Compare commits

...

25 Commits

Author SHA1 Message Date
8822fcbc1d sim: prototyping frame decoding pipeine
sim: add double buffer
sim: add eop marker for crc checker in double buffer
sim: add KCode, pak type & CRC generator
sim: add Stream crossbar
sim: add stream pipeline with parser & buffer
sim: add frame generator & image viewer
2024-11-13 16:16:49 +08:00
ca95feaabd cxp coredevice driver: init 2024-11-13 16:16:44 +08:00
4a1d41832b api: add cxp api support for CTRL packet 2024-11-13 16:16:44 +08:00
7fb4b4088e libboard_artiq: setup
libboard_artiq: add cxp_downconn & cxp_upconn
libboard_artiq: compile mem with cxp
libboard_artiq: add cxp_proto
libboard_artiq: add cxp_phys
2024-11-13 16:16:44 +08:00
67a7d39b54 cxp downconn firmware: packet testing 2024-11-13 16:16:44 +08:00
2991950757 cxp upconn firmware: packet testing 2024-11-13 16:16:44 +08:00
3a61bc9ce5 cxp protocol: init
testing: add packet printing helper function
testing: add rx loopback
proto FW: use memory buffer for tx and rx
proto FW: use byteoder crate to handle endianness
proto FW: add event packet reader and writer
proto FW: add error correction for 4x char
2024-11-13 16:16:44 +08:00
fbd244cbe5 Cargo: add byteorder 2024-11-13 16:16:44 +08:00
5ba1da6e40 main: add testing 2024-11-13 16:16:44 +08:00
19beb8488e cxp_phys: low speed serial & GTX setup
downconn: add QPLL & GTX setup
downconn: add DRP to change linerate up to 12.5Gbps
downconn testing: add txuserclk config
upconn: add low speed serital setup
upconn & downconn: add linerate changer
2024-11-13 16:16:44 +08:00
577fa03b78 zc706: add CXP_DEMO variant
zc706: add fmc pads
zc706: add constraint to fix comma alignment & setup/hold time issue
zc706: add csr & mem group for cxp
zc706: add CXP to rtio_channel
2024-11-13 16:16:44 +08:00
1a3ac9763d cxp: add PHY and pipeline
testing: add loopback tx for rx testing
testing: add trigger, trigger ack for testing
cxp: add upconn & downconn phy
cxp: add upconn & downconn pipeline
cxp: add rtlink
2024-11-13 16:16:44 +08:00
ba1e1f9951 cxp pipeline: packet handling pipeline
tx pipeline: add CRC32 inserter
tx pipeline: add start & end of packet code inserter
tx pipeline: add packet wrapper for start & stop packet indication
tx pipeline: add code source for trigger & trigger ack packet
tx pipeline: add packet for trigger & trigger ack
tx pipeline: add test packet generator
tx pipeline: add tx_command_packet for firmware
tx command packet: add dma to store control packet
rx pipeline: add reciever path
rx pipeline: add duplicate char decoder
rx pipeline: add trig ack checker
rx pipeline: add packet decoder
decoder: add test packet checher
decoder: add packet DMA
2024-11-13 16:16:44 +08:00
dd8f4a172b cxp upconn gw: add low speed serial PHY
testing: add debug fifo output b4 encoder
cxp upconn: add low speed serial
cxp upconn: add reset, tx_busy, tx_enable
cxp upconn: add clockgen module for 20.83Mbps & 41.66Mbps using counters
cxp upconn: add oserdes using CEInserter
2024-11-13 16:16:19 +08:00
08ae1e92c5 cxp downconn gw: add gtx up to 12.5Gbps
testing: add txusrclk mmcm & loopback mode
testing: add debug output
testing: send comma in the middle of long packet to maintain lock
downconn: don't put IDLE into fifo
downconn: add GTX and QPLL support
downconn: add DRP for GTX and QPLL to support all CXP linerates
GTX: add gtx with mmcm for TXUSRCLK freq requirement
GTX: add loopback mode parameter for testing
GTX: add gtx with 40bits internal width
GTX: use built-in comma aligner
GTX: add comma checker to ensure comma is aligner on highest linerate
GTX: set QPLL as CLK source for GTX
2024-11-13 16:16:19 +08:00
3a5d508674 fmc: add cxp_4r_fmc adepter io 2024-11-13 16:16:19 +08:00
9f306063a2 temp flake & local_run mod
flake: download llvm11 binary instead of compiling
local_run: preset cxp zc706 dev board ip addr
flake: add pillow for sim
2024-11-13 16:16:19 +08:00
bfa16e0560 flake: add CXP_DEMO variant build options 2024-11-13 16:16:08 +08:00
f4362c1e54 flake: update dependencies 2024-11-13 16:16:07 +08:00
a3ae5ddd00 flake: update dependencies 2024-11-13 16:16:06 +08:00
cb1558ec4e firmware: add unit tests for exception sync 2024-11-13 16:16:05 +08:00
d514171d6f firmware: sync exception names and ids 2024-11-13 16:16:05 +08:00
c3ae34123c fix nalgebra url 2024-11-13 16:16:04 +08:00
9f5e15e6d2 kernel/linalg: remove redundant unsafe blocks 2024-11-13 16:16:03 +08:00
fbb636460b cargo fmt 2024-11-13 16:16:03 +08:00
30 changed files with 4520 additions and 73 deletions

58
cxp_kernel.py Normal file
View File

@ -0,0 +1,58 @@
"""
Non-realtime drivers for CXP.
"""
# TODO: add api calls for CTRL packet similar i2c
# TODO: add timing critical trigger ack
from artiq.language.core import syscall, kernel
from artiq.language.types import TBool, TInt32, TNone
from artiq.coredevice.rtio import rtio_output
from artiq.experiment import *
class CoaXPress:
def __init__(self, channel, core_device="core"):
# __device_mgr is private
# self.core = dmgr.get(core_device)
# you can get the channel via `print(len(rtio_channels))` before calling
# `rtio_channels.append(rtio.Channel.from_phy(cxp_interface))`
self.channel = channel
# the first 8 bits is reserved for the rtlink.OInterface.addr not for channel no.
self.target_o = channel << 8
@staticmethod
def get_rtio_channels(channel, **kwargs):
return [(channel, None)]
@kernel
def trigger(self, linktrig, trigdelay):
rtio_output(self.target_o, linktrig | trigdelay << 1)
@syscall(flags={"nounwind", "nowrite"})
def cxp_readu32(channel: TInt32, addr: TInt32) -> TNone:
raise NotImplementedError("syscall not simulated")
@syscall(flags={"nounwind", "nowrite"})
def cxp_writeu32(channel: TInt32, addr: TInt32, val: TInt32) -> TNone:
raise NotImplementedError("syscall not simulated")
class IdleKernel(EnvExperiment):
def build(self):
self.setattr_device("core")
self.setattr_device("led0")
# declare the class before using it in kernel
self.cxp = CoaXPress(0x0)
@kernel
def run(self):
self.core.reset()
# cxp_readu32(0, 3)
# cxp_writeu32(0, 0, 0xABCD)
self.cxp.trigger(1, 10)

44
flake.lock generated
View File

@ -11,11 +11,11 @@
"src-pythonparser": "src-pythonparser"
},
"locked": {
"lastModified": 1722417433,
"narHash": "sha256-QEbcVdL1sUQEbMCvCUvPM8DKqwOth3gJpdiLTf4hPN8=",
"lastModified": 1725373154,
"narHash": "sha256-fq9EW9fDWrV0v1vNj7ZqDNpNYx8+OxoFdPwpvkPf67g=",
"ref": "refs/heads/master",
"rev": "0623480c82c28d57e14dc4f363374758a52284d3",
"revCount": 8952,
"rev": "0c1ffa9f4f6a3e7864459923ec4b9cc45f16327a",
"revCount": 9005,
"type": "git",
"url": "https://github.com/m-labs/artiq.git"
},
@ -102,11 +102,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1721924956,
"narHash": "sha256-Sb1jlyRO+N8jBXEX9Pg9Z1Qb8Bw9QyOgLDNMEpmjZ2M=",
"lastModified": 1724224976,
"narHash": "sha256-Z/ELQhrSd7bMzTO8r7NZgi9g5emh+aRKoCdaAv5fiO0=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "5ad6a14c6bf098e98800b091668718c336effc95",
"rev": "c374d94f1536013ca8e92341b540eba4c22f9c62",
"type": "github"
},
"original": {
@ -116,10 +116,27 @@
"type": "github"
}
},
"nixpkgs_old": {
"locked": {
"lastModified": 1720535198,
"narHash": "sha256-zwVvxrdIzralnSbcpghA92tWu2DV2lwv89xZc8MTrbg=",
"owner": "nixos",
"repo": "nixpkgs",
"rev": "205fd4226592cc83fd4c0885a3e4c9c400efabb5",
"type": "github"
},
"original": {
"owner": "nixos",
"ref": "nixos-23.11",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"artiq": "artiq",
"mozilla-overlay": "mozilla-overlay",
"nixpkgs_old": "nixpkgs_old",
"zynq-rs": "zynq-rs"
}
},
@ -131,15 +148,16 @@
]
},
"locked": {
"lastModified": 1722046723,
"narHash": "sha256-G7/gHz8ORRvHd1/RIURrdcswKRPe9K0FsIYR4v5jSWo=",
"lastModified": 1719454714,
"narHash": "sha256-MojqG0lyUINkEk0b3kM2drsU5vyaF8DFZe/FAlZVOGs=",
"owner": "oxalica",
"repo": "rust-overlay",
"rev": "56baac5e6b2743d4730e664ea64f6d8a2aad0fbb",
"rev": "d1c527659cf076ecc4b96a91c702d080b213801e",
"type": "github"
},
"original": {
"owner": "oxalica",
"ref": "snapshot/2024-08-01",
"repo": "rust-overlay",
"type": "github"
}
@ -168,11 +186,11 @@
"src-migen": {
"flake": false,
"locked": {
"lastModified": 1721561053,
"narHash": "sha256-z3LRhNmKZrjr6rFD0yxtccSa/SWvFIYmb+G/D5d2Jd8=",
"lastModified": 1724304798,
"narHash": "sha256-tQ02N0eXY5W/Z7CrOy3Cu4WjDZDQWb8hYlzsFzr3Mus=",
"owner": "m-labs",
"repo": "migen",
"rev": "9279e8623f8433bc4f23ac51e5e2331bfe544417",
"rev": "832a7240ba32af9cbd4fdd519ddcb4f912534726",
"type": "github"
},
"original": {

View File

@ -6,12 +6,16 @@
inputs.zynq-rs.url = git+https://git.m-labs.hk/m-labs/zynq-rs;
inputs.zynq-rs.inputs.nixpkgs.follows = "artiq/nixpkgs";
outputs = { self, mozilla-overlay, zynq-rs, artiq }:
inputs.nixpkgs_old.url = "github:nixos/nixpkgs?ref=nixos-23.11";
outputs = { self, mozilla-overlay, zynq-rs, artiq, nixpkgs_old }:
let
pkgs_old = import nixpkgs_old { system = "x86_64-linux";};
pkgs = import artiq.inputs.nixpkgs { system = "x86_64-linux"; overlays = [ (import mozilla-overlay) ]; };
zynqpkgs = zynq-rs.packages.x86_64-linux;
artiqpkgs = artiq.packages.x86_64-linux;
llvmPackages_11 = zynq-rs.llvmPackages_11;
# llvmPackages_11 = zynq-rs.llvmPackages_11;
llvmPackages_11 = pkgs_old.llvmPackages_11;
rust = zynq-rs.rust;
rustPlatform = zynq-rs.rustPlatform;
@ -342,6 +346,7 @@
{
inherit fastnumbers artiq-netboot ramda migen-axi binutils-arm;
} //
(board-package-set { target = "zc706"; variant = "cxp_demo"; }) //
(board-package-set { target = "zc706"; variant = "nist_clock"; }) //
(board-package-set { target = "zc706"; variant = "nist_clock_master"; }) //
(board-package-set { target = "zc706"; variant = "nist_clock_master_100mhz"; }) //
@ -380,7 +385,7 @@
zynqpkgs.mkbootimage
openocd
openssh rsync
(python3.withPackages(ps: (with artiqpkgs; [ migen migen-axi misoc artiq artiq-netboot ps.jsonschema ps.pyftdi ])))
(python3.withPackages(ps: (with artiqpkgs; [ migen migen-axi misoc artiq artiq-netboot ps.jsonschema ps.pyftdi ps.pillow ])))
artiqpkgs.artiq
artiqpkgs.vivado
binutils-arm

View File

@ -13,7 +13,7 @@ fi
impure=0
load_bitstream=1
board_type="kasli_soc"
board_type="zc706"
fw_type="runtime"
while getopts "ilb:t:f:" opt; do
@ -36,7 +36,7 @@ done
if [ -z "$board_host" ]; then
case $board_type in
kasli_soc) board_host="192.168.1.56";;
zc706) board_host="192.168.1.52";;
zc706) board_host="192.168.1.14";;
*) echo "Unknown board type"; exit 1;;
esac
fi

131
sim_frame.py Normal file
View File

@ -0,0 +1,131 @@
from migen import *
from misoc.interconnect import stream
from sim_pipeline import *
from sim_generator import CXPCRC32Inserter
from sim_frame_gen import get_frame_packet
from src.gateware.cxp_pipeline import *
import numpy as np
from PIL import Image
class Frame(Module):
def __init__(self):
# to construct correct crc and ack/stb signal
self.submodules.buffer = buffer = stream.SyncFIFO(word_layout, 32)
self.submodules.crc_inserter = crc_inserter = CXPCRC32Inserter()
self.submodules.dchar_decoder = dchar_decoder = Duplicated_Char_Decoder()
self.submodules.stream_pipe = stream_pipe = Stream_Pipeline()
pipeline = [buffer, crc_inserter, dchar_decoder, stream_pipe]
for s, d in zip(pipeline, pipeline[1:]):
self.comb += s.source.connect(d.sink)
self.sink = pipeline[0].sink
self.source = pipeline[-1].source
# no backpressure for sim
self.sync += self.source.ack.eq(1)
dut = Frame()
def check_case(packet=[]):
print("=================TEST========================")
sink = dut.sink
stream_pipe = dut.stream_pipe
for i, p in enumerate(packet):
yield sink.data.eq(p["data"])
yield sink.k.eq(p["k"])
yield sink.stb.eq(1)
if "eop" in p:
yield sink.eop.eq(1)
else:
yield sink.eop.eq(0)
# check cycle result
yield
# source = dut.dchar_decoder.source
# source = dut.stream_pipe.frame_extractor.sink
source = dut.sink
# print(
# f"\nCYCLE#{i} : source char = {yield source.data:#X} k = {yield source.k:#X} stb = {yield source.stb} ack = {yield source.ack} eop = {yield source.eop}"
# )
# extra clk cycles
cyc = i + 1
img = []
line = -1
total_pixel = 1000
for i in range(cyc, cyc + total_pixel):
yield sink.data.eq(0)
yield sink.k.eq(0)
yield sink.stb.eq(0)
yield sink.eop.eq(0)
yield
# print(
# f"\nCYCLE#{i} : source char = {yield source.data:#X} k = {yield source.k:#X} stb = {yield source.stb} ack = {yield source.ack} eop = {yield source.eop}"
# )
frame_extractoer = dut.stream_pipe.frame_extractor
new_line = yield frame_extractoer.new_line
if new_line:
img.append([])
line += 1
stb = yield frame_extractoer.source.stb
data = yield frame_extractoer.source.data
if stb:
# CXP use MSB
img[line].append(np.uint16(data & 0xFFFF))
img[line].append(np.uint16(data >> 16))
# metadata = dut.stream_pipe.frame_extractor.metadata
# img_header_layout = [
# "stream_id",
# "source_tag",
# "x_size",
# "x_offset",
# "y_size",
# "y_offset",
# "l_size", # number of data words per image line
# "pixel_format",
# "tap_geo",
# "flag",
# ]
# for name in img_header_layout:
# print(f"{name} = {yield getattr(metadata, name):#04X} ", end="")
# print()
Image.fromarray(np.array(img, dtype=np.uint8)).show()
assert True
def testbench():
stream_id = 0x69
packet_tag = 0
frame_packet = get_frame_packet(stream_id)
packet = [
{"data": Replicate(C(stream_id, char_width), 4), "k": Replicate(0, 4)},
{"data": Replicate(C(packet_tag, char_width), 4), "k": Replicate(0, 4)},
{
"data": Replicate(C(len(frame_packet), 2*char_width)[8:], 4),
"k": Replicate(0, 4),
},
{
"data": Replicate(C(len(frame_packet), 2*char_width)[:8], 4),
"k": Replicate(0, 4),
},
]
packet += frame_packet
# NOTE: for crc inserter!!!!
packet[-1]["eop"] = 0
yield from check_case(packet)
run_simulation(dut, testbench(), vcd_name="sim-cxp.vcd")

