)
2015-05-17 16:11:00 +08:00
self.scheduler.submit(self.scheduler.pipeline_name, self.scheduler.expid,
2015-05-28 17:20:58 +08:00
self.scheduler.priority, time.time() + 20, False)
2015-01-13 19:12:35 +08:00
def analyze(self):
# Use get_dataset so that analyze can be run stand-alone.
frequency = self.get_dataset("flopping_f_frequency")
brightness = self.get_dataset("flopping_f_brightness")
popt, pcov = curve_fit(model_numpy,
frequency, brightness,
p0=[self.get_dataset("flopping_freq", 1500.0)])
perr = np.sqrt(np.diag(pcov))
if perr < 0.1:
F0 = float(popt)
self.set_dataset("flopping_freq", F0, persist=True, save=False)
self.set_dataset("flopping_f_fit",
np.array([model(x, F0) for x in frequency]),
broadcast=True, save=False)