148
sim_frame_gen.py Normal file
View File

@ -0,0 +1,148 @@
from migen import *
from misoc.interconnect import stream
from src.gateware.cxp_pipeline import *
from sim_pipeline import *
from PIL import Image
import numpy as np
def get_image_header(
stream_id, source_tag, xsize, xoffset, ysize, yoffset, dsize, pixelF, tag_geo, flag
):
stream_id = C(stream_id, char_width)
source_tag = C(source_tag, 2 * char_width)
xsize = C(xsize, 3 * char_width)
xoffset = C(xoffset, 3 * char_width)
ysize = C(ysize, 3 * char_width)
yoffset = C(yoffset, 3 * char_width)
dsize = C(dsize, 3 * char_width)
pixelF = C(pixelF, 2 * char_width)
tag_geo = C(tag_geo, 2 * char_width)
flag = C(flag, char_width)
assert len(stream_id) == len(flag) == char_width
assert len(source_tag) == len(pixelF) == len(tag_geo) == 2 * char_width
assert len(xsize) == len(xoffset) == len(ysize) == len(yoffset) == 3 * char_width
return [
{"data": Replicate(KCode["stream_marker"], 4), "k": Replicate(1, 4)},
{"data": Replicate(C(0x01, char_width), 4), "k": Replicate(0, 4)},
{"data": Replicate(stream_id, 4), "k": Replicate(0, 4)},
{"data": Replicate(source_tag[8:], 4), "k": Replicate(0, 4)},
{"data": Replicate(source_tag[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(xsize[16:], 4), "k": Replicate(0, 4)},
{"data": Replicate(xsize[8:16], 4), "k": Replicate(0, 4)},
{"data": Replicate(xsize[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(xoffset[16:], 4), "k": Replicate(0, 4)},
{"data": Replicate(xoffset[8:16], 4), "k": Replicate(0, 4)},
{"data": Replicate(xoffset[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(ysize[16:], 4), "k": Replicate(0, 4)},
{"data": Replicate(ysize[8:16], 4), "k": Replicate(0, 4)},
{"data": Replicate(ysize[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(yoffset[16:], 4), "k": Replicate(0, 4)},
{"data": Replicate(yoffset[8:16], 4), "k": Replicate(0, 4)},
{"data": Replicate(yoffset[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(dsize[16:], 4), "k": Replicate(0, 4)},
{"data": Replicate(dsize[8:16], 4), "k": Replicate(0, 4)},
{"data": Replicate(dsize[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(pixelF[8:], 4), "k": Replicate(0, 4)},
{"data": Replicate(pixelF[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(tag_geo[8:], 4), "k": Replicate(0, 4)},
{"data": Replicate(tag_geo[:8], 4), "k": Replicate(0, 4)},
{"data": Replicate(flag, 4), "k": Replicate(0, 4)},
]
def get_line_marker():
return [
{"data": Replicate(KCode["stream_marker"], 4), "k": Replicate(1, 4)},
{"data": Replicate(C(0x02, char_width), 4), "k": Replicate(0, 4)},
]
def get_frame_packet(stream_id, pixel_format="mono16"):
assert pixel_format in ["mono16"]
arr = [
[204, 200, 203, 205, 190, 187, 189, 205, 214, 197, 188, 185, 181, 178, 193, 209, 211, 207, 211, 192, 168, 168, 171, 199, 210, 212, 203, 196],
[218, 205, 199, 190, 192, 197, 196, 195, 184, 178, 182, 173, 166, 132, 122, 114, 154, 184, 187, 188, 171, 168, 170, 180, 192, 196, 202, 198],
[223, 222, 222, 224, 216, 199, 199, 207, 205, 189, 183, 182, 144, 66, 61, 66, 80, 148, 181, 175, 169, 170, 174, 177, 196, 206, 223, 218],
[221, 226, 225, 222, 211, 200, 202, 208, 215, 201, 187, 180, 133, 116, 113, 118, 96, 111, 206, 193, 170, 169, 186, 211, 218, 224, 231, 223],
[219, 216, 206, 197, 210, 201, 206, 203, 191, 190, 185, 145, 134, 140, 159, 170, 150, 116, 180, 173, 179, 170, 172, 185, 201, 218, 227, 227],
[203, 198, 194, 208, 227, 201, 201, 201, 215, 221, 209, 170, 136, 113, 141, 139, 141, 145, 188, 170, 180, 169, 184, 173, 174, 192, 215, 230],
[206, 224, 213, 213, 233, 207, 204, 226, 233, 227, 214, 166, 145, 123, 145, 155, 147, 186, 213, 187, 171, 169, 193, 193, 171, 178, 186, 207],
[212, 228, 216, 205, 214, 205, 204, 230, 235, 225, 219, 187, 143, 122, 146, 163, 158, 195, 209, 203, 174, 168, 190, 185, 187, 202, 180, 174],
[197, 206, 201, 223, 213, 201, 203, 231, 234, 225, 218, 206, 147, 125, 149, 155, 190, 208, 206, 203, 175, 168, 171, 179, 184, 206, 189, 176],
[213, 202, 209, 235, 223, 200, 202, 202, 227, 227, 202, 176, 138, 122, 144, 153, 190, 209, 207, 191, 172, 167, 179, 204, 190, 191, 180, 193],
[225, 225, 207, 231, 219, 197, 215, 200, 194, 199, 181, 172, 131, 129, 147, 159, 113, 175, 196, 179, 184, 169, 181, 210, 202, 204, 200, 177],
[208, 222, 204, 223, 210, 191, 195, 198, 203, 167, 171, 168, 135, 129, 149, 175, 66, 57, 90, 121, 147, 165, 181, 205, 195, 217, 209, 173],
[188, 216, 201, 206, 199, 180, 185, 180, 129, 75, 139, 166, 124, 146, 189, 135, 51, 41, 38, 40, 45, 63, 131, 201, 189, 215, 193, 170],
[188, 194, 195, 192, 182, 180, 134, 68, 45, 41, 96, 130, 116, 156, 163, 64, 46, 41, 43, 41, 42, 42, 74, 181, 177, 198, 175, 193],
[179, 179, 209, 224, 198, 182, 99, 42, 44, 41, 44, 100, 116, 125, 100, 46, 45, 42, 42, 37, 44, 43, 49, 150, 183, 170, 172, 198],
[175, 177, 208, 223, 197, 180, 94, 40, 42, 40, 41, 99, 134, 117, 80, 43, 46, 43, 37, 37, 44, 42, 35, 129, 195, 170, 170, 180],
[179, 181, 187, 217, 193, 175, 91, 38, 41, 41, 42, 106, 151, 107, 62, 43, 45, 41, 33, 38, 42, 34, 33, 77, 188, 175, 173, 208],
[190, 191, 180, 213, 194, 175, 78, 38, 40, 40, 40, 98, 134, 97, 51, 44, 59, 50, 37, 40, 36, 26, 36, 44, 100, 178, 192, 206],
[199, 191, 184, 204, 196, 176, 78, 33, 38, 38, 39, 80, 102, 83, 43, 44, 112, 130, 122, 63, 33, 24, 29, 34, 33, 74, 162, 195],
[191, 170, 196, 193, 186, 177, 88, 27, 34, 37, 36, 74, 101, 70, 36, 37, 81, 127, 137, 113, 40, 28, 30, 32, 36, 29, 69, 173],
[164, 189, 190, 180, 176, 172, 83, 26, 28, 33, 32, 68, 97, 62, 32, 30, 44, 97, 123, 136, 58, 42, 44, 43, 43, 40, 58, 162],
[177, 202, 205, 181, 174, 163, 78, 38, 35, 47, 54, 67, 92, 51, 28, 29, 26, 21, 39, 85, 47, 46, 52, 47, 46, 45, 48, 141],
[181, 193, 199, 192, 171, 163, 91, 67, 121, 123, 91, 63, 89, 45, 25, 25, 23, 20, 15, 13, 20, 48, 54, 35, 34, 34, 68, 146],
[175, 192, 195, 179, 165, 163, 100, 64, 99, 94, 82, 58, 83, 37, 23, 22, 22, 27, 21, 15, 14, 44, 98, 83, 94, 118, 164, 157],
[153, 184, 171, 163, 161, 157, 140, 70, 58, 89, 61, 53, 76, 30, 20, 20, 20, 31, 24, 19, 16, 47, 159, 163, 160, 171, 160, 142],
[142, 150, 161, 168, 154, 154, 164, 138, 76, 55, 26, 37, 62, 24, 19, 19, 20, 21, 23, 27, 31, 46, 142, 156, 151, 153, 147, 145],
[153, 147, 174, 171, 151, 150, 169, 158, 142, 92, 28, 60, 59, 20, 20, 18, 20, 26, 27, 29, 33, 38, 125, 153, 150, 147, 147, 148],
[138, 141, 166, 164, 146, 144, 164, 149, 132, 72, 34, 88, 72, 24, 19, 18, 18, 23, 25, 28, 31, 30, 98, 150, 146, 144, 146, 144]
]
source_tag = 0
xsize, ysize = len(arr[0]), len(arr)
xoffset, yoffset = 0, 0
if pixel_format == "mono16":
dsize = xsize // 2
pixelF = 0x0105
tag_geo = 0
flag = 0
packet = []
# Image header
packet += get_image_header(
stream_id,
source_tag,
xsize,
xoffset,
ysize,
yoffset,
dsize,
pixelF,
tag_geo,
flag,
)
for line in arr:
packet += get_line_marker()
if pixel_format == "mono16":
for i in range(len(line)):
if (i % 2) == 0:
if i == len(line) - 1:
# print(C(line[i]))
packet += [
{
"data": C(line[i], 4 * char_width),
"k": Replicate(0, 4),
},
]
else:
# print(C(line[i], 2 * char_width), C(line[i + 1]))
# CXP use MSB
packet += [
{
"data": Cat(
C(line[i], 2 * char_width),
C(line[i + 1], 2 * char_width),
),
"k": Replicate(0, 4),
},
]
return packet

120
sim_generator.py Normal file
View File

@ -0,0 +1,120 @@
from migen import *
from misoc.interconnect.csr import *
from misoc.interconnect import stream
from sim_pipeline import CXPCRC32
from src.gateware.cxp_pipeline import *
class CXPCRC32Inserter(Module):
def __init__(self):
self.sink = stream.Endpoint(word_layout)
self.source = stream.Endpoint(word_layout)
# # #
self.submodules.crc = crc = CXPCRC32(word_dw)
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act(
"IDLE",
crc.reset.eq(1),
self.sink.ack.eq(1),
If(
self.sink.stb,
self.sink.ack.eq(0),
NextState("COPY"),
),
)
fsm.act(
"COPY",
crc.ce.eq(self.sink.stb & self.source.ack),
crc.data.eq(self.sink.data),
self.sink.connect(self.source),
self.source.eop.eq(0),
If(
self.sink.stb & self.sink.eop & self.source.ack,
NextState("INSERT"),
),
)
fsm.act(
"INSERT",
self.source.stb.eq(1),
self.source.eop.eq(1),
self.source.data.eq(crc.value),
If(self.source.ack, NextState("IDLE")),
)
class StreamPacket_Wrapper(Module):
def __init__(self):
self.sink = stream.Endpoint(word_layout)
self.source = stream.Endpoint(word_layout)
# # #
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act(
"IDLE",
self.sink.ack.eq(1),
If(
self.sink.stb,
self.sink.ack.eq(0),
NextState("INSERT_HEADER_0"),
),
)
fsm.act(
"INSERT_HEADER_0",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(KCode["pak_start"], 4)),
self.source.k.eq(Replicate(1, 4)),
If(self.source.ack, NextState("INSERT_HEADER_1")),
)
fsm.act(
"INSERT_HEADER_1",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(C(0x01, char_width), 4)),
self.source.k.eq(Replicate(0, 4)),
If(self.source.ack, NextState("COPY")),
)
fsm.act(
"COPY",
self.sink.connect(self.source),
self.source.eop.eq(0),
If(
self.sink.stb & self.sink.eop & self.source.ack,
NextState("INSERT_FOOTER"),
),
)
fsm.act(
"INSERT_FOOTER",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(KCode["pak_end"], 4)),
self.source.k.eq(Replicate(1, 4)),
# Simulate RX don't have eop tagged
# self.source.eop.eq(1),
If(self.source.ack, NextState("IDLE")),
)
# With KCode & 0x01*4
class StreamData_Generator(Module):
def __init__(self):
# should be big enough for all test
self.submodules.buffer = buffer = stream.SyncFIFO(word_layout, 32)
self.submodules.crc_inserter = crc_inserter = CXPCRC32Inserter()
self.submodules.wrapper = wrapper = StreamPacket_Wrapper()
# # #
pipeline = [buffer, crc_inserter, wrapper]
for s, d in zip(pipeline, pipeline[1:]):
self.comb += s.source.connect(d.sink)
self.sink = pipeline[0].sink
self.source = pipeline[-1].source

406
sim_pipeline.py Normal file
View File

@ -0,0 +1,406 @@
from migen import *
from misoc.interconnect.csr import *
from misoc.interconnect import stream
from misoc.cores.liteeth_mini.mac.crc import LiteEthMACCRCEngine
from src.gateware.cxp_pipeline import *
from types import SimpleNamespace
class EOP_Marker(Module):
def __init__(self):
self.sink = stream.Endpoint(word_layout_dchar)
self.source = stream.Endpoint(word_layout_dchar)
# # #
last_stb = Signal()
self.sync += [
If((~self.source.stb | self.source.ack),
self.source.stb.eq(self.sink.stb),
self.source.payload.eq(self.sink.payload),
),
last_stb.eq(self.sink.stb),
]
self.comb += [
self.sink.ack.eq(~self.source.stb | self.source.ack),
self.source.eop.eq(~self.sink.stb & last_stb),
]
class Streams_Crossbar(Module):
def __init__(self, downconn_sources, stream_sinks):
n_downconn = len(downconn_sources)
self.active_conn= C(n_downconn)
# TODO: change self.active_conns to signal and link it to rx_ready of GTX lanes
# # #
self.submodules.mux = mux = stream.Multiplexer(word_layout_dchar, n_downconn)
for i, downconn in enumerate(downconn_sources):
self.comb += downconn.source.connect(getattr(mux, "sink"+str(i)))
self.submodules.fsm = fsm = FSM(reset_state="WAIT_HEADER")
self.stream_id = Signal(char_width)
case = dict((i, mux.source.connect(b.sink)) for i, b in enumerate(stream_sinks))
fsm.act(
"WAIT_HEADER",
NextValue(self.stream_id, mux.source.dchar),
If(mux.source.stb,
NextState("COPY"),
),
)
fsm.act(
"COPY",
Case(self.stream_id, case),
If(mux.source.eop,
NextState("SWITCH_CONN"),
),
)
# Section 9.5.5 (CXP-001-2021)
# When Multiple connections are active, stream packets are transmitted in
# ascending order of Connection ID. And one connection shall be transmitting data at a time.
read_mask = Signal(max=n_downconn)
self.comb += mux.sel.eq(read_mask)
fsm.act(
"SWITCH_CONN",
# assuming downconn_sources have ascending Connection ID
If(read_mask == self.active_conn - 1,
NextValue(read_mask, read_mask.reset),
).Else(
NextValue(read_mask, read_mask + 1),
),
NextState("WAIT_HEADER"),
)
def reverse_bytes(s):
assert len(s) % 8 == 0
char = [s[i*8:(i+1)*8] for i in range(len(s)//8)]
return Cat(char[::-1])
@ResetInserter()
@CEInserter()
class CXPCRC32(Module):
# Section 9.2.2.2 (CXP-001-2021)
width = 32
polynom = 0x04C11DB7
seed = 2**width - 1
check = 0x00000000
def __init__(self, data_width):
self.data = Signal(data_width)
self.value = Signal(self.width)
self.error = Signal()
# # #
self.submodules.engine = LiteEthMACCRCEngine(
data_width, self.width, self.polynom
)
reg = Signal(self.width, reset=self.seed)
self.sync += reg.eq(self.engine.next)
self.comb += [
# the CRC Engine use Big Endian, need to reverse the bytes
self.engine.data.eq(reverse_bytes(self.data)),
self.engine.last.eq(reg),
self.value.eq(reverse_bytes(reg[::-1])),
self.error.eq(reg != self.check),
]
# For verifying crc in stream data packet
class Double_Stream_Buffer(Module):
def __init__(self, size):
self.sink = stream.Endpoint(word_layout_dchar)
self.submodules.crc = crc = CXPCRC32(word_dw)
self.comb += crc.data.eq(self.sink.data)
self.submodules.fsm = fsm = FSM(reset_state="RESET")
write_mask = Signal()
self.submodules.line_buffer0 = line_buffer0 = ResetInserter()(stream.SyncFIFO(word_layout_dchar, 2**bits_for(size//word_dw)))
self.submodules.line_buffer1 = line_buffer1 = ResetInserter()(stream.SyncFIFO(word_layout_dchar, 2**bits_for(size//word_dw)))
fsm.act("RESET",
Case(write_mask,
{
0: line_buffer0.reset.eq(1),
1: line_buffer1.reset.eq(1),
}
),
crc.reset.eq(1),
NextState("CHECKING"),
)
fsm.act("CHECKING",
self.sink.ack.eq(1),
If(self.sink.stb,
crc.ce.eq(1),
If(self.sink.eop,
# discard the crc at the end
NextState("SWITCH_BUFFER")
).Else(
If(write_mask == 0,
self.sink.connect(line_buffer0.sink),
).Else(
self.sink.connect(line_buffer1.sink),
),
)
)
)
# only valid data will be passed to downstream
fsm.act("SWITCH_BUFFER",
If(~crc.error,
NextValue(write_mask, ~write_mask),
),
NextState("RESET"),
)
self.submodules.mux = mux = stream.Multiplexer(word_layout_dchar, 2)
self.comb += [
line_buffer0.source.connect(mux.sink0),
line_buffer1.source.connect(mux.sink1),
mux.sel.eq(~write_mask),
]
self.source = mux.source
# DEBUG:
self.write = Signal()
self.error = Signal()
self.comb += [
self.write.eq(write_mask),
self.error.eq(crc.error),
]
# # to add eop in the same cycle
# # the tricks relies on the fact source lags sink one cycle
# # but fsm .connect by default use combinational logic which the same cycle rising/falling edge check immpossible
# fsm.act("CHECKING",
# NextValue(self.source.payload.raw_bits(), 0),
# NextValue(self.source.stb, 0),
# If(self.sink.stb,
# crc.ce.eq(1),
# If(self.sink.eop,
# NextState("RESET")
# ).Else(
# NextValue(self.source.payload.raw_bits(), self.sink.payload.raw_bits()),
# NextValue(self.source.stb, 1),
# )
# )
# )
# last_eop = Signal()
# self.comb += self.source.eop.eq(~last_eop & self.sink.eop)
class Stream_Parser(Module):
def __init__(self):
self.sink = stream.Endpoint(word_layout_dchar)
self.source = stream.Endpoint(word_layout_dchar)
# # #
self.stream_id = Signal(char_width)
self.pak_tag = Signal(char_width)
self.stream_pak_size = Signal(char_width * 2)
self.submodules.fsm = fsm = FSM(reset_state="WAIT_HEADER")
fsm.act(
"WAIT_HEADER",
NextValue(self.stream_id, self.stream_id.reset),
NextValue(self.pak_tag, self.pak_tag.reset),
NextValue(self.stream_pak_size, self.stream_pak_size.reset),
self.sink.ack.eq(1),
If(
self.sink.stb,
NextValue(self.stream_id, self.sink.dchar),
NextState("GET_PAK_TAG"),
),
)
fsm.act(
"GET_PAK_TAG",
self.sink.ack.eq(1),
If(
self.sink.stb,
NextValue(self.pak_tag, self.sink.dchar),
NextState("GET_PAK_SIZE_0"),
),
)
fsm.act(
"GET_PAK_SIZE_0",
self.sink.ack.eq(1),
If(
self.sink.stb,
NextValue(self.stream_pak_size[8:], self.sink.dchar),
NextState("GET_PAK_SIZE_1"),
),
)
fsm.act(
"GET_PAK_SIZE_1",
self.sink.ack.eq(1),
If(
self.sink.stb,
NextValue(self.stream_pak_size[:8], self.sink.dchar),
NextState("STORE_BUFFER"),
),
)
fsm.act(
"STORE_BUFFER",
self.sink.connect(self.source),
# both serve the same function but using the pak size I can remove eop injecter and save 1 cycle
If(self.sink.stb,
NextValue(self.stream_pak_size, self.stream_pak_size - 1),
If(self.stream_pak_size == 1,
NextState("WAIT_HEADER"),
)
),
)
class Frame_Extractor(Module):
def __init__(self, pixel_format="mono16"):
assert pixel_format in ["mono16"]
pixel_format = {
"mono16": C(0x0105, 2*char_width)
}
self.format_error = Signal()
self.decode_err = Signal()
self.new_frame = Signal()
self.new_line = Signal()
n_metadata_chars = 23
img_header_layout = [
("stream_id", char_width),
("source_tag", 2*char_width),
("x_size", 3*char_width),
("x_offset", 3*char_width),
("y_size", 3*char_width),
("y_offset", 3*char_width),
("l_size", 3*char_width), # number of data words per image line
("pixel_format", 2*char_width),
("tap_geo", 2*char_width),
("flag", char_width),
]
assert layout_len(img_header_layout) == n_metadata_chars*char_width
# # #
# TODO: decode Image header, line break
self.sink = stream.Endpoint(word_layout_dchar)
self.source = stream.Endpoint(word_layout_dchar)
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
# DEBUG: remove this
self.fsm_state = Signal()
self.comb += self.fsm_state.eq(fsm.ongoing("IDLE"))
fsm.act("IDLE",
self.sink.ack.eq(1),
If((self.sink.stb & (self.sink.dchar == KCode["stream_marker"]) & (self.sink.dchar_k == 1)),
NextState("DECODE"),
)
)
fsm.act("COPY",
# until for new line or new frame
If((self.sink.stb & (self.sink.dchar == KCode["stream_marker"]) & (self.sink.dchar_k == 1)),
self.sink.ack.eq(1),
NextState("DECODE"),
).Else(
self.sink.connect(self.source),
)
)
type = {
"new_frame": 0x01,
"line_break": 0x02,
}
cnt = Signal(max=n_metadata_chars)
fsm.act("DECODE",
self.sink.ack.eq(1),
If(self.sink.stb,
Case(self.sink.dchar, {
type["new_frame"]: [
self.new_frame.eq(1),
NextValue(cnt, cnt.reset),
NextState("GET_FRAME_DATA"),
],
type["line_break"]: [
self.new_line.eq(1),
NextState("COPY"),
],
"default": [
self.decode_err.eq(1),
# discard all data until valid frame
NextState("IDLE"),
],
}),
)
)
packet_buffer = Signal(layout_len(img_header_layout))
case = dict(
(i, NextValue(packet_buffer[8*i:8*(i+1)], self.sink.dchar))
for i in range(n_metadata_chars)
)
fsm.act("GET_FRAME_DATA",
self.sink.ack.eq(1),
If(self.sink.stb,
Case(cnt, case),
If(cnt == n_metadata_chars - 1,
NextState("COPY"),
NextValue(cnt, cnt.reset),
).Else(
NextValue(cnt, cnt + 1),
),
),
)
# dissect packet
self.metadata = SimpleNamespace()
idx = 0
for name, size in img_header_layout:
# CXP use MSB even when sending duplicate chars
setattr(self.metadata, name, reverse_bytes(packet_buffer[idx:idx+size]))
idx += size
class Pixel_Decoder(Module):
def __init__(self, pixel_format="mono16"):
assert pixel_format == "mono16"
self.sink = stream.Endpoint(word_layout_dchar)
self.source = stream.Endpoint(word_layout_dchar)
# # #
# TODO: support mono16 for now?
class Stream_Pipeline(Module):
# optimal stream packet size is 2 kBtyes - Section 9.5.2 (CXP-001-2021)
def __init__(self, size=16000):
self.submodules.double_buffer = double_buffer = Double_Stream_Buffer(size)
self.submodules.parser = parser = Stream_Parser()
self.submodules.frame_extractor = frame_extractor = Frame_Extractor()
pipeline = [double_buffer, parser, frame_extractor]
for s, d in zip(pipeline, pipeline[1:]):
self.comb += s.source.connect(d.sink)
self.sink = pipeline[0].sink
self.source = pipeline[-1].source
# no backpressure for sim purposes
self.sync += self.source.ack.eq(1)

154
sim_stream.py Normal file
View File

@ -0,0 +1,154 @@
from migen import *
from misoc.interconnect import stream
from sim_pipeline import *
from sim_generator import StreamData_Generator
from src.gateware.cxp_pipeline import *
class CXP_Links(Module):
def __init__(self):
# TODO: select the correct buffer to read from
# NOTE: although there are double buffer in each connect, the reading must be faster than writing to avoid data loss
self.downconn_sources = []
self.stream_sinks = []
for i in range(2):
downconn = Pipeline()
setattr(self.submodules, "cxp_conn"+str(i), downconn)
self.downconn_sources.append(downconn)
stream_pipeline = Stream_Pipeline()
setattr(self.submodules, "stream_pipeline"+str(i), stream_pipeline)
self.stream_sinks.append(stream_pipeline)
self.submodules.crossbar = Streams_Crossbar(self.downconn_sources, self.stream_sinks)
class Pipeline(Module):
def __init__(self):
self.submodules.generator = generator = StreamData_Generator()
self.submodules.dchar_decoder = dchar_decoder = Duplicated_Char_Decoder()
self.submodules.data_decoder = data_decoder = RX_Bootstrap()
self.submodules.eop_marker = eop_marker = EOP_Marker()
# # #
pipeline = [generator, dchar_decoder, data_decoder, eop_marker]
for s, d in zip(pipeline, pipeline[1:]):
self.comb += s.source.connect(d.sink)
self.sink = pipeline[0].sink
self.source = pipeline[-1].source
# self.comb += self.source.ack.eq(1)
dut = CXP_Links()
def check_case(packet=[]):
print("=================TEST========================")
downconns = dut.downconn_sources
stream_buffers = dut.stream_sinks
ch = 0
for i, p in enumerate(packet):
for x in range(len(downconns)):
if x == ch:
yield downconns[x].sink.data.eq(p["data"])
yield downconns[x].sink.k.eq(p["k"])
yield downconns[x].sink.stb.eq(1)
else:
yield downconns[x].sink.data.eq(0)
yield downconns[x].sink.k.eq(0)
yield downconns[x].sink.stb.eq(0)
yield downconns[x].sink.eop.eq(0)
if "eop" in p:
yield downconns[ch].sink.eop.eq(1)
# compensate for delay
# yield
# yield downconns[ch].sink.data.eq(0)
# yield downconns[ch].sink.k.eq(0)
# yield downconns[ch].sink.stb.eq(0)
# yield downconns[ch].sink.eop.eq(0)
# yield
# yield
# yield
ch = (ch + 1) % len(downconns)
else:
yield downconns[ch].sink.eop.eq(0)
# check cycle result
yield
# source = dut.stream_pipeline_sinks[0].source
source = dut.stream_sinks[0].double_buffer.source
print(
f"\nCYCLE#{i} : source char = {yield source.data:#X} k = {yield source.k:#X} stb = {yield source.stb} ack = {yield source.ack} eop = {yield source.eop}"
# f" source dchar = {yield source.dchar:#X} dchar_k = {yield source.dchar_k:#X}"
f"\nCYCLE#{i} : read mask = {yield dut.crossbar.mux.sel}"
# f"\nCYCLE#{i} : stream id = {yield decoder.stream_id:#X} pak_tag = {yield decoder.pak_tag:#X}"
# f" stream_pak_size = {yield decoder.stream_pak_size:#X}"
)
# crc = downconns[1].generator.crc_inserter.crc
# crc = dut.double_buffer.crc
# print(
# f"CYCLE#{i} : crc error = {yield crc.error:#X} crc value = {yield crc.value:#X}"
# f" crc data = {yield crc.data:#X} engine next = {yield crc.engine.next:#X} ce = {yield crc.ce}"
# )
# extra clk cycles
cyc = i + 1
for i in range(cyc, cyc + 30):
for x in range(len(downconns)):
# yield won't reset every cycle
yield downconns[x].sink.data.eq(0)
yield downconns[x].sink.k.eq(0)
yield downconns[x].sink.stb.eq(0)
yield downconns[x].sink.eop.eq(0)
yield
print(
f"\nCYCLE#{i} : source char = {yield source.data:#X} k = {yield source.k:#X} stb = {yield source.stb} ack = {yield source.ack} eop = {yield source.eop}"
# f" source dchar = {yield source.dchar:#X} dchar_k = {yield source.dchar_k:#X}"
f"\nCYCLE#{i} : read mask = {yield dut.crossbar .mux.sel}"
# f"\nCYCLE#{i} : stream id = {yield decoder.stream_id:#X} pak_tag = {yield decoder.pak_tag:#X}"
# f" stream_pak_size = {yield decoder.stream_pak_size:#X}"
)
assert True
def testbench():
# stream_id = 0x01
streams = [
[
{"data": 0x11111111, "k": Replicate(0, 4)},
{"data": 0xB105F00D, "k": Replicate(0, 4)},
],
[
{"data": 0x22222222, "k": Replicate(0, 4)},
{"data": 0xC001BEA0, "k": Replicate(0, 4)},
],
[
{"data": 0x33333333, "k": Replicate(0, 4)},
{"data": 0xC0A79AE5, "k": Replicate(0, 4)},
],
]
packet = []
for i, s in enumerate(streams):
s[-1]["eop"] = 0
packet += [
{"data": Replicate(C(i % 2, char_width), 4), "k": Replicate(0, 4)},
{"data": Replicate(C(i, char_width), 4), "k": Replicate(0, 4)},
{
"data": Replicate(C(len(s) >> 8 & 0xFF, char_width), 4),
"k": Replicate(0, 4),
},
{"data": Replicate(C(len(s) & 0xFF, char_width), 4), "k": Replicate(0, 4)},
*s,
]
yield from check_case(packet)
run_simulation(dut, testbench(), vcd_name="sim-cxp.vcd")

2
src/Cargo.lock generated
View File

@ -395,7 +395,7 @@ checksum = "c75de51135344a4f8ed3cfe2720dc27736f7711989703a0b43aadf3753c55577"
[[package]]
name = "nalgebra"
version = "0.32.6"
source = "git+https://git.m-labs.hk/M-labs/nalgebra?rev=dd00f9b#dd00f9b46046e0b931d1b470166db02fd29591be"
source = "git+https://git.m-labs.hk/M-Labs/nalgebra.git?rev=dd00f9b#dd00f9b46046e0b931d1b470166db02fd29591be"
dependencies = [
"approx",
"num-complex",

381
src/gateware/cxp.py Normal file
View File

@ -0,0 +1,381 @@
from migen import *
from migen.genlib.cdc import MultiReg, PulseSynchronizer
from misoc.interconnect.csr import *
from artiq.gateware.rtio import rtlink
from cxp_downconn import CXP_DownConn_PHYS
from cxp_upconn import CXP_UpConn_PHYS
from cxp_pipeline import *
class CXP_PHYS(Module, AutoCSR):
def __init__(self, refclk, upconn_pads, downconn_pads, sys_clk_freq, debug_sma, pmod_pads):
assert len(upconn_pads) == len(downconn_pads)
self.submodules.upconn = CXP_UpConn_PHYS(upconn_pads, sys_clk_freq, debug_sma, pmod_pads)
self.submodules.downconn = CXP_DownConn_PHYS(refclk, downconn_pads, sys_clk_freq, debug_sma, pmod_pads)
@FullMemoryWE()
class CXP_Interface(Module, AutoCSR):
def __init__(self, upconn_phy, downconn_phy, debug_sma, pmod_pads):
self.submodules.upconn = UpConn_Interface(upconn_phy, debug_sma, pmod_pads)
self.submodules.downconn = DownConn_Interface(downconn_phy, debug_sma, pmod_pads)
def get_tx_port(self):
return self.upconn.bootstrap.mem.get_port(write_capable=True)
def get_tx_mem_size(self):
# FIXME: if tx mem size is same as rx, for some reason when rx mem is writen, tx mem cannot be access anymore
# and each time tx mem is read, CPU will return rx mem instead
return self.upconn.bootstrap.mem.depth*self.upconn.bootstrap.mem.width // 8
# return self.downconn.bootstrap.mem.depth*self.downconn.bootstrap.mem.width // 8
def get_rx_port(self):
return self.downconn.bootstrap.mem.get_port(write_capable=False)
def get_rx_mem_size(self):
return self.downconn.bootstrap.mem.depth*self.downconn.bootstrap.mem.width // 8
def get_loopback_tx_port(self):
return self.downconn.bootstrap_loopback.mem.get_port(write_capable=True)
def get_loopback_tx_mem_size(self):
return self.downconn.bootstrap_loopback.mem.depth*self.downconn.bootstrap_loopback.mem.width // 8
class CXP_Master(CXP_Interface):
def __init__(self, upconn_phy, downconn_phy, debug_sma, pmod_pads):
CXP_Interface.__init__(self, upconn_phy, downconn_phy, debug_sma, pmod_pads)
nbit_trigdelay = 8
nbit_linktrig = 1
self.rtlink = rtlink.Interface(
rtlink.OInterface(nbit_trigdelay + nbit_linktrig),
rtlink.IInterface(word_dw, timestamped=False)
)
self.sync.rio += [
If(self.rtlink.o.stb,
self.upconn.trig.delay.eq(self.rtlink.o.data[nbit_linktrig:]),
self.upconn.trig.linktrig_mode.eq(self.rtlink.o.data[:nbit_linktrig]),
),
self.upconn.trig.stb.eq(self.rtlink.o.stb),
]
# DEBUG: out
self.specials += Instance("OBUF", i_I=self.rtlink.o.stb, o_O=debug_sma.p_tx),
# self.specials += Instance("OBUF", i_I=self.rtlink.o.stb, o_O=debug_sma.n_rx),
class CXP_Extension(CXP_Interface):
def __init__(self, upconn_phy, downconn_phy, debug_sma, pmod_pads):
CXP_Interface.__init__(self, upconn_phy, downconn_phy, debug_sma, pmod_pads)
class DownConn_Interface(Module, AutoCSR):
def __init__(self, phy, debug_sma, pmod_pads):
self.rx_start_init = CSRStorage()
self.rx_restart = CSR()
self.rx_ready = CSRStatus()
# # #
gtx = phy.gtx
# GTX Control
self.sync += [
gtx.rx_restart.eq(self.rx_restart.re),
gtx.rx_init.clk_path_ready.eq(self.rx_start_init.storage),
self.rx_ready.status.eq(gtx.rx_ready),
]
# DEBUG: tx control
self.tx_start_init = CSRStorage()
self.tx_restart = CSR()
self.txenable = CSRStorage()
self.sync += [
gtx.txenable.eq(self.txenable.storage),
gtx.tx_restart.eq(self.tx_restart.re),
gtx.tx_init.clk_path_ready.eq(self.tx_start_init.storage),
]
# DEBUG: loopback control
self.loopback_mode = CSRStorage(3)
self.comb += gtx.loopback_mode.eq(self.loopback_mode.storage)
# DEBUG: init status
self.txinit_phaligndone = CSRStatus()
self.rxinit_phaligndone = CSRStatus()
self.comb += [
self.txinit_phaligndone.status.eq(gtx.tx_init.Xxphaligndone),
self.rxinit_phaligndone.status.eq(gtx.rx_init.Xxphaligndone),
]
# Connect all GTX connections' DRP
self.gtx_daddr = CSRStorage(9)
self.gtx_dread = CSR()
self.gtx_din_stb = CSR()
self.gtx_din = CSRStorage(16)
self.gtx_dout = CSRStatus(16)
self.gtx_dready = CSR()
self.comb += gtx.dclk.eq(ClockSignal("sys"))
self.sync += [
gtx.daddr.eq(self.gtx_daddr.storage),
gtx.den.eq(self.gtx_dread.re | self.gtx_din_stb.re),
gtx.dwen.eq(self.gtx_din_stb.re),
gtx.din.eq(self.gtx_din.storage),
If(gtx.dready,
self.gtx_dready.w.eq(1),
self.gtx_dout.status.eq(gtx.dout),
).Elif(self.gtx_dready.re,
self.gtx_dready.w.eq(0),
),
]
# DEBUG: txusrclk PLL DRP
self.txpll_reset = CSRStorage()
self.pll_daddr = CSRStorage(7)
self.pll_dclk = CSRStorage()
self.pll_den = CSRStorage()
self.pll_din = CSRStorage(16)
self.pll_dwen = CSRStorage()
self.txpll_locked = CSRStatus()
self.pll_dout = CSRStatus(16)
self.pll_dready = CSRStatus()
self.comb += [
gtx.txpll_reset.eq(self.txpll_reset.storage),
gtx.pll_daddr.eq(self.pll_daddr.storage),
gtx.pll_dclk.eq(self.pll_dclk.storage),
gtx.pll_den.eq(self.pll_den.storage),
gtx.pll_din.eq(self.pll_din.storage),
gtx.pll_dwen.eq(self.pll_dwen.storage),
self.txinit_phaligndone.status.eq(gtx.tx_init.Xxphaligndone),
self.rxinit_phaligndone.status.eq(gtx.rx_init.Xxphaligndone),
self.txpll_locked.status.eq(gtx.txpll_locked),
self.pll_dout.status.eq(gtx.pll_dout),
self.pll_dready.status.eq(gtx.pll_dready),
]
# DEBUG: Transmission Pipeline
#
# rtio pak ----+
# from gw | 32 32
# mux---/---> packet -----> trigger ack ---/---> PHY
# | wrapper inserter
# data/test ----+
# pak from fw
#
# DEBUG: TX pipeline
self.submodules.bootstrap_loopback = bootstrap_loopback = TX_Bootstrap()
self.submodules.pak_wrp = pak_wrp = Packet_Wrapper()
self.submodules.trig_ack = trig_ack = Trigger_ACK_Inserter()
self.ack = CSR()
self.sync += trig_ack.stb.eq(self.ack.re),
tx_pipeline = [bootstrap_loopback, pak_wrp, trig_ack, phy]
for s, d in zip(tx_pipeline, tx_pipeline[1:]):
self.comb += s.source.connect(d.sink)
# Receiver Pipeline WIP
#
# 32 32+8(dchar)
# PHY ---/---> dchar -----/-----> trigger ack ------> packet ------> CDC FIFO ------> debug buffer
# decoder checker decoder
#
cdr = ClockDomainsRenamer("cxp_gtx_rx")
# decode all incoming data as duplicate char and inject the result into the bus for downstream modules
self.submodules.dchar_decoder = dchar_decoder = cdr(Duplicated_Char_Decoder())
# Priority level 1 packet - Trigger ack packet
self.submodules.trig_ack_checker = trig_ack_checker = cdr(Trigger_Ack_Checker())
self.submodules.trig_ack_ps = trig_ack_ps = PulseSynchronizer("cxp_gtx_rx", "sys")
self.sync.cxp_gtx_rx += trig_ack_ps.i.eq(trig_ack_checker.ack)
self.trig_ack = Signal()
self.trig_clr = Signal()
# Error are latched
self.sync += [
If(trig_ack_ps.o,
self.trig_ack.eq(1),
).Elif(self.trig_clr,
self.trig_ack.eq(0),
),
]
# Priority level 2 packet - data, test packet
self.submodules.bootstrap = bootstrap = cdr(RX_Bootstrap())
self.bootstrap_decoder_err = CSR()
self.bootstrap_test_err = CSR()
self.boostrap_buffer_err = CSR()
decode_err_ps = PulseSynchronizer("cxp_gtx_rx", "sys")
test_err_ps = PulseSynchronizer("cxp_gtx_rx", "sys")
buffer_err_ps = PulseSynchronizer("cxp_gtx_rx", "sys")
self.submodules += decode_err_ps, test_err_ps, buffer_err_ps
self.sync.cxp_gtx_rx += [
decode_err_ps.i.eq(bootstrap.decode_err),
test_err_ps.i.eq(bootstrap.test_err),
buffer_err_ps.i.eq(bootstrap.buffer_err),
]
self.sync += [
If(decode_err_ps.o,
self.bootstrap_decoder_err.w.eq(1),
).Elif(self.bootstrap_decoder_err.re,
self.bootstrap_decoder_err.w.eq(0),
),
If(test_err_ps.o,
self.bootstrap_test_err.w.eq(1),
).Elif(self.bootstrap_test_err.re,
self.bootstrap_test_err.w.eq(0),
),
If(buffer_err_ps.o,
self.boostrap_buffer_err.w.eq(1),
).Elif(self.bootstrap_test_err.re,
self.boostrap_buffer_err.w.eq(0),
),
]
# Cicular buffer interface
self.packet_type = CSRStatus(8)
self.pending_packet = CSR()
self.read_ptr = CSRStatus(log2_int(buffer_count))
self.specials += [
MultiReg(bootstrap.packet_type, self.packet_type.status),
MultiReg(self.read_ptr.status, bootstrap.read_ptr_rx, odomain="cxp_gtx_rx"),
]
self.sync += [
self.pending_packet.w.eq(self.read_ptr.status != bootstrap.write_ptr_sys),
If(~gtx.rx_ready,
self.read_ptr.status.eq(0),
).Elif(self.pending_packet.re & self.pending_packet.w,
self.read_ptr.status.eq(self.read_ptr.status + 1),
)
]
cdc_fifo = stream.AsyncFIFO(word_layout_dchar, 512)
self.submodules += ClockDomainsRenamer({"write": "cxp_gtx_rx", "read": "sys"})(cdc_fifo)
self.submodules.debug_out = debug_out = RX_Debug_Buffer()
rx_pipeline = [phy, dchar_decoder, trig_ack_checker, bootstrap, cdc_fifo, debug_out]
for s, d in zip(rx_pipeline, rx_pipeline[1:]):
self.comb += s.source.connect(d.sink)
# DEBUG: CSR
self.trigger_ack = CSR()
self.sync += [
self.trig_clr.eq(self.trigger_ack.re),
self.trigger_ack.w.eq(self.trig_ack),
]
pak_start = Signal()
self.sync += [
pak_start.eq(bootstrap.sink.data == 0xFBFBFBFB),
]
self.specials += [
# Instance("OBUF", i_I=phy.gtx.cd_cxp_gtx_rx.clk, o_O=debug_sma.p_tx),
# Instance("OBUF", i_I=, o_O=debug_sma.p_rx),
# # pmod 0-7 pin
# Instance("OBUF", i_I=bootstrap.test_err, o_O=pmod_pads[0]),
# Instance("OBUF", i_I=pak_start, o_O=pmod_pads[1]),
# Instance("OBUF", i_I=fifo_in.source.ack, o_O=pmod_pads[2]),
# Instance("OBUF", i_I=gtx.comma_checker.aligner_en, o_O=pmod_pads[3]),
# Instance("OBUF", i_I=gtx.comma_checker.check_reset, o_O=pmod_pads[4]),
# Instance("OBUF", i_I=gtx.comma_checker.has_comma, o_O=pmod_pads[5]),
# Instance("OBUF", i_I=gtx.comma_checker.has_error, o_O=pmod_pads[6]),
# Instance("OBUF", i_I=gtx.comma_checker.ready_sys, o_O=pmod_pads[7]),
]
class UpConn_Interface(Module, AutoCSR):
def __init__(self, phy, debug_sma, pmod_pads):
# Transmission Pipeline
#
# 32 32 8
# ctrl/test ---/---> packet -----> idle word -----> trigger ack ---/--> conv ---/---> trigger -----> PHY
# packet wrapper inserter inserter inserter
#
# Equivalent transmission priority:
# trigger > trigger ack > idle > test/data packet
# To maintain the trigger performance, idle word should not be inserted into trigger or trigger ack.
#
# In low speed CoaXpress, the higher priority packet can be inserted in two types of boundary
# Insertion @ char boundary: Trigger packets
# Insertion @ word boundary: Trigger ack & IDLE packets
# The 32 bit part of the pipeline handles the word boundary insertion while the 8 bit part handles the char boundary insertion
# Packet FIFOs with transmission priority
# 0: Trigger packet
self.submodules.trig = trig = TX_Trigger()
# # DEBUG: INPUT
self.trig_stb = CSR()
self.trig_delay = CSRStorage(8)
self.linktrigger = CSRStorage()
# self.sync += [
# trig.stb.eq(self.trig_stb.re),
# trig.delay.eq(self.trig_delay.storage),
# trig.linktrig_mode.eq(self.linktrigger.storage),
# ]
# 1: IO acknowledgment for trigger packet
self.submodules.trig_ack = trig_ack = Trigger_ACK_Inserter()
# DEBUG: INPUT
self.ack = CSR()
self.sync += trig_ack.stb.eq(self.ack.re),
# 2: All other packets (data & test packet)
# Control is not timing dependent, all the data packets are handled in firmware
self.submodules.bootstrap = bootstrap = TX_Bootstrap()
self.submodules.pak_wrp = pak_wrp = Packet_Wrapper()
self.submodules.idle = idle = Idle_Word_Inserter()
# Section 9.2.5.1 (CXP-001-2021)
# IDLE should be transmitter every 10000 words
cnt = Signal(max=10000)
self.sync += [
idle.stb.eq(0),
If((~idle.sink.stb) | (cnt == 9999),
idle.stb.eq(1),
cnt.eq(cnt.reset),
).Else(
cnt.eq(cnt + 1),
),
]
self.submodules.converter = converter = stream.StrideConverter(word_layout, char_layout)
tx_pipeline = [bootstrap, pak_wrp, idle, trig_ack, converter, trig, phy]
for s, d in zip(tx_pipeline, tx_pipeline[1:]):
self.comb += s.source.connect(d.sink)

View File

@ -0,0 +1,87 @@
from migen.build.generic_platform import *
fmc_adapter_io = [
# CoaXPress high speed link
("CXP_HS", 0,
Subsignal("txp", Pins("HPC:DP0_C2M_P")),
Subsignal("txn", Pins("HPC:DP0_C2M_N")),
Subsignal("rxp", Pins("HPC:DP0_M2C_P")),
Subsignal("rxn", Pins("HPC:DP0_M2C_N")),
),
("CXP_HS", 1,
Subsignal("txp", Pins("HPC:DP1_C2M_P")),
Subsignal("txn", Pins("HPC:DP1_C2M_N")),
Subsignal("rxp", Pins("HPC:DP1_M2C_P")),
Subsignal("rxn", Pins("HPC:DP1_M2C_N")),
),
("CXP_HS", 2,
Subsignal("txp", Pins("HPC:DP2_C2M_P")),
Subsignal("txn", Pins("HPC:DP2_C2M_N")),
Subsignal("rxp", Pins("HPC:DP2_M2C_P")),
Subsignal("rxn", Pins("HPC:DP2_M2C_N")),
),
("CXP_HS", 3,
Subsignal("txp", Pins("HPC:DP3_C2M_P")),
Subsignal("txn", Pins("HPC:DP3_C2M_N")),
Subsignal("rxp", Pins("HPC:DP3_M2C_P")),
Subsignal("rxn", Pins("HPC:DP3_M2C_N")),
),
# CoaXPress low speed link
("CXP_LS", 0, Pins("HPC:LA00_CC_P"), IOStandard("LVCMOS33")),
("CXP_LS", 1, Pins("HPC:LA01_CC_N"), IOStandard("LVCMOS33")),
("CXP_LS", 2, Pins("HPC:LA01_CC_P"), IOStandard("LVCMOS33")),
("CXP_LS", 3, Pins("HPC:LA02_N"), IOStandard("LVCMOS33")),
# CoaXPress green and red LED
("CXP_LED", 0,
Subsignal("green", Pins("HPC:LA11_P"), IOStandard("LVCMOS33")),
Subsignal("red", Pins("HPC:LA11_N"), IOStandard("LVCMOS33")),
),
("CXP_LED", 1,
Subsignal("green", Pins("HPC:LA12_P"), IOStandard("LVCMOS33")),
Subsignal("red", Pins("HPC:LA12_N"), IOStandard("LVCMOS33")),
),
("CXP_LED", 2,
Subsignal("green", Pins("HPC:LA13_P"), IOStandard("LVCMOS33")),
Subsignal("red", Pins("HPC:LA13_N"), IOStandard("LVCMOS33")),
),
("CXP_LED", 3,
Subsignal("green", Pins("HPC:LA14_P"), IOStandard("LVCMOS33")),
Subsignal("red", Pins("HPC:LA14_N"), IOStandard("LVCMOS33")),
),
# Power over CoaXPress
("PoCXP", 0,
Subsignal("enable", Pins("HPC:LA21_N"), IOStandard("LVCMOS33")),
Subsignal("alert", Pins("HPC:LA18_CC_P"), IOStandard("LVCMOS33")),
),
("PoCXP", 1,
Subsignal("enable", Pins("HPC:LA21_P"), IOStandard("LVCMOS33")),
Subsignal("alert", Pins("HPC:LA19_N"), IOStandard("LVCMOS33")),
),
("PoCXP", 2,
Subsignal("enable", Pins("HPC:LA22_N"), IOStandard("LVCMOS33")),
Subsignal("alert", Pins("HPC:LA19_P"), IOStandard("LVCMOS33")),
),
("PoCXP", 3,
Subsignal("enable", Pins("HPC:LA22_P"), IOStandard("LVCMOS33")),
Subsignal("alert", Pins("HPC:LA20_N"), IOStandard("LVCMOS33")),
),
("i2c_fmc", 0,
Subsignal("scl", Pins("HPC:IIC_SCL")),
Subsignal("sda", Pins("HPC:IIC_SDA")),
IOStandard("LVCMOS33")
),
("3V3", 0, Pins("HPC:PG_M2C")),
("GND", 0, Pins("HPC:PRSNT_M2C_L HPC:CLK0_M2C_P")),
("VADJ", 0, Pins("HPC:GBTCLK1_M2C_N CLK0_M2C_N")),
("clk125_fmc", 0,
Subsignal("p", Pins("HPC:GBTCLK0_M2C_P")),
Subsignal("n", Pins("HPC:GBTCLK0_M2C_n")),
),
]

View File

@ -0,0 +1,742 @@
from migen import *
from migen.genlib.cdc import MultiReg
from migen.genlib.resetsync import AsyncResetSynchronizer
from misoc.cores.code_8b10b import Encoder, Decoder
from misoc.interconnect.csr import *
from misoc.interconnect import stream
from artiq.gateware.drtio.transceiver.gtx_7series_init import *
from cxp_pipeline import word_layout
from functools import reduce
from operator import add
class CXP_DownConn_PHYS(Module, AutoCSR):
def __init__(self, refclk, pads, sys_clk_freq, debug_sma, pmod_pads):
self.qpll_reset = CSR()
self.qpll_locked = CSRStatus()
self.rx_phys = []
# # #
# For speed higher than 6.6Gbps, QPLL need to be used instead of CPLL
self.submodules.qpll = qpll = QPLL(refclk, sys_clk_freq)
self.sync += [
qpll.reset.eq(self.qpll_reset.re),
self.qpll_locked.status.eq(qpll.lock),
]
for i, pad in enumerate(pads):
rx = Receiver(qpll, pad, sys_clk_freq, "single", "single", debug_sma, pmod_pads)
self.rx_phys.append(rx)
setattr(self.submodules, "rx"+str(i), rx)
# TODO: add extension gtx connections
# TODO: add connection interface
# TODO: Connect slave cxp_gtx_rx clock tgt
# checkout channel interfaces & drtio_gtx
# GTPTXPhaseAlignement for inspiration
# Connect slave i's `cxp_gtx_rx` clock to `cxp_gtx_rxi` clock
for rx in self.rx_phys:
name = "cd_cxp_gtx_rx" + str(i)
setattr(self.clock_domains, name, ClockDomain(name=name))
self.comb += [
getattr(self, name).clk.eq(rx.gtx.cd_cxp_gtx_rx.clk),
getattr(self, name).rst.eq(rx.gtx.cd_cxp_gtx_rx.rst)
]
class Receiver(Module):
def __init__(self, qpll, pad, sys_clk_freq, tx_mode, rx_mode, debug_sma, pmod_pads):
self.submodules.gtx = gtx = GTX(qpll, pad, sys_clk_freq, tx_mode="single", rx_mode="single")
self.source = stream.Endpoint(word_layout)
data_valid = Signal()
self.sync.cxp_gtx_rx += [
data_valid.eq(gtx.comma_aligner.rxfsm.ongoing("READY")),
self.source.stb.eq(0),
If(data_valid & self.source.ack & ~((gtx.decoders[0].d == 0xBC) & (gtx.decoders[0].k == 1)),
self.source.stb.eq(1),
self.source.data.eq(Cat(gtx.decoders[i].d for i in range(4))),
self.source.k.eq(Cat(gtx.decoders[i].k for i in range(4))),
)
]
# DEBUG: tx fifos for loopback
# fw -> -> cdc fifo -> buffered fifo -> gtx tx
cdc_fifo = stream.AsyncFIFO(word_layout, 512)
self.submodules += ClockDomainsRenamer({"write": "sys", "read": "cxp_gtx_tx"})(cdc_fifo)
self.sink = cdc_fifo.sink
# fix timing violation
cdr = ClockDomainsRenamer("cxp_gtx_tx")
self.submodules.buf = tx_fifo = cdr(stream.SyncFIFO(word_layout, 2, buffered=True))
self.comb += [
cdc_fifo.source.connect(tx_fifo.sink),
]
idle_period = 50 # express in word
word_count = Signal(max=idle_period)
# JANK: fix the every 98th word got eaten
# cnt 97 98 99 0
# out fifo[97] IDLE IDLE fifo[99]
# ack 1 0 0 1
self.sync.cxp_gtx_tx += [
tx_fifo.source.ack.eq(0),
If(word_count == idle_period-1,
word_count.eq(word_count.reset),
).Else(
If(tx_fifo.source.stb,
If(word_count != idle_period-2, tx_fifo.source.ack.eq(1)),
word_count.eq(word_count + 1),
)
)
]
# NOTE: prevent the first word send twice due to stream stb delay
self.comb += [
If((tx_fifo.source.stb & tx_fifo.source.ack & (word_count != idle_period-1)),
gtx.encoder.d[0].eq(tx_fifo.source.data[:8]),
gtx.encoder.d[1].eq(tx_fifo.source.data[8:16]),
gtx.encoder.d[2].eq(tx_fifo.source.data[16:24]),
gtx.encoder.d[3].eq(tx_fifo.source.data[24:]),
gtx.encoder.k[0].eq(tx_fifo.source.k[0]),
gtx.encoder.k[1].eq(tx_fifo.source.k[1]),
gtx.encoder.k[2].eq(tx_fifo.source.k[2]),
gtx.encoder.k[3].eq(tx_fifo.source.k[3]),
).Else(
# NOTE: IDLE WORD
gtx.encoder.d[0].eq(0xBC),
gtx.encoder.k[0].eq(1),
gtx.encoder.d[1].eq(0x3C),
gtx.encoder.k[1].eq(1),
gtx.encoder.d[2].eq(0x3C),
gtx.encoder.k[2].eq(1),
gtx.encoder.d[3].eq(0xB5),
gtx.encoder.k[3].eq(0),
)
]
class QPLL(Module, AutoCSR):
def __init__(self, refclk, sys_clk_freq):
self.clk = Signal()
self.refclk = Signal()
self.lock = Signal()
self.reset = Signal()
self.daddr = CSRStorage(8)
self.dread = CSR()
self.din_stb = CSR()
self.din = CSRStorage(16)
self.dout = CSRStatus(16)
self.dready = CSR()
# # #
# VCO @ 10GHz, linerate = 1.25Gbps
# feedback divider = 80
qpll_fbdiv = 0b0100100000
qpll_fbdiv_ratio = 1
refclk_div = 1
self.Xxout_div = 8
# DEBUG: txuserclk
fbdiv_real = 80
self.tx_usrclk_freq = (sys_clk_freq*fbdiv_real/self.Xxout_div)/40
dready = Signal()
self.specials += [
Instance("GTXE2_COMMON",
i_QPLLREFCLKSEL=0b001,
i_GTREFCLK0=refclk,
i_QPLLPD=0,
i_QPLLRESET=self.reset,
i_QPLLLOCKEN=1,
o_QPLLLOCK=self.lock,
o_QPLLOUTCLK=self.clk,
o_QPLLOUTREFCLK=self.refclk,
# See UG476 (v1.12.1) Table 2-16
p_QPLL_FBDIV=qpll_fbdiv,
p_QPLL_FBDIV_RATIO=qpll_fbdiv_ratio,
p_QPLL_REFCLK_DIV=refclk_div,
# From 7 Series FPGAs Transceivers Wizard
p_BIAS_CFG=0x0000040000001000,
p_COMMON_CFG=0x00000000,
p_QPLL_CFG=0x0680181,
p_QPLL_CLKOUT_CFG=0b0000,
p_QPLL_COARSE_FREQ_OVRD=0b010000,
p_QPLL_COARSE_FREQ_OVRD_EN=0b0,
p_QPLL_CP=0b0000011111,
p_QPLL_CP_MONITOR_EN=0b0,
p_QPLL_DMONITOR_SEL=0b0,
p_QPLL_FBDIV_MONITOR_EN= 0b0,
p_QPLL_INIT_CFG=0x000006,
p_QPLL_LOCK_CFG=0x21E8,
p_QPLL_LPF=0b1111,
# Reserved, values cannot be modified
i_BGBYPASSB=0b1,
i_BGMONITORENB=0b1,
i_BGPDB=0b1,
i_BGRCALOVRD=0b11111,
i_RCALENB=0b1,
i_QPLLRSVD1=0b0,
i_QPLLRSVD2=0b11111,
# Dynamic Reconfiguration Ports
i_DRPADDR=self.daddr.storage,
i_DRPCLK=ClockSignal("sys"),
i_DRPEN=(self.dread.re | self.din_stb.re),
i_DRPWE=self.din_stb.re,
i_DRPDI=self.din.storage,
o_DRPDO=self.dout.status,
o_DRPRDY=dready,
)
]
self.sync += [
If(dready,
self.dready.w.eq(1),
),
If(self.dready.re,
self.dready.w.eq(0),
),
]
class RX_Resetter(Module):
def __init__(self, reset_period=10_000_000):
self.rx_ready = Signal()
self.rx_reset = Signal()
# # #
# periodically reset rx until rx is connected and receiving valid data
# as after connecting RXP/RXN, the whole RX need to be reset
reset_counter = Signal(reset=reset_period-1, max=reset_period)
self.sync += [
self.rx_reset.eq(0),
If(~self.rx_ready,
If(reset_counter == 0,
reset_counter.eq(reset_counter.reset),
self.rx_reset.eq(1),
).Else(
reset_counter.eq(reset_counter - 1),
)
)
]
# Warning: Xilinx transceivers are LSB first, and comma needs to be flipped
# compared to the usual 8b10b binary representation.
class Comma_Aligner(Module):
def __init__(self, comma, reset_period=10_000_000):
self.data = Signal(20)
self.comma_aligned = Signal()
self.comma_realigned = Signal()
self.comma_det = Signal()
self.aligner_en = Signal()
self.ready_sys = Signal()
# # #
# Data and comma checker
# From UG476 (v1.12.1) p.228
# The built-in RXBYTEISALIGNED can be falsely asserted at linerate higher than 5Gbps
# The validity of data and comma needed to be checked externally
comma_n = ~comma & 0b1111111111
# DEBUG: remove after use
self.has_comma = Signal()
self.has_error = Signal()
comma_seen = Signal()
error_seen = Signal()
one_counts = Signal(max=11)
# From CXP-001-2021 section 9.2.5.1
# For high speed connection an IDLE word shall be transmitted at least once every 100 words
counter_period = 200
counter = Signal(reset=counter_period-1, max=counter_period)
check_reset = Signal()
check = Signal()
self.sync.cxp_gtx_rx += [
If(check_reset,
counter.eq(counter.reset),
check.eq(0),
).Elif(counter == 0,
check.eq(1),
).Else(
counter.eq(counter - 1),
),
If(check_reset,
comma_seen.eq(0),
).Elif((self.data[:10] == comma) | (self.data[:10] == comma_n),
comma_seen.eq(1)
),
one_counts.eq(reduce(add, [self.data[i] for i in range(10)])),
If(check_reset,
error_seen.eq(0),
).Elif((one_counts != 4) & (one_counts != 5) & (one_counts != 6),
error_seen.eq(1),
),
# DEBUG:
self.has_comma.eq(0),
If((self.data[:10] == comma) | (self.data[:10] == comma_n),
self.has_comma.eq(1),
),
self.has_error.eq(0),
If((one_counts != 4) & (one_counts != 5) & (one_counts != 6),
self.has_error.eq(1),
),
]
# DEBUG: expose signal
self.check_reset = Signal()
self.comb +=[
self.check_reset.eq(check_reset),
]
self.submodules.rxfsm = rxfsm = ClockDomainsRenamer("cxp_gtx_rx")(FSM(reset_state="WAIT_COMMA"))
rxfsm.act("WAIT_COMMA",
If(self.comma_det,
NextState("ALIGNING"),
)
)
rxfsm.act("ALIGNING",
If(self.comma_aligned & (~self.comma_realigned),
NextState("WAIT_ALIGNED_DATA"),
).Else(
self.aligner_en.eq(1),
)
)
# wait for the aligned data to arrive at the FPGA RX interface
# as there is a delay before the data is avaiable after RXBYTEISALIGNED is asserted
self.submodules.timer = timer = ClockDomainsRenamer("cxp_gtx_rx")(WaitTimer(10_000))
rxfsm.act("WAIT_ALIGNED_DATA",
timer.wait.eq(1),
If(timer.done,
check_reset.eq(1),
NextState("CHECKING"),
)
)
rxfsm.act("CHECKING",
If(check,
check_reset.eq(1),
If(comma_seen & (~error_seen),
NextState("READY"),
).Else(
NextState("WAIT_COMMA")
)
)
)
ready = Signal()
self.specials += MultiReg(ready, self.ready_sys)
rxfsm.act("READY",
ready.eq(1),
If(check,
check_reset.eq(1),
If(~(comma_seen & (~error_seen)),
NextState("WAIT_COMMA"),
)
)
)
class GTX(Module):
# Settings:
# * GTX reference clock @ 125MHz
# * GTX data width = 20
# * GTX PLL frequency @ 3.125GHz
# * GTX line rate (TX & RX) @ 3.125Gb/s
# * GTX TX/RX USRCLK @ PLL/datawidth = 156MHz
def __init__(self, qpll, pads, sys_clk_freq, tx_mode="single", rx_mode="single"):
assert tx_mode in ["single", "master", "slave"]
assert rx_mode in ["single", "master", "slave"]
# linerate = USRCLK * datawidth
pll_fbout_mult = 8
txusr_pll_div = pll_fbout_mult*sys_clk_freq/qpll.tx_usrclk_freq
self.tx_restart = Signal()
self.rx_restart = Signal()
self.loopback_mode = Signal(3)
self.txenable = Signal()
self.rx_ready = Signal()
# Dynamic Reconfiguration Ports
self.daddr = Signal(9)
self.dclk = Signal()
self.den = Signal()
self.dwen = Signal()
self.din = Signal(16)
self.dout = Signal(16)
self.dready = Signal()
self.submodules.encoder = ClockDomainsRenamer("cxp_gtx_tx")(Encoder(4, True))
self.submodules.decoders = [ClockDomainsRenamer("cxp_gtx_rx")(
(Decoder(True))) for _ in range(4)]
# transceiver direct clock outputs
# useful to specify clock constraints in a way palatable to Vivado
self.txoutclk = Signal()
self.rxoutclk = Signal()
# # #
# TX generates cxp_tx clock, init must be in system domain
# FIXME: 500e6 is used to fix Xx reset by holding gtxXxreset for a couple cycle more
self.submodules.tx_init = tx_init = GTXInit(500e6, False, mode=tx_mode)
self.submodules.rx_init = rx_init = GTXInit(sys_clk_freq, True, mode=rx_mode)
# RX receives restart commands from txusrclk domain
# self.submodules.rx_init = rx_init = ClockDomainsRenamer("cxp_gtx_tx")(GTXInit(500e6, True, mode=rx_mode))
self.comb += [
tx_init.cplllock.eq(qpll.lock),
rx_init.cplllock.eq(qpll.lock)
]
txdata = Signal(40)
rxdata = Signal(40)
comma_aligned = Signal()
comma_realigned = Signal()
comma_det = Signal()
comma_aligner_en = Signal()
# Note: the following parameters were set after consulting AR45360
self.specials += \
Instance("GTXE2_CHANNEL",
# PMA Attributes
p_PMA_RSV=0x001E7080,
p_PMA_RSV2=0x2050, # PMA_RSV2[5] = 0: Eye scan feature disabled
p_PMA_RSV3=0,
p_PMA_RSV4=1, # PMA_RSV[4],RX_CM_TRIM[2:0] = 0b1010: Common mode 800mV
p_RX_BIAS_CFG=0b000000000100,
p_RX_OS_CFG=0b0000010000000,
p_RX_CLK25_DIV=5,
p_TX_CLK25_DIV=5,
# Power-Down Attributes
p_PD_TRANS_TIME_FROM_P2=0x3c,
p_PD_TRANS_TIME_NONE_P2=0x3c,
p_PD_TRANS_TIME_TO_P2=0x64,
i_CPLLPD=1,
# QPLL
i_QPLLCLK=qpll.clk,
i_QPLLREFCLK=qpll.refclk,
p_RXOUT_DIV=qpll.Xxout_div,
p_TXOUT_DIV=qpll.Xxout_div,
i_RXSYSCLKSEL=0b11, # use QPLL & QPLL's REFCLK
i_TXSYSCLKSEL=0b11, # use QPLL & CPLL's REFCLK
# TX clock
p_TXBUF_EN="FALSE",
p_TX_XCLK_SEL="TXUSR",
o_TXOUTCLK=self.txoutclk,
# i_TXSYSCLKSEL=0b00,
i_TXOUTCLKSEL=0b11,
# TX Startup/Reset
i_TXPHDLYRESET=0,
i_TXDLYBYPASS=0,
i_TXPHALIGNEN=1 if tx_mode != "single" else 0,
i_GTTXRESET=tx_init.gtXxreset,
o_TXRESETDONE=tx_init.Xxresetdone,
i_TXDLYSRESET=tx_init.Xxdlysreset,
o_TXDLYSRESETDONE=tx_init.Xxdlysresetdone,
i_TXPHINIT=tx_init.txphinit if tx_mode != "single" else 0,
o_TXPHINITDONE=tx_init.txphinitdone if tx_mode != "single" else Signal(),
i_TXPHALIGN=tx_init.Xxphalign if tx_mode != "single" else 0,
i_TXDLYEN=tx_init.Xxdlyen if tx_mode != "single" else 0,
o_TXPHALIGNDONE=tx_init.Xxphaligndone,
i_TXUSERRDY=tx_init.Xxuserrdy,
p_TXPMARESET_TIME=1,
p_TXPCSRESET_TIME=1,
i_TXINHIBIT=~self.txenable,
# TX data
p_TX_DATA_WIDTH=40,
p_TX_INT_DATAWIDTH=1, # 1 if a line rate is greater than 6.6 Gbps
i_TXCHARDISPMODE=Cat(txdata[9], txdata[19], txdata[29], txdata[39]),
i_TXCHARDISPVAL=Cat(txdata[8], txdata[18], txdata[28], txdata[38]),
i_TXDATA=Cat(txdata[:8], txdata[10:18], txdata[20:28], txdata[30:38]),
i_TXUSRCLK=ClockSignal("cxp_gtx_tx"),
i_TXUSRCLK2=ClockSignal("cxp_gtx_tx"),
# TX electrical
i_TXBUFDIFFCTRL=0b100,
i_TXDIFFCTRL=0b1000,
# RX Startup/Reset
i_RXPHDLYRESET=0,
i_RXDLYBYPASS=0,
i_RXPHALIGNEN=1 if rx_mode != "single" else 0,
i_GTRXRESET=rx_init.gtXxreset,
o_RXRESETDONE=rx_init.Xxresetdone,
i_RXDLYSRESET=rx_init.Xxdlysreset,
o_RXDLYSRESETDONE=rx_init.Xxdlysresetdone,
i_RXPHALIGN=rx_init.Xxphalign if rx_mode != "single" else 0,
i_RXDLYEN=rx_init.Xxdlyen if rx_mode != "single" else 0,
o_RXPHALIGNDONE=rx_init.Xxphaligndone,
i_RXUSERRDY=rx_init.Xxuserrdy,
p_RXPMARESET_TIME=1,
p_RXPCSRESET_TIME=1,
# RX AFE
p_RX_DFE_XYD_CFG=0,
p_RX_CM_SEL=0b11, # RX_CM_SEL = 0b11: Common mode is programmable
p_RX_CM_TRIM=0b010, # PMA_RSV[4],RX_CM_TRIM[2:0] = 0b1010: Common mode 800mV
i_RXDFEXYDEN=1,
i_RXDFEXYDHOLD=0,
i_RXDFEXYDOVRDEN=0,
i_RXLPMEN=1, # RXLPMEN = 1: LPM mode is enable for non scramble 8b10b data
p_RXLPM_HF_CFG=0b00000011110000,
p_RXLPM_LF_CFG=0b00000011110000,
p_RX_DFE_GAIN_CFG=0x0207EA,
p_RX_DFE_VP_CFG=0b00011111100000011,
p_RX_DFE_UT_CFG=0b10001000000000000,
p_RX_DFE_KL_CFG=0b0000011111110,
p_RX_DFE_KL_CFG2=0x3788140A,
p_RX_DFE_H2_CFG=0b000110000000,
p_RX_DFE_H3_CFG=0b000110000000,
p_RX_DFE_H4_CFG=0b00011100000,
p_RX_DFE_H5_CFG=0b00011100000,
p_RX_DFE_LPM_CFG=0x0904, # RX_DFE_LPM_CFG = 0x0904: linerate <= 6.6Gb/s
# = 0x0104: linerate > 6.6Gb/s
# RX clock
i_RXDDIEN=1,
# i_RXSYSCLKSEL=0b00,
i_RXOUTCLKSEL=0b010,
o_RXOUTCLK=self.rxoutclk,
i_RXUSRCLK=ClockSignal("cxp_gtx_rx"),
i_RXUSRCLK2=ClockSignal("cxp_gtx_rx"),
# RX Clock Correction Attributes
p_CLK_CORRECT_USE="FALSE",
p_CLK_COR_SEQ_1_1=0b0100000000,
p_CLK_COR_SEQ_2_1=0b0100000000,
p_CLK_COR_SEQ_1_ENABLE=0b1111,
p_CLK_COR_SEQ_2_ENABLE=0b1111,
# RX data
p_RX_DATA_WIDTH=40,
p_RX_INT_DATAWIDTH=1, # 1 if a line rate is greater than 6.6 Gbps
o_RXDISPERR=Cat(rxdata[9], rxdata[19], rxdata[29], rxdata[39]),
o_RXCHARISK=Cat(rxdata[8], rxdata[18], rxdata[28], rxdata[38]),
o_RXDATA=Cat(rxdata[:8], rxdata[10:18], rxdata[20:28], rxdata[30:38]),
# RX Byte and Word Alignment Attributes
p_ALIGN_COMMA_DOUBLE="FALSE",
p_ALIGN_COMMA_ENABLE=0b1111111111,
p_ALIGN_COMMA_WORD=4, # align comma to rxdata[:10] only
p_ALIGN_MCOMMA_DET="TRUE",
p_ALIGN_MCOMMA_VALUE=0b1010000011,
p_ALIGN_PCOMMA_DET="TRUE",
p_ALIGN_PCOMMA_VALUE=0b0101111100,
p_SHOW_REALIGN_COMMA="FALSE",
p_RXSLIDE_AUTO_WAIT=7,
p_RXSLIDE_MODE="OFF",
p_RX_SIG_VALID_DLY=10,
i_RXPCOMMAALIGNEN=comma_aligner_en,
i_RXMCOMMAALIGNEN=comma_aligner_en,
i_RXCOMMADETEN=1,
i_RXSLIDE=0,
o_RXBYTEISALIGNED=comma_aligned,
o_RXBYTEREALIGN=comma_realigned,
o_RXCOMMADET=comma_det,
# RX 8B/10B Decoder Attributes
p_RX_DISPERR_SEQ_MATCH="FALSE",
p_DEC_MCOMMA_DETECT="TRUE",
p_DEC_PCOMMA_DETECT="TRUE",
p_DEC_VALID_COMMA_ONLY="FALSE",
# RX Buffer Attributes
p_RXBUF_ADDR_MODE="FAST",
p_RXBUF_EIDLE_HI_CNT=0b1000,
p_RXBUF_EIDLE_LO_CNT=0b0000,
p_RXBUF_EN="FALSE",
p_RX_BUFFER_CFG=0b000000,
p_RXBUF_RESET_ON_CB_CHANGE="TRUE",
p_RXBUF_RESET_ON_COMMAALIGN="FALSE",
p_RXBUF_RESET_ON_EIDLE="FALSE", # RXBUF_RESET_ON_EIDLE = FALSE: OOB is disabled
p_RXBUF_RESET_ON_RATE_CHANGE="TRUE",
p_RXBUFRESET_TIME=0b00001,
p_RXBUF_THRESH_OVFLW=61,
p_RXBUF_THRESH_OVRD="FALSE",
p_RXBUF_THRESH_UNDFLW=4,
p_RXDLY_CFG=0x001F,
p_RXDLY_LCFG=0x030,
p_RXDLY_TAP_CFG=0x0000,
p_RXPH_CFG=0xC00002,
p_RXPHDLY_CFG=0x084020,
p_RXPH_MONITOR_SEL=0b00000,
p_RX_XCLK_SEL="RXUSR",
p_RX_DDI_SEL=0b000000,
p_RX_DEFER_RESET_BUF_EN="TRUE",
# CDR Attributes
p_RXCDR_CFG=0x03_0000_23FF_1008_0020, # LPM @ 0.5G-1.5625G , 8B/10B encoded data, CDR setting < +/- 200ppm
# (See UG476 (v1.12.1), p.206)
p_RXCDR_FR_RESET_ON_EIDLE=0b0,
p_RXCDR_HOLD_DURING_EIDLE=0b0,
p_RXCDR_PH_RESET_ON_EIDLE=0b0,
p_RXCDR_LOCK_CFG=0b010101,
# Pads
i_GTXRXP=pads.rxp,
i_GTXRXN=pads.rxn,
o_GTXTXP=pads.txp,
o_GTXTXN=pads.txn,
# Dynamic Reconfiguration Ports
p_IS_DRPCLK_INVERTED=0b0,
i_DRPADDR=self.daddr,
i_DRPCLK=self.dclk,
i_DRPEN=self.den,
i_DRPWE=self.dwen,
i_DRPDI=self.din,
o_DRPDO=self.dout,
o_DRPRDY=self.dready,
# ! loopback for debugging
i_LOOPBACK = self.loopback_mode,
p_TX_LOOPBACK_DRIVE_HIZ = "FALSE",
p_RXPRBS_ERR_LOOPBACK = 0b0,
# Other parameters
p_PCS_RSVD_ATTR=(
(tx_mode != "single") << 1 | # PCS_RSVD_ATTR[1] = 0: TX Single Lane Auto Mode
# = 1: TX Manual Mode
(rx_mode != "single") << 2 | # [2] = 0: RX Single Lane Auto Mode
# = 1: RX Manual Mode
0 << 8 # [8] = 0: OOB is disabled
),
i_RXELECIDLEMODE=0b11, # RXELECIDLEMODE = 0b11: OOB is disabled
p_RX_DFE_LPM_HOLD_DURING_EIDLE=0b0,
p_ES_EYE_SCAN_EN="TRUE", # Must be TRUE for GTX
)
# TX clocking
# A PLL is used to generate the correct frequency for TXUSRCLK (UG476 Equation 3-1)
self.clock_domains.cd_cxp_gtx_tx = ClockDomain()
txpll_fb_clk = Signal()
txoutclk_buf = Signal()
txpll_clkout = Signal()
self.txpll_reset = Signal()
self.pll_daddr = Signal(7)
self.pll_dclk = Signal()
self.pll_den = Signal()
self.pll_din = Signal(16)
self.pll_dwen = Signal()
self.txpll_locked = Signal()
self.pll_dout = Signal(16)
self.pll_dready = Signal()
self.specials += [
Instance("PLLE2_ADV",
p_BANDWIDTH="HIGH",
o_LOCKED=self.txpll_locked,
i_RST=self.txpll_reset,
p_CLKIN1_PERIOD=1e9/sys_clk_freq, # ns
i_CLKIN1=txoutclk_buf,
# VCO @ 1.25GHz
p_CLKFBOUT_MULT=pll_fbout_mult, p_DIVCLK_DIVIDE=1,
i_CLKFBIN=txpll_fb_clk, o_CLKFBOUT=txpll_fb_clk,
# frequency = linerate/40
p_CLKOUT0_DIVIDE=txusr_pll_div, p_CLKOUT0_PHASE=0.0, o_CLKOUT0=txpll_clkout,
# Dynamic Reconfiguration Ports
i_DADDR = self.pll_daddr,
i_DCLK = self.pll_dclk,
i_DEN = self.pll_den,
i_DI = self.pll_din,
i_DWE = self.pll_dwen,
o_DO = self.pll_dout,
o_DRDY = self.pll_dready,
),
Instance("BUFG", i_I=self.txoutclk, o_O=txoutclk_buf),
Instance("BUFG", i_I=txpll_clkout, o_O=self.cd_cxp_gtx_tx.clk),
AsyncResetSynchronizer(self.cd_cxp_gtx_tx, ~self.txpll_locked & ~tx_init.done)
]
self.comb += tx_init.restart.eq(self.tx_restart)
# RX clocking
# the CDR matches the required frequency for RXUSRCLK, no need for PLL
# Slave Rx will use cxp_gtx_rx instead
if rx_mode == "single" or rx_mode == "master":
self.clock_domains.cd_cxp_gtx_rx = ClockDomain()
self.specials += [
Instance("BUFG", i_I=self.rxoutclk, o_O=self.cd_cxp_gtx_rx.clk),
AsyncResetSynchronizer(self.cd_cxp_gtx_rx, ~rx_init.done)
]
self.submodules.rx_resetter = rx_resetter = RX_Resetter()
self.comb += [
rx_resetter.rx_ready.eq(self.rx_ready),
rx_init.restart.eq(self.rx_restart | rx_resetter.rx_reset),
]
else:
self.comb += rx_init.restart.eq(self.rx_restart),
# 8b10b Encoder/Decoder
self.comb += [
txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1], self.encoder.output[2], self.encoder.output[3])),
self.decoders[0].input.eq(rxdata[:10]),
self.decoders[1].input.eq(rxdata[10:20]),
self.decoders[2].input.eq(rxdata[20:30]),
self.decoders[3].input.eq(rxdata[30:]),
]
self.submodules.comma_aligner = comma_aligner = Comma_Aligner(0b0101111100)
self.comb += [
comma_aligner.data.eq(rxdata),
comma_aligner.comma_aligned.eq(comma_aligned),
comma_aligner.comma_realigned.eq(comma_realigned),
comma_aligner.comma_det.eq(comma_det),
comma_aligner_en.eq(comma_aligner.aligner_en),
self.rx_ready.eq(comma_aligner.ready_sys),
]

View File

@ -0,0 +1,526 @@
from migen import *
from migen.genlib.cdc import MultiReg
from misoc.interconnect.csr import *
from misoc.interconnect import stream
from functools import reduce
from itertools import combinations
from operator import or_, and_
char_width = 8
char_layout = [("data", char_width), ("k", char_width//8)]
word_dw = 32
word_layout = [("data", word_dw), ("k", word_dw//8)]
word_layout_dchar = [
("data", word_dw),
("k", word_dw//8),
("dchar", char_width),
("dchar_k", char_width//8)
]
buffer_count = 4
buffer_depth = 512
def K(x, y):
return ((y << 5) | x)
KCode = {
"pak_start" : C(K(27, 7), char_width),
"io_ack" : C(K(28, 6), char_width),
"trig_indic_28_2" : C(K(28, 2), char_width),
"stream_marker" : C(K(28, 3), char_width),
"trig_indic_28_4" : C(K(28, 4), char_width),
"pak_end" : C(K(29, 7), char_width),
"idle_comma" : C(K(28, 5), char_width),
"idle_alignment" : C(K(28, 1), char_width),
}
class Packet_Wrapper(Module):
def __init__(self):
self.sink = stream.Endpoint(word_layout)
self.source = stream.Endpoint(word_layout)
# # #
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
self.sink.ack.eq(1),
If(self.sink.stb,
self.sink.ack.eq(0),
NextState("INSERT_HEADER"),
)
)
fsm.act("INSERT_HEADER",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(KCode["pak_start"], 4)),
self.source.k.eq(Replicate(1, 4)),
If(self.source.ack, NextState("COPY")),
)
fsm.act("COPY",
self.sink.connect(self.source),
self.source.eop.eq(0),
If(self.sink.stb & self.sink.eop & self.source.ack,
NextState("INSERT_FOOTER"),
),
)
fsm.act("INSERT_FOOTER",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(KCode["pak_end"], 4)),
self.source.k.eq(Replicate(1, 4)),
self.source.eop.eq(1),
If(self.source.ack, NextState("IDLE")),
)
class TX_Trigger(Module):
def __init__(self):
self.stb = Signal()
self.delay = Signal(char_width)
self.linktrig_mode = Signal()
# # #
self.sink = stream.Endpoint(char_layout)
self.source = stream.Endpoint(char_layout)
# Table 15 & 16 (CXP-001-2021)
# Send [K28.2, K28.4, K28.4] or [K28.4, K28.2, K28.2] and 3x delay as trigger packet
trig_packet = [Signal(char_width), Signal(char_width), Signal(char_width), self.delay, self.delay, self.delay]
trig_packet_k = [1, 1, 1, 0, 0, 0]
self.comb += [
If(self.linktrig_mode,
trig_packet[0].eq(KCode["trig_indic_28_4"]),
trig_packet[1].eq(KCode["trig_indic_28_2"]),
trig_packet[2].eq(KCode["trig_indic_28_2"]),
).Else(
trig_packet[0].eq(KCode["trig_indic_28_2"]),
trig_packet[1].eq(KCode["trig_indic_28_4"]),
trig_packet[2].eq(KCode["trig_indic_28_4"]),
),
]
self.submodules.fsm = fsm = FSM(reset_state="COPY")
cnt = Signal(max=6)
fsm.act("COPY",
NextValue(cnt, cnt.reset),
self.sink.connect(self.source),
If(self.stb, NextState("WRITE_TRIG"))
)
fsm.act("WRITE_TRIG",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Array(trig_packet)[cnt]),
self.source.k.eq(Array(trig_packet_k)[cnt]),
If(self.source.ack,
If(cnt == 5,
NextState("COPY"),
).Else(
NextValue(cnt, cnt + 1),
)
)
)
class Idle_Word_Inserter(Module):
def __init__(self):
self.stb = Signal()
# # #
# Section 9.2.5 (CXP-001-2021)
# Send K28.5, K28.1, K28.1, D21.5 as idle word
self.submodules.fsm = fsm = FSM(reset_state="COPY")
self.sink = stream.Endpoint(word_layout)
self.source = stream.Endpoint(word_layout)
fsm.act("COPY",
self.sink.connect(self.source),
If(self.stb, NextState("WRITE_IDLE"))
)
fsm.act("WRITE_IDLE",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Cat(KCode["idle_comma"], KCode["idle_alignment"], KCode["idle_alignment"], C(0xB5, char_width))),
self.source.k.eq(Cat(1, 1, 1, 0)),
If(self.source.ack, NextState("COPY")),
)
class Trigger_ACK_Inserter(Module):
def __init__(self):
self.stb = Signal()
# # #
# Section 9.3.2 (CXP-001-2021)
# Send 4x K28.6 and 4x 0x01 as trigger packet ack
self.submodules.fsm = fsm = FSM(reset_state="COPY")
self.sink = stream.Endpoint(word_layout)
self.source = stream.Endpoint(word_layout)
fsm.act("COPY",
self.sink.connect(self.source),
If(self.stb, NextState("WRITE_ACK0"))
)
fsm.act("WRITE_ACK0",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(KCode["io_ack"], 4)),
self.source.k.eq(Replicate(1, 4)),
If(self.source.ack, NextState("WRITE_ACK1")),
)
fsm.act("WRITE_ACK1",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Replicate(C(0x01, char_width), 4)),
self.source.k.eq(Replicate(0, 4)),
If(self.source.ack, NextState("COPY")),
)
@FullMemoryWE()
class TX_Bootstrap(Module, AutoCSR):
def __init__(self):
self.tx_word_len = CSRStorage(log2_int(buffer_depth))
self.tx = CSR()
self.tx_testseq = CSR()
self.tx_busy = CSRStatus()
# # #
self.specials.mem = mem = Memory(word_dw, buffer_depth)
self.specials.mem_port = mem_port = mem.get_port()
self.source = stream.Endpoint(word_layout)
# increment addr in the same cycle the moment addr_inc is high
# as memory takes one cycle to shift to the correct addr
addr_next = Signal(log2_int(buffer_depth))
addr = Signal.like(addr_next)
addr_rst = Signal()
addr_inc = Signal()
self.sync += addr.eq(addr_next),
self.comb += [
addr_next.eq(addr),
If(addr_rst,
addr_next.eq(addr_next.reset),
).Elif(addr_inc,
addr_next.eq(addr + 1),
),
mem_port.adr.eq(addr_next),
self.source.data.eq(mem_port.dat_r)
]
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
self.sync += self.tx_busy.status.eq(~fsm.ongoing("IDLE"))
cnt = Signal(max=0xFFF)
fsm.act("IDLE",
addr_rst.eq(1),
If(self.tx.re, NextState("TRANSMIT")),
If(self.tx_testseq.re,
NextValue(cnt, cnt.reset),
NextState("WRITE_TEST_PACKET_TYPE"),
)
)
fsm.act("TRANSMIT",
self.source.stb.eq(1),
If(self.source.ack,
addr_inc.eq(1),
),
If(addr_next == self.tx_word_len.storage,
self.source.eop.eq(1),
NextState("IDLE")
)
)
fsm.act("WRITE_TEST_PACKET_TYPE",
self.source.stb.eq(1),
self.source.data.eq(Replicate(C(0x04, char_width), 4)),
self.source.k.eq(Replicate(0, 4)),
If(self.source.ack,NextState("WRITE_TEST_COUNTER"))
)
fsm.act("WRITE_TEST_COUNTER",
self.source.stb.eq(1),
self.source.data.eq(Cat(cnt[:8], cnt[:8]+1, cnt[:8]+2, cnt[:8]+3)),
self.source.k.eq(Cat(0, 0, 0, 0)),
If(self.source.ack,
If(cnt == 0xFFF-3,
self.source.eop.eq(1),
NextState("IDLE")
).Else(
NextValue(cnt, cnt + 4),
)
)
)
class RX_Debug_Buffer(Module,AutoCSR):
def __init__(self):
self.submodules.buf_out = buf_out = stream.SyncFIFO(word_layout_dchar, 128)
self.sink = buf_out.sink
self.inc = CSR()
self.dout_pak = CSRStatus(word_dw)
self.kout_pak = CSRStatus(word_dw//8)
self.dout_valid = CSRStatus()
self.sync += [
# output
buf_out.source.ack.eq(self.inc.re),
self.dout_pak.status.eq(buf_out.source.data),
self.kout_pak.status.eq(buf_out.source.k),
self.dout_valid.status.eq(buf_out.source.stb),
]
class Duplicated_Char_Decoder(Module):
def __init__(self):
self.sink = stream.Endpoint(word_layout)
self.source = stream.Endpoint(word_layout_dchar)
# # #
# For duplicated characters, an error correction method (e.g. majority voting) is required to meet the CXP spec:
# RX decoder should immune to single bit errors when handling duplicated characters - Section 9.2.2.1 (CXP-001-2021)
#
#
# 32
# +---> buffer -----/-----+
# 32 | | 32+8(dchar)
# sink ---/---+ ---> source -----/-----> downstream
# | 8(dchar) | decoders
# +---> majority -----/-----+
# voting
#
#
# Due to the tight setup/hold time requiremnt for 12.5Gbps CXP, the voting logic cannot be implemented as combinational logic
# Hence, a pipeline approach is needed to avoid any s/h violation, where the majority voting result are pre-calculate and injected into the bus immediate after the PHY.
# And any downstream modules can access the voting result without implementing the voting logic inside the decoder
# cycle 1 - buffer data & calculate intermediate result
buffer = stream.Endpoint(word_layout)
self.sync += [
If((~buffer.stb | buffer.ack),
buffer.stb.eq(self.sink.stb),
buffer.payload.eq(self.sink.payload),
)
]
self.comb += self.sink.ack.eq(~buffer.stb | buffer.ack)
# calculate ABC, ABD, ACD, BCD
char = [[self.sink.data[i*8:(i+1)*8], self.sink.k[i]] for i in range(4)]
voters = [Record([("data", 8), ("k", 1)]) for _ in range(4)]
for i, comb in enumerate(combinations(char, 3)):
self.sync += [
If((~buffer.stb | buffer.ack),
voters[i].data.eq(reduce(and_, [code[0] for code in comb])),
voters[i].k.eq(reduce(and_, [code[1] for code in comb])),
)
]
# cycle 2 - inject the voting result
self.sync += [
If((~self.source.stb | self.source.ack),
self.source.stb.eq(buffer.stb),
self.source.data.eq(buffer.data),
self.source.k.eq(buffer.k),
self.source.dchar.eq(Replicate(reduce(or_, [v.data for v in voters]), 4)),
self.source.dchar_k.eq(Replicate(reduce(or_, [v.k for v in voters]), 4)),
)
]
self.comb += buffer.ack.eq(~self.source.stb | self.source.ack)
@FullMemoryWE()
class RX_Bootstrap(Module):
def __init__(self):
self.packet_type = Signal(8)
self.decode_err = Signal()
self.test_err = Signal()
self.buffer_err = Signal()
# # #
# TODO: heartbeat
type = {
"data_stream": 0x01,
"control_ack_no_tag": 0x03,
"test_packet": 0x04,
"control_ack_with_tag": 0x06,
"event": 0x07,
"heartbeat": 0x09,
}
self.sink = stream.Endpoint(word_layout_dchar)
self.source = stream.Endpoint(word_layout_dchar)
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
self.sink.ack.eq(1),
If((self.sink.stb & (self.sink.dchar == KCode["pak_start"]) & (self.sink.dchar_k == 1)),
NextState("DECODE"),
)
)
cnt = Signal(max=0x100)
addr_nbits = log2_int(buffer_depth)
addr = Signal(addr_nbits)
fsm.act("DECODE",
self.sink.ack.eq(1),
If(self.sink.stb,
NextValue(self.packet_type, self.sink.dchar),
Case(self.sink.dchar, {
type["data_stream"]: NextState("STREAMING"),
type["test_packet"]: [
NextValue(cnt, cnt.reset),
NextState("VERIFY_TEST_PATTERN"),
],
type["control_ack_no_tag"]:[
NextValue(addr, addr.reset),
NextState("LOAD_BUFFER"),
],
type["control_ack_with_tag"]:[
NextValue(addr, addr.reset),
NextState("LOAD_BUFFER"),
],
type["event"]: [
NextValue(addr, addr.reset),
NextState("LOAD_BUFFER"),
],
"default": [
self.decode_err.eq(1),
# wait till next valid packet
NextState("IDLE"),
],
}),
)
)
# For stream data packet
fsm.act("STREAMING",
If((self.sink.stb & (self.sink.dchar == KCode["pak_end"]) & (self.sink.dchar_k == 1)),
# discard K29,7
self.sink.ack.eq(1),
NextState("IDLE")
).Else(
self.sink.connect(self.source),
)
)
# Section 9.9.1 (CXP-001-2021)
# the received test data packet (0x00, 0x01 ... 0xFF)
# need to be compared against the local test sequence generator
fsm.act("VERIFY_TEST_PATTERN",
self.sink.ack.eq(1),
If(self.sink.stb,
If(((self.sink.dchar == KCode["pak_end"]) & (self.sink.dchar_k == 1)),
NextState("IDLE"),
).Else(
If(((self.sink.data != Cat(cnt, cnt+1, cnt+2, cnt+3))),
self.test_err.eq(1),
),
If(cnt == 0xFC,
NextValue(cnt, cnt.reset),
).Else(
NextValue(cnt, cnt + 4)
)
)
)
)
# A circular buffer for firmware to read packet from
self.specials.mem = mem = Memory(word_dw, buffer_count*buffer_depth)
self.specials.mem_port = mem_port = mem.get_port(write_capable=True)
write_ptr = Signal(log2_int(buffer_count))
self.write_ptr_sys = Signal.like(write_ptr)
self.specials += MultiReg(write_ptr, self.write_ptr_sys),
self.comb += [
mem_port.adr[:addr_nbits].eq(addr),
mem_port.adr[addr_nbits:].eq(write_ptr),
]
# For control ack, event packet
fsm.act("LOAD_BUFFER",
mem_port.we.eq(0),
self.sink.ack.eq(1),
If(self.sink.stb,
If(((self.sink.dchar == KCode["pak_end"]) & (self.sink.dchar_k == 1)),
NextState("MOVE_BUFFER_PTR"),
).Else(
mem_port.we.eq(1),
mem_port.dat_w.eq(self.sink.data),
NextValue(addr, addr + 1),
If(addr == buffer_depth - 1,
# discard the packet
self.buffer_err.eq(1),
NextState("IDLE"),
)
)
)
)
self.read_ptr_rx = Signal.like(write_ptr)
fsm.act("MOVE_BUFFER_PTR",
self.sink.ack.eq(0),
If(write_ptr + 1 == self.read_ptr_rx,
# if next one hasn't been read, overwrite the current buffer when new packet comes in
self.buffer_err.eq(1),
).Else(
NextValue(write_ptr, write_ptr + 1),
),
NextState("IDLE"),
)
class Trigger_Ack_Checker(Module, AutoCSR):
def __init__(self):
self.sink = stream.Endpoint(word_layout_dchar)
self.source = stream.Endpoint(word_layout_dchar)
self.ack = Signal()
# # #
self.submodules.fsm = fsm = FSM(reset_state="COPY")
fsm.act("COPY",
If((self.sink.stb & (self.sink.dchar == KCode["io_ack"]) & (self.sink.dchar_k == 1)),
# discard K28,6
self.sink.ack.eq(1),
NextState("CHECK_ACK")
).Else(
self.sink.connect(self.source),
)
)
fsm.act("CHECK_ACK",
If(self.sink.stb,
NextState("COPY"),
# discard the word after K28,6
self.sink.ack.eq(1),
If((self.sink.dchar == 0x01) & (self.sink.dchar_k == 0),
self.ack.eq(1),
)
)
)

224
src/gateware/cxp_upconn.py Normal file
View File

@ -0,0 +1,224 @@
from math import ceil
from migen import *
from misoc.cores.code_8b10b import SingleEncoder
from misoc.interconnect import stream
from misoc.interconnect.csr import *
from cxp_pipeline import char_layout
@ResetInserter()
class UpConn_ClockGen(Module):
def __init__(self, sys_clk_freq):
self.clk = Signal()
self.clk_10x = Signal() # 20.83MHz 48ns or 41.66MHz 24ns
self.freq2x_enable = Signal()
# # #
period = 1e9/sys_clk_freq
max_count = ceil(48/period)
counter = Signal(max=max_count, reset=max_count-1)
clk_div = Signal(max=10, reset=9)
self.sync += [
self.clk.eq(0),
self.clk_10x.eq(0),
If(counter == 0,
self.clk_10x.eq(1),
If(self.freq2x_enable,
counter.eq(int(max_count/2)-1),
).Else(
counter.eq(counter.reset),
),
).Else(
counter.eq(counter-1),
),
If(counter == 0,
If(clk_div == 0,
self.clk.eq(1),
clk_div.eq(clk_div.reset),
).Else(
clk_div.eq(clk_div-1),
)
)
]
@ResetInserter()
@CEInserter()
class SERDES_10bits(Module):
def __init__(self, pad):
self.oe = Signal()
self.d = Signal(10)
# # #
o = Signal()
tx_bitcount = Signal(max=10)
tx_reg = Signal(10)
# DEBUG:
self.o = Signal()
self.comb += self.o.eq(o)
self.specials += Instance("OBUF", i_I=o, o_O=pad),
self.sync += [
If(self.oe,
# send LSB first
o.eq(tx_reg[0]),
tx_reg.eq(Cat(tx_reg[1:], 0)),
tx_bitcount.eq(tx_bitcount + 1),
If(tx_bitcount == 9,
tx_bitcount.eq(0),
tx_reg.eq(self.d),
),
).Else(
o.eq(0),
tx_bitcount.eq(0),
)
]
class Debug_buffer(Module,AutoCSR):
def __init__(self, layout):
self.sink_stb = Signal()
self.sink_ack = Signal()
self.sink_data = Signal(8)
self.sink_k = Signal()
# # #
self.submodules.buf_out = buf_out = stream.SyncFIFO(layout, 512)
self.sync += [
buf_out.sink.stb.eq(self.sink_stb),
self.sink_ack.eq(buf_out.sink.ack),
buf_out.sink.data.eq(self.sink_data),
buf_out.sink.k.eq(self.sink_k),
]
self.inc = CSR()
self.dout_pak = CSRStatus(8)
self.kout_pak = CSRStatus()
self.dout_valid = CSRStatus()
self.sync += [
# output
buf_out.source.ack.eq(self.inc.re),
self.dout_pak.status.eq(buf_out.source.data),
self.kout_pak.status.eq(buf_out.source.k),
self.dout_valid.status.eq(buf_out.source.stb),
]
class Transmitter(Module, AutoCSR):
def __init__(self, pad, sys_clk_freq, debug_sma, pmod_pads):
self.bitrate2x_enable = Signal()
self.clk_reset = Signal()
self.tx_enable = Signal()
# # #
self.sink = stream.Endpoint(char_layout)
self.submodules.cg = cg = UpConn_ClockGen(sys_clk_freq)
self.submodules.encoder = encoder = SingleEncoder(True)
self.submodules.debug_buf = debug_buf = Debug_buffer(char_layout)
oe = Signal()
self.sync += [
If(self.tx_enable,
self.sink.ack.eq(0),
# DEBUG:
debug_buf.sink_stb.eq(0),
If(cg.clk,
oe.eq(1),
encoder.disp_in.eq(encoder.disp_out),
self.sink.ack.eq(1),
encoder.d.eq(self.sink.data),
encoder.k.eq(self.sink.k),
# DEBUG:
If(debug_buf.sink_ack,
debug_buf.sink_stb.eq(1),
debug_buf.sink_data.eq(self.sink.data),
debug_buf.sink_k.eq(self.sink.k),
)
)
).Else(
# DEBUG:
debug_buf.sink_stb.eq(0),
# no backpressure
self.sink.ack.eq(1),
oe.eq(0),
)
]
self.submodules.serdes = serdes = SERDES_10bits(pad)
self.comb += [
cg.reset.eq(self.clk_reset),
cg.freq2x_enable.eq(self.bitrate2x_enable),
serdes.reset.eq(self.clk_reset),
serdes.ce.eq(cg.clk_10x),
serdes.d.eq(encoder.output),
serdes.oe.eq(oe),
]
# DEBUG: remove pads
self.specials += [
# # debug sma
# Instance("OBUF", i_I=serdes.o, o_O=debug_sma.p_tx),
Instance("OBUF", i_I=serdes.o, o_O=debug_sma.n_rx),
# # pmod 0-7 pin
# Instance("OBUF", i_I=serdes.o, o_O=pmod_pads[0]),
# Instance("OBUF", i_I=cg.clk_10x, o_O=pmod_pads[1]),
# Instance("OBUF", i_I=~tx_fifos.pe.n, o_O=pmod_pads[2]),
# Instance("OBUF", i_I=prioity_0, o_O=pmod_pads[3]),
# Instance("OBUF", i_I=word_bound, o_O=pmod_pads[4]),
# Instance("OBUF", i_I=debug_buf.buf_out.sink.stb, o_O=pmod_pads[4]),
# Instance("OBUF", i_I=debug_buf.buf_out.sink.ack, o_O=pmod_pads[5]),
# Instance("OBUF", i_I=debug_buf.buf_out.source.stb, o_O=pmod_pads[6]),
# Instance("OBUF", i_I=debug_buf.buf_out.source.ack, o_O=pmod_pads[7]),
# Instance("OBUF", i_I=scheduler.idling, o_O=pmod_pads[5]),
# # Instance("OBUF", i_I=tx_fifos.source_ack[0], o_O=pmod[6]),
# # Instance("OBUF", i_I=tx_fifos.source_ack[2], o_O=pmod[6]),
# # Instance("OBUF", i_I=tx_fifos.source_ack[1], o_O=pmod[7]),
# Instance("OBUF", i_I=p0, o_O=pmod_pads[6]),
# Instance("OBUF", i_I=p3, o_O=pmod_pads[7]),
]
class CXP_UpConn_PHYS(Module, AutoCSR):
def __init__(self, pads, sys_clk_freq, debug_sma, pmod_pads):
self.clk_reset = CSR()
self.bitrate2x_enable = CSRStorage()
self.tx_enable = CSRStorage()
# # #
self.tx_phys = []
for i, pad in enumerate(pads):
tx = Transmitter(pad, sys_clk_freq, debug_sma, pmod_pads)
self.tx_phys.append(tx)
setattr(self.submodules, "tx"+str(i), tx)
self.sync += [
tx.clk_reset.eq(self.clk_reset.re),
tx.bitrate2x_enable.eq(self.bitrate2x_enable.storage),
tx.tx_enable.eq(self.tx_enable.storage),
]

View File

@ -25,6 +25,8 @@ import analyzer
import acpki
import drtio_aux_controller
import zynq_clocking
import cxp_4r_fmc
import cxp
from config import write_csr_file, write_mem_file, write_rustc_cfg_file
class SMAClkinForward(Module):
@ -138,7 +140,7 @@ class ZC706(SoCCore):
platform.add_extension(si5324_fmc33)
self.comb += platform.request("si5324_33").rst_n.eq(1)
cdr_clk = Signal()
self.cdr_clk = Signal()
cdr_clk_buf = Signal()
si5324_out = platform.request("si5324_clkout")
platform.add_period_constraint(si5324_out.p, 8.0)
@ -146,11 +148,11 @@ class ZC706(SoCCore):
Instance("IBUFDS_GTE2",
i_CEB=0,
i_I=si5324_out.p, i_IB=si5324_out.n,
o_O=cdr_clk,
o_O=self.cdr_clk,
p_CLKCM_CFG="TRUE",
p_CLKRCV_TRST="TRUE",
p_CLKSWING_CFG=3),
Instance("BUFG", i_I=cdr_clk, o_O=cdr_clk_buf)
Instance("BUFG", i_I=self.cdr_clk, o_O=cdr_clk_buf)
]
self.config["HAS_SI5324"] = None
self.config["SI5324_AS_SYNTHESIZER"] = None
@ -652,6 +654,129 @@ class _NIST_QC2_RTIO:
self.add_rtio(rtio_channels)
class CXP_FMC():
"""
CoaXpress FMC with 4 CXP channel and 1 SMA trigger
"""
def __init__(self):
platform = self.platform
platform.add_extension(cxp_4r_fmc.fmc_adapter_io)
platform.add_extension(leds_fmc33)
debug_sma = [
("user_sma_clock_33", 0,
Subsignal("p_tx", Pins("AD18"), IOStandard("LVCMOS33")),
Subsignal("n_rx", Pins("AD19"), IOStandard("LVCMOS33")),
),
]
pmod1_33 = [
("pmod1_33", 0, Pins("AJ21"), IOStandard("LVCMOS33")),
("pmod1_33", 1, Pins("AK21"), IOStandard("LVCMOS33")),
("pmod1_33", 2, Pins("AB21"), IOStandard("LVCMOS33")),
("pmod1_33", 3, Pins("AB16"), IOStandard("LVCMOS33")),
("pmod1_33", 4, Pins("Y20"), IOStandard("LVCMOS33")),
("pmod1_33", 5, Pins("AA20"), IOStandard("LVCMOS33")),
("pmod1_33", 6, Pins("AC18"), IOStandard("LVCMOS33")),
("pmod1_33", 7, Pins("AC19"), IOStandard("LVCMOS33")),
]
platform.add_extension(debug_sma)
platform.add_extension(pmod1_33)
debug_sma_pad = platform.request("user_sma_clock_33")
pmod_pads = [platform.request("pmod1_33", i) for i in range(8)]
clk_freq = 125e6
links = 1
cxp_downconn_pads = [platform.request("CXP_HS", i) for i in range(links)]
cxp_upconn_pads = [platform.request("CXP_LS", i) for i in range(links)]
self.submodules.cxp_phys = cxp_phys = cxp.CXP_PHYS(
refclk=self.cdr_clk,
upconn_pads=cxp_upconn_pads,
downconn_pads=cxp_downconn_pads,
sys_clk_freq=clk_freq,
debug_sma=debug_sma_pad,
pmod_pads = pmod_pads
)
self.csr_devices.append("cxp_phys")
rtio_channels = []
cxp_csr_group = []
cxp_tx_mem_group = []
cxp_rx_mem_group = []
cxp_loopback_mem_group = []
for i, (tx, rx) in enumerate(zip(cxp_phys.upconn.tx_phys, cxp_phys.downconn.rx_phys)):
cxp_name = "cxp" + str(i)
cdr = ClockDomainsRenamer({"cxp_gtx_rx": "cxp_gtx_rx" + str(i)})
if i == 0:
cxp_interface = cdr(cxp.CXP_Master(tx, rx, debug_sma_pad, pmod_pads))
# Add rtlink for Master Connection only
print("CoaXPress at RTIO channel 0x{:06x}".format(len(rtio_channels)))
rtio_channels.append(rtio.Channel.from_phy(cxp_interface))
else:
cxp_interface = cdr(cxp.CXP_Extension(tx, rx, debug_sma_pad, pmod_pads))
setattr(self.submodules, cxp_name, cxp_interface)
self.csr_devices.append(cxp_name)
cxp_csr_group.append(cxp_name)
# Add memory group
rx_mem_name = "cxp_rx" + str(i) + "_mem"
rx_mem_size = cxp_interface.get_rx_mem_size()
cxp_rx_mem_group.append(rx_mem_name)
memory_address = self.axi2csr.register_port(cxp_interface.get_rx_port(), rx_mem_size)
self.add_memory_region(rx_mem_name, self.mem_map["csr"] + memory_address, rx_mem_size)
tx_mem_name = "cxp_tx" + str(i) + "_mem"
tx_mem_size = cxp_interface.get_tx_mem_size()
cxp_tx_mem_group.append(tx_mem_name)
memory_address = self.axi2csr.register_port(cxp_interface.get_tx_port(), tx_mem_size)
self.add_memory_region(tx_mem_name, self.mem_map["csr"] + memory_address, tx_mem_size)
# DEBUG loopback tx memory
loopback_mem_name = "cxp_loopback_tx" + str(i) + "_mem"
loopback_mem_size = cxp_interface.get_loopback_tx_mem_size()
cxp_loopback_mem_group.append(loopback_mem_name)
memory_address = self.axi2csr.register_port(cxp_interface.get_loopback_tx_port(), loopback_mem_size)
self.add_memory_region(loopback_mem_name, self.mem_map["csr"] + memory_address, loopback_mem_size)
self.add_memory_group("cxp_tx_mem", cxp_tx_mem_group)
self.add_memory_group("cxp_rx_mem", cxp_rx_mem_group)
self.add_memory_group("cxp_loopback_mem", cxp_loopback_mem_group)
self.add_csr_group("cxp", cxp_csr_group)
# max freq of cxp_gtx_rx = linerate/internal_datawidth = 12.5Gbps/40 = 312.5MHz
# zc706 use speed grade 2 which only support up to 10.3125Gbps (4ns)
# pushing to 12.5Gbps (3.2ns) will result in Pulse width violation but setup/hold times are met
for rx in cxp_phys.downconn.rx_phys :
platform.add_period_constraint(rx.gtx.cd_cxp_gtx_tx.clk, 3.2)
platform.add_period_constraint(rx.gtx.cd_cxp_gtx_rx.clk, 3.2)
# constraint the CLK path
platform.add_false_path_constraints(self.sys_crg.cd_sys.clk, rx.gtx.cd_cxp_gtx_tx.clk, rx.gtx.cd_cxp_gtx_rx.clk)
# FIXME remove this placeholder RTIO channel
# There are too few RTIO channels and cannot be compiled (adr width issue of the lane distributor)
# see https://github.com/m-labs/artiq/pull/2158 for similar issue
print("USER LED at RTIO channel 0x{:06x}".format(len(rtio_channels)))
phy = ttl_simple.Output(self.platform.request("user_led_33", 0))
self.submodules += phy
rtio_channels.append(rtio.Channel.from_phy(phy))
self.config["HAS_RTIO_LOG"] = None
rtio_channels.append(rtio.LogChannel())
self.config["RTIO_LOG_CHANNEL"] = len(rtio_channels)
self.add_rtio(rtio_channels)
class NIST_CLOCK(ZC706, _NIST_CLOCK_RTIO):
def __init__(self, acpki, drtio100mhz):
ZC706.__init__(self, acpki)
@ -684,8 +809,13 @@ class NIST_QC2_Satellite(_SatelliteBase, _NIST_QC2_RTIO):
_SatelliteBase.__init__(self, acpki, drtio100mhz)
_NIST_QC2_RTIO.__init__(self)
class CXP_Demo(ZC706, CXP_FMC):
def __init__(self, acpki, drtio100mhz):
ZC706.__init__(self, acpki)
CXP_FMC.__init__(self)
VARIANTS = {cls.__name__.lower(): cls for cls in [NIST_CLOCK, NIST_CLOCK_Master, NIST_CLOCK_Satellite,
NIST_QC2, NIST_QC2_Master, NIST_QC2_Satellite]}
NIST_QC2, NIST_QC2_Master, NIST_QC2_Satellite, CXP_Demo]}
def main():
parser = argparse.ArgumentParser(

View File

@ -23,6 +23,7 @@ core_io = { version = "0.1", features = ["collections"] }
embedded-hal = "0.2"
nb = "1.0"
void = { version = "1", default-features = false }
byteorder = { version = "1.3", default-features = false }
io = { path = "../libio", features = ["byteorder"] }
libboard_zynq = { path = "@@ZYNQ_RS@@/libboard_zynq" }

View File

@ -0,0 +1,94 @@
use embedded_hal::prelude::_embedded_hal_blocking_delay_DelayUs;
use libboard_zynq::{println, timer::GlobalTimer};
use log::info;
use crate::{cxp_phys, cxp_proto, pl::csr::CXP};
pub fn loopback_testing(channel: usize, timer: &mut GlobalTimer, speed: cxp_phys::CXP_SPEED) {
println!("==============================================================================");
cxp_phys::change_linerate(speed);
unsafe {
info!("waiting for tx&rx setup...");
timer.delay_us(50_000);
info!(
"tx_phaligndone = {} | rx_phaligndone = {}",
(CXP[channel].downconn_txinit_phaligndone_read)(),
(CXP[channel].downconn_rxinit_phaligndone_read)(),
);
// enable txdata tranmission thought MGTXTXP, required by PMA loopback
(CXP[channel].downconn_txenable_write)(1);
info!("waiting for rx to align...");
while (CXP[channel].downconn_rx_ready_read)() != 1 {}
info!("rx ready!");
cxp_proto::downconn_send_test_packet(channel);
// FIXME: why test + trig ack doesn't work well for rx??
cxp_proto::downconn_debug_send_trig_ack(channel);
const DATA_MAXSIZE: usize = 253;
let data_size = 4; // no. of bytes
let data: u32 = 0xDADA as u32;
let mut data_slice: [u8; DATA_MAXSIZE] = [0; DATA_MAXSIZE];
data_slice[..4].clone_from_slice(&data.to_be_bytes());
cxp_proto::downconn_debug_send(
channel,
&cxp_proto::UpConnPacket::Event {
conn_id: 0x1234_5678_u32,
packet_tag: 0x69_u8,
length: data_size + 3,
event_size: data_size,
namespace: 0x02_u8,
event_id: 0x00_6969u16,
timestamp: 0x1234_5678u64,
data: data_slice,
},
)
.expect("loopback gtx tx error");
timer.delay_us(1000); // wait packet has arrive at RX async fifo
if (CXP[channel].downconn_trigger_ack_read)() == 1 {
(CXP[channel].downconn_trigger_ack_write)(1);
info!("trig ack and cleared");
}
if (CXP[channel].downconn_bootstrap_decoder_err_read)() == 1 {
info!("!!!!!!!DECODER ERROR!!!!!!! and cleared");
(CXP[channel].downconn_bootstrap_decoder_err_write)(1);
}
if (CXP[channel].downconn_bootstrap_test_err_read)() == 1 {
info!("!!!!!!!TEST ERROR!!!!!!! and cleared");
(CXP[channel].downconn_bootstrap_test_err_write)(1);
}
info!("packet type = {:#06X}", (CXP[channel].downconn_packet_type_read)());
cxp_proto::receive(channel).expect("loopback gtx rx error");
// cxp_proto::downconn_debug_mem_print(channel);
// DEBUG: print loopback packets
const LEN: usize = 20;
let mut pak_arr: [u32; LEN] = [0; LEN];
let mut k_arr: [u8; LEN] = [0; LEN];
let mut i: usize = 0;
while (CXP[channel].downconn_debug_out_dout_valid_read)() == 1 {
pak_arr[i] = (CXP[channel].downconn_debug_out_dout_pak_read)();
k_arr[i] = (CXP[channel].downconn_debug_out_kout_pak_read)();
// println!("received {:#04X}", pak_arr[i]);
(CXP[channel].downconn_debug_out_inc_write)(1);
i += 1;
if i == LEN {
break;
}
}
info!("rx ready = {}", (CXP[channel].downconn_rx_ready_read)());
// cxp_proto::print_packetu32(&pak_arr, &k_arr);
}
}

View File

@ -0,0 +1,491 @@
use embedded_hal::prelude::_embedded_hal_blocking_delay_DelayUs;
use libboard_zynq::{println, timer::GlobalTimer};
use log::info;
use crate::pl::{csr, csr::CXP};
const CHANNEL_LEN: usize = csr::CXP_LEN;
#[derive(Clone, Copy, Debug)]
#[allow(non_camel_case_types)]
pub enum CXP_SPEED {
CXP_1,
CXP_2,
CXP_3,
CXP_5,
CXP_6,
CXP_10,
CXP_12,
}
pub fn setup(timer: &mut GlobalTimer) {
down_conn::setup(timer);
up_conn::setup();
change_linerate(CXP_SPEED::CXP_1);
}
pub fn change_linerate(speed: CXP_SPEED) {
info!("Changing all channels datarate to {:?}", speed);
down_conn::change_linerate(speed);
up_conn::change_linerate(speed);
}
mod up_conn {
use super::*;
pub fn setup() {
unsafe {
csr::cxp_phys::upconn_tx_enable_write(1);
}
}
pub fn change_linerate(speed: CXP_SPEED) {
unsafe {
match speed {
CXP_SPEED::CXP_1 | CXP_SPEED::CXP_2 | CXP_SPEED::CXP_3 | CXP_SPEED::CXP_5 | CXP_SPEED::CXP_6 => {
csr::cxp_phys::upconn_bitrate2x_enable_write(0);
}
CXP_SPEED::CXP_10 | CXP_SPEED::CXP_12 => {
csr::cxp_phys::upconn_bitrate2x_enable_write(1);
}
};
csr::cxp_phys::upconn_clk_reset_write(1);
}
}
}
mod down_conn {
use super::*;
pub fn setup(timer: &mut GlobalTimer) {
unsafe {
info!("turning on pmc loopback mode...");
for channel in 0..CHANNEL_LEN {
(CXP[channel].downconn_loopback_mode_write)(0b010); // Near-End PMA Loopback
}
// QPLL setup
csr::cxp_phys::downconn_qpll_reset_write(1);
info!("waiting for QPLL/CPLL to lock...");
while csr::cxp_phys::downconn_qpll_locked_read() != 1 {}
info!("QPLL locked");
for channel in 0..CHANNEL_LEN {
// tx/rx setup
(CXP[channel].downconn_tx_start_init_write)(1);
(CXP[channel].downconn_rx_start_init_write)(1);
}
// DEBUG: printout
info!("waiting for tx & rx setup...");
timer.delay_us(50_000);
for channel in 0..CHANNEL_LEN {
info!(
"tx_phaligndone = {} | rx_phaligndone = {}",
(CXP[channel].downconn_txinit_phaligndone_read)(),
(CXP[channel].downconn_rxinit_phaligndone_read)(),
);
}
}
}
pub fn change_linerate(speed: CXP_SPEED) {
// DEBUG: DRP pll for TXUSRCLK = freq(linerate)/20
let settings = txusrclk::get_txusrclk_config(speed);
txusrclk::setup(settings);
change_qpll_fb_divider(speed);
change_gtx_divider(speed);
change_cdr_cfg(speed);
unsafe {
csr::cxp_phys::downconn_qpll_reset_write(1);
info!("waiting for QPLL/CPLL to lock...");
while csr::cxp_phys::downconn_qpll_locked_read() != 1 {}
info!("QPLL locked");
for channel in 0..CHANNEL_LEN {
(CXP[channel].downconn_tx_restart_write)(1);
(CXP[channel].downconn_rx_restart_write)(1);
}
}
}
fn change_qpll_fb_divider(speed: CXP_SPEED) {
let qpll_div_reg = match speed {
CXP_SPEED::CXP_1 | CXP_SPEED::CXP_2 | CXP_SPEED::CXP_5 | CXP_SPEED::CXP_10 => 0x0120, // FB_Divider = 80
CXP_SPEED::CXP_3 | CXP_SPEED::CXP_6 | CXP_SPEED::CXP_12 => 0x0170, // FB_Divider = 100
};
println!("0x36 = {:#06x}", qpll_read(0x36));
qpll_write(0x36, qpll_div_reg);
println!("0x36 = {:#06x}", qpll_read(0x36));
}
fn change_gtx_divider(speed: CXP_SPEED) {
let div_reg = match speed {
CXP_SPEED::CXP_1 => 0x33, // RXOUT_DIV = 8
CXP_SPEED::CXP_2 | CXP_SPEED::CXP_3 => 0x22, // RXOUT_DIV = 4
CXP_SPEED::CXP_5 | CXP_SPEED::CXP_6 => 0x11, // RXOUT_DIV = 2
CXP_SPEED::CXP_10 | CXP_SPEED::CXP_12 => 0x00, // RXOUT_DIV = 1
};
for channel in 0..CHANNEL_LEN {
println!("channel {}, 0x88 = {:#06x}", channel, gtx_read(channel, 0x88));
gtx_write(channel, 0x88, div_reg);
println!("channel {}, 0x88 = {:#06x}", channel, gtx_read(channel, 0x88));
}
}
fn change_cdr_cfg(speed: CXP_SPEED) {
struct CdrConfig {
pub cfg_reg0: u16, // addr = 0xA8
pub cfg_reg1: u16, // addr = 0xA9
pub cfg_reg2: u16, // addr = 0xAA
pub cfg_reg3: u16, // addr = 0xAB
pub cfg_reg4: u16, // addr = 0xAC
}
let cdr_cfg = match speed {
// when RXOUT_DIV = 8
CXP_SPEED::CXP_1 => CdrConfig {
cfg_reg0: 0x0020,
cfg_reg1: 0x1008,
cfg_reg2: 0x23FF,
cfg_reg3: 0x0000,
cfg_reg4: 0x0003,
},
// when RXOUT_DIV = 4
CXP_SPEED::CXP_2 | CXP_SPEED::CXP_5 => CdrConfig {
cfg_reg0: 0x0020,
cfg_reg1: 0x1010,
cfg_reg2: 0x23FF,
cfg_reg3: 0x0000,
cfg_reg4: 0x0003,
},
// when RXOUT_DIV= 2
CXP_SPEED::CXP_3 | CXP_SPEED::CXP_6 => CdrConfig {
cfg_reg0: 0x0020,
cfg_reg1: 0x1020,
cfg_reg2: 0x23FF,
cfg_reg3: 0x0000,
cfg_reg4: 0x0003,
},
// when RXOUT_DIV= 1
CXP_SPEED::CXP_10 | CXP_SPEED::CXP_12 => CdrConfig {
cfg_reg0: 0x0020,
cfg_reg1: 0x1040,
cfg_reg2: 0x23FF,
cfg_reg3: 0x0000,
cfg_reg4: 0x000B,
},
};
for channel in 0..CHANNEL_LEN {
gtx_write(channel, 0x0A8, cdr_cfg.cfg_reg0);
gtx_write(channel, 0x0A9, cdr_cfg.cfg_reg1);
gtx_write(channel, 0x0AA, cdr_cfg.cfg_reg2);
gtx_write(channel, 0x0AB, cdr_cfg.cfg_reg3);
gtx_write(channel, 0x0AC, cdr_cfg.cfg_reg4);
}
}
#[allow(dead_code)]
fn gtx_read(channel: usize, address: u16) -> u16 {
unsafe {
(CXP[channel].downconn_gtx_daddr_write)(address);
(CXP[channel].downconn_gtx_dread_write)(1);
while (CXP[channel].downconn_gtx_dready_read)() != 1 {}
(CXP[channel].downconn_gtx_dout_read)()
}
}
fn gtx_write(channel: usize, address: u16, value: u16) {
unsafe {
(CXP[channel].downconn_gtx_daddr_write)(address);
(CXP[channel].downconn_gtx_din_write)(value);
(CXP[channel].downconn_gtx_din_stb_write)(1);
while (CXP[channel].downconn_gtx_dready_read)() != 1 {}
}
}
#[allow(dead_code)]
fn qpll_read(address: u8) -> u16 {
unsafe {
csr::cxp_phys::downconn_qpll_daddr_write(address);
csr::cxp_phys::downconn_qpll_dread_write(1);
while csr::cxp_phys::downconn_qpll_dready_read() != 1 {}
csr::cxp_phys::downconn_qpll_dout_read()
}
}
fn qpll_write(address: u8, value: u16) {
unsafe {
csr::cxp_phys::downconn_qpll_daddr_write(address);
csr::cxp_phys::downconn_qpll_din_write(value);
csr::cxp_phys::downconn_qpll_din_stb_write(1);
while csr::cxp_phys::downconn_qpll_dready_read() != 1 {}
}
}
// DEBUG: remove this
pub mod txusrclk {
use super::*;
#[derive(Copy, Clone)]
pub struct PLLSetting {
pub clkout0_reg1: u16, //0x08
pub clkout0_reg2: u16, //0x09
pub clkfbout_reg1: u16, //0x14
pub clkfbout_reg2: u16, //0x15
pub div_reg: u16, //0x16
pub lock_reg1: u16, //0x18
pub lock_reg2: u16, //0x19
pub lock_reg3: u16, //0x1A
pub power_reg: u16, //0x28
pub filt_reg1: u16, //0x4E
pub filt_reg2: u16, //0x4F
}
fn one_clock_cycle(channel: usize) {
unsafe {
(CXP[channel].downconn_pll_dclk_write)(1);
(CXP[channel].downconn_pll_dclk_write)(0);
}
}
fn set_addr(channel: usize, address: u8) {
unsafe {
(CXP[channel].downconn_pll_daddr_write)(address);
}
}
fn set_data(channel: usize, value: u16) {
unsafe {
(CXP[channel].downconn_pll_din_write)(value);
}
}
fn set_enable(channel: usize, en: bool) {
unsafe {
let val = if en { 1 } else { 0 };
(CXP[channel].downconn_pll_den_write)(val);
}
}
fn set_write_enable(channel: usize, en: bool) {
unsafe {
let val = if en { 1 } else { 0 };
(CXP[channel].downconn_pll_dwen_write)(val);
}
}
fn get_data(channel: usize) -> u16 {
unsafe { (CXP[channel].downconn_pll_dout_read)() }
}
fn drp_ready(channel: usize) -> bool {
unsafe { (CXP[channel].downconn_pll_dready_read)() == 1 }
}
#[allow(dead_code)]
fn read(channel: usize, address: u8) -> u16 {
set_addr(channel, address);
set_enable(channel, true);
// Set DADDR on the mmcm and assert DEN for one clock cycle
one_clock_cycle(channel);
set_enable(channel, false);
while !drp_ready(channel) {
// keep the clock signal until data is ready
one_clock_cycle(channel);
}
get_data(channel)
}
fn write(channel: usize, address: u8, value: u16) {
set_addr(channel, address);
set_data(channel, value);
set_write_enable(channel, true);
set_enable(channel, true);
// Set DADDR, DI on the mmcm and assert DWE, DEN for one clock cycle
one_clock_cycle(channel);
set_write_enable(channel, false);
set_enable(channel, false);
while !drp_ready(channel) {
// keep the clock signal until write is finished
one_clock_cycle(channel);
}
}
fn reset(channel: usize, rst: bool) {
unsafe {
let val = if rst { 1 } else { 0 };
(CXP[channel].downconn_txpll_reset_write)(val)
}
}
pub fn setup(settings: PLLSetting) {
for channel in 0..CHANNEL_LEN {
if false {
info!("0x08 = {:#06x}", read(channel, 0x08));
info!("0x09 = {:#06x}", read(channel, 0x09));
info!("0x14 = {:#06x}", read(channel, 0x14));
info!("0x15 = {:#06x}", read(channel, 0x15));
info!("0x16 = {:#06x}", read(channel, 0x16));
info!("0x18 = {:#06x}", read(channel, 0x18));
info!("0x19 = {:#06x}", read(channel, 0x19));
info!("0x1A = {:#06x}", read(channel, 0x1A));
info!("0x28 = {:#06x}", read(channel, 0x28));
info!("0x4E = {:#06x}", read(channel, 0x4E));
info!("0x4F = {:#06x}", read(channel, 0x4F));
} else {
// Based on "DRP State Machine" from XAPP888
// hold reset HIGH during pll config
reset(channel, true);
write(channel, 0x08, settings.clkout0_reg1);
write(channel, 0x09, settings.clkout0_reg2);
write(channel, 0x14, settings.clkfbout_reg1);
write(channel, 0x15, settings.clkfbout_reg2);
write(channel, 0x16, settings.div_reg);
write(channel, 0x18, settings.lock_reg1);
write(channel, 0x19, settings.lock_reg2);
write(channel, 0x1A, settings.lock_reg3);
write(channel, 0x28, settings.power_reg);
write(channel, 0x4E, settings.filt_reg1);
write(channel, 0x4F, settings.filt_reg2);
reset(channel, false);
info!("waiting for PLL of txusrclk to lock...");
while unsafe { (CXP[channel].downconn_txpll_locked_read)() == 0 } {}
info!("txusrclk locked :D");
}
}
}
pub fn get_txusrclk_config(speed: CXP_SPEED) -> PLLSetting {
match speed {
CXP_SPEED::CXP_1 => {
// CLKFBOUT_MULT = 8, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 32
// TXUSRCLK=62.5MHz
PLLSetting {
clkout0_reg1: 0x1410, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1104, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x5801, //0x19
lock_reg3: 0xdbe9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9808, //0x4E
filt_reg2: 0x9100, //0x4F
}
}
CXP_SPEED::CXP_2 => {
// CLKFBOUT_MULT = 8, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 16
// TXUSRCLK=62.5MHz
PLLSetting {
clkout0_reg1: 0x1208, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1104, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x5801, //0x19
lock_reg3: 0xdbe9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9808, //0x4E
filt_reg2: 0x9100, //0x4F
}
}
CXP_SPEED::CXP_3 => {
// CLKFBOUT_MULT = 10, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 16
// TXUSRCLK=78.125MHz
PLLSetting {
clkout0_reg1: 0x1208, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1145, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x7001, //0x19
lock_reg3: 0xf3e9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9908, //0x4E
filt_reg2: 0x1900, //0x4F
}
}
CXP_SPEED::CXP_5 => {
// CLKFBOUT_MULT = 8, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 8
// TXUSRCLK=125MHz
PLLSetting {
clkout0_reg1: 0x1104, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1104, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x5801, //0x19
lock_reg3: 0xdbe9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9808, //0x4E
filt_reg2: 0x9100, //0x4F
}
}
CXP_SPEED::CXP_6 => {
// CLKFBOUT_MULT = 10, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 8
// TXUSRCLK=156.25MHz
PLLSetting {
clkout0_reg1: 0x1104, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1145, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x7001, //0x19
lock_reg3: 0xf3e9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9908, //0x4E
filt_reg2: 0x1900, //0x4F
}
}
CXP_SPEED::CXP_10 => {
// CLKFBOUT_MULT = 8, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 4
// TXUSRCLK=250MHz
PLLSetting {
clkout0_reg1: 0x1082, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1104, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x5801, //0x19
lock_reg3: 0xdbe9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9808, //0x4E
filt_reg2: 0x9100, //0x4F
}
}
CXP_SPEED::CXP_12 => {
// CLKFBOUT_MULT = 10, DIVCLK_DIVIDE = 1 , CLKOUT0_DIVIDE = 4
// TXUSRCLK=312.5MHz
PLLSetting {
clkout0_reg1: 0x1082, //0x08
clkout0_reg2: 0x0000, //0x09
clkfbout_reg1: 0x1145, //0x14
clkfbout_reg2: 0x0000, //0x15
div_reg: 0x1041, //0x16
lock_reg1: 0x03e8, //0x18
lock_reg2: 0x7001, //0x19
lock_reg3: 0xf3e9, //0x1A
power_reg: 0x0000, //0x28
filt_reg1: 0x9908, //0x4E
filt_reg2: 0x1900, //0x4F
}
}
}
}
}
}

View File

@ -0,0 +1,608 @@
use core::slice;
use byteorder::{ByteOrder, NetworkEndian};
use core_io::{Error as IoError, Read, Write};
use crc::crc32::checksum_ieee;
use io::Cursor;
use libboard_zynq::println;
use crate::{mem::mem::{CXP_LOOPBACK_MEM, CXP_RX_MEM, CXP_TX_MEM},
pl::{csr, csr::CXP}};
const BUF_LEN: usize = 0x800;
const DATA_MAXSIZE: usize = 48;
const EV_MAXSIZE: usize = 253;
#[derive(Debug)]
pub enum Error {
BufferError,
CorruptedPacket,
CtrlAckError(u8),
LinkDown,
UnknownPacket(u8),
}
impl From<IoError> for Error {
fn from(_: IoError) -> Error {
Error::BufferError
}
}
// Section 9.2.2.2 (CXP-001-2021)
// Only Control packet need CRC32 appended in the end of the packet
// CoaXpress use the polynomial of IEEE-802.3 (Ethernet) CRC but the checksum calculation is different
fn get_cxp_crc(bytes: &[u8]) -> u32 {
(!checksum_ieee(bytes)).swap_bytes()
}
trait CxpRead {
fn read_u8(&mut self) -> Result<u8, Error>;
fn read_u16(&mut self) -> Result<u16, Error>;
fn read_u32(&mut self) -> Result<u32, Error>;
fn read_u64(&mut self) -> Result<u64, Error>;
fn read_exact_4x(&mut self, buf: &mut [u8]) -> Result<(), Error>;
fn read_4x_u8(&mut self) -> Result<u8, Error>;
fn read_4x_u16(&mut self) -> Result<u16, Error>;
fn read_4x_u32(&mut self) -> Result<u32, Error>;
fn read_4x_u64(&mut self) -> Result<u64, Error>;
}
impl<Cursor: Read> CxpRead for Cursor {
fn read_u8(&mut self) -> Result<u8, Error> {
let mut bytes = [0; 1];
self.read_exact(&mut bytes)?;
Ok(bytes[0])
}
fn read_u16(&mut self) -> Result<u16, Error> {
let mut bytes = [0; 2];
self.read_exact(&mut bytes)?;
Ok(NetworkEndian::read_u16(&bytes))
}
fn read_u32(&mut self) -> Result<u32, Error> {
let mut bytes = [0; 4];
self.read_exact(&mut bytes)?;
Ok(NetworkEndian::read_u32(&bytes))
}
fn read_u64(&mut self) -> Result<u64, Error> {
let mut bytes = [0; 8];
self.read_exact(&mut bytes)?;
Ok(NetworkEndian::read_u64(&bytes))
}
fn read_exact_4x(&mut self, buf: &mut [u8]) -> Result<(), Error> {
for byte in buf {
// Section 9.2.2.1 (CXP-001-2021)
// decoder should immune to single bit errors when handling 4x duplicated characters
let a = self.read_u8()?;
let b = self.read_u8()?;
let c = self.read_u8()?;
let d = self.read_u8()?;
// vote and return majority
*byte = a & b & c | a & b & d | a & c & d | b & c & d;
}
Ok(())
}
fn read_4x_u8(&mut self) -> Result<u8, Error> {
let mut bytes = [0; 1];
self.read_exact_4x(&mut bytes)?;
Ok(bytes[0])
}
fn read_4x_u16(&mut self) -> Result<u16, Error> {
let mut bytes = [0; 2];
self.read_exact_4x(&mut bytes)?;
Ok(NetworkEndian::read_u16(&bytes))
}
fn read_4x_u32(&mut self) -> Result<u32, Error> {
let mut bytes = [0; 4];
self.read_exact_4x(&mut bytes)?;
Ok(NetworkEndian::read_u32(&bytes))
}
fn read_4x_u64(&mut self) -> Result<u64, Error> {
let mut bytes = [0; 6];
self.read_exact_4x(&mut bytes)?;
Ok(NetworkEndian::read_u64(&bytes))
}
}
#[derive(Debug)]
pub enum NameSpace {
GenICam,
DeviceSpecific,
}
#[derive(Debug)]
pub enum DownConnPacket {
CtrlReply {
tag: Option<u8>,
length: u32,
data: [u8; DATA_MAXSIZE],
},
CtrlDelay {
tag: Option<u8>,
length: u32,
time: [u8; DATA_MAXSIZE],
},
CtrlAck {
tag: Option<u8>,
},
Event {
conn_id: u32,
packet_tag: u8,
length: u16,
ev_size: u16,
namespace: NameSpace,
event_id: u16,
timestamp: u64,
ev: [u8; EV_MAXSIZE],
},
}
impl DownConnPacket {
pub fn read_from(reader: &mut Cursor<&mut [u8]>, packet_type: u8) -> Result<Self, Error> {
match packet_type {
0x03 => DownConnPacket::get_ctrl_packet(reader, false),
0x06 => DownConnPacket::get_ctrl_packet(reader, true),
0x07 => DownConnPacket::get_event_packet(reader),
_ => Err(Error::UnknownPacket(packet_type)),
}
}
fn get_ctrl_packet(reader: &mut Cursor<&mut [u8]>, with_tag: bool) -> Result<Self, Error> {
let mut tag: Option<u8> = None;
if with_tag {
tag = Some(reader.read_4x_u8()?);
}
let ackcode = reader.read_4x_u8()?;
match ackcode {
0x00 | 0x04 => {
let length = reader.read_u32()?;
let mut data: [u8; DATA_MAXSIZE] = [0; DATA_MAXSIZE];
reader.read(&mut data[0..length as usize])?;
let checksum = get_cxp_crc(&reader.get_ref()[0..reader.position()]);
if reader.read_u32()? != checksum {
return Err(Error::CorruptedPacket);
}
if ackcode == 0x00 {
return Ok(DownConnPacket::CtrlReply { tag, length, data });
} else {
return Ok(DownConnPacket::CtrlDelay {
tag,
length,
time: data,
});
}
}
0x01 => return Ok(DownConnPacket::CtrlAck { tag }),
_ => return Err(Error::CtrlAckError(ackcode)),
}
}
fn get_event_packet(reader: &mut Cursor<&mut [u8]>) -> Result<Self, Error> {
let conn_id = reader.read_4x_u32()?;
let packet_tag = reader.read_4x_u8()?;
let length = reader.read_4x_u16()?;
let ev_size = reader.read_u16()?;
if ev_size + 3 != length {
println!("length mismatch");
return Err(Error::CorruptedPacket);
}
let mut bytes = [0; 2];
reader.read_exact(&mut bytes)?;
let namespace_bits = (bytes[0] & 0xC0) >> 6;
let namespace = match namespace_bits {
0 => NameSpace::GenICam,
2 => NameSpace::DeviceSpecific,
_ => {
println!("namespace = {} error", namespace_bits);
return Err(Error::CorruptedPacket);
}
};
let event_id = (bytes[0] & 0xF) as u16 | (bytes[1] as u16);
let timestamp = reader.read_u64()?;
let mut ev: [u8; EV_MAXSIZE] = [0; EV_MAXSIZE];
reader.read(&mut ev[0..ev_size as usize])?;
let checksum = get_cxp_crc(&reader.get_ref()[0..reader.position()]);
if reader.read_u32()? != checksum {
println!("crc error");
return Err(Error::CorruptedPacket);
}
Ok(DownConnPacket::Event {
conn_id,
packet_tag,
length,
ev_size,
namespace,
event_id,
timestamp,
ev,
})
}
}
pub fn receive(channel: usize) -> Result<Option<DownConnPacket>, Error> {
unsafe {
if (CXP[channel].downconn_pending_packet_read)() == 1 {
let read_buffer_ptr = (CXP[channel].downconn_read_ptr_read)() as usize;
println!("buffer ptr = {}", read_buffer_ptr);
let ptr = (CXP_RX_MEM[channel].base + read_buffer_ptr * BUF_LEN) as *mut u32;
let mut reader = Cursor::new(slice::from_raw_parts_mut(ptr as *mut u8, BUF_LEN));
let packet_type = (CXP[channel].downconn_packet_type_read)();
let packet = DownConnPacket::read_from(&mut reader, packet_type);
println!("{:X?}", packet);
(CXP[channel].downconn_pending_packet_write)(1);
Ok(Some(packet?))
} else {
Ok(None)
}
}
}
trait CxpWrite {
fn write_all_4x(&mut self, buf: &[u8]) -> Result<(), Error>;
fn write_4x_u8(&mut self, value: u8) -> Result<(), Error>;
fn write_4x_u16(&mut self, value: u16) -> Result<(), Error>;
fn write_4x_u32(&mut self, value: u32) -> Result<(), Error>;
fn write_4x_u64(&mut self, value: u64) -> Result<(), Error>;
fn write_u32(&mut self, value: u32) -> Result<(), Error>;
}
impl<Cursor: Write> CxpWrite for Cursor {
fn write_all_4x(&mut self, buf: &[u8]) -> Result<(), Error> {
for byte in buf {
self.write_all(&[*byte; 4])?;
}
Ok(())
}
fn write_4x_u8(&mut self, value: u8) -> Result<(), Error> {
self.write_all_4x(&[value])
}
fn write_4x_u16(&mut self, value: u16) -> Result<(), Error> {
let mut bytes = [0; 2];
NetworkEndian::write_u16(&mut bytes, value);
self.write_all_4x(&bytes)
}
fn write_4x_u32(&mut self, value: u32) -> Result<(), Error> {
let mut bytes = [0; 4];
NetworkEndian::write_u32(&mut bytes, value);
self.write_all_4x(&bytes)
}
fn write_4x_u64(&mut self, value: u64) -> Result<(), Error> {
let mut bytes = [0; 6];
NetworkEndian::write_u64(&mut bytes, value);
self.write_all_4x(&bytes)
}
fn write_u32(&mut self, value: u32) -> Result<(), Error> {
let mut bytes = [0; 4];
NetworkEndian::write_u32(&mut bytes, value);
self.write_all(&bytes)?;
Ok(())
}
}
#[derive(Debug)]
pub enum UpConnPacket {
CtrlRead {
tag: Option<u8>,
addr: u32,
length: u8,
},
CtrlWrite {
tag: Option<u8>,
addr: u32,
length: u8,
data: [u8; DATA_MAXSIZE],
}, // max register size is 8 bytes
EventAck {
packet_tag: u8,
},
TestPacket,
// DEBUG: Loopback message
CtrlAckLoopback {
ackcode: u8,
length: u8,
data: [u8; DATA_MAXSIZE],
},
Event {
conn_id: u32,
packet_tag: u8,
length: u16,
event_size: u16,
namespace: u8,
event_id: u16,
timestamp: u64,
data: [u8; 253],
},
}
impl UpConnPacket {
pub fn write_to(&self, writer: &mut Cursor<&mut [u8]>) -> Result<(), Error> {
match *self {
UpConnPacket::CtrlRead { tag, addr, length } => {
match tag {
Some(t) => {
writer.write_4x_u8(0x05)?;
writer.write_4x_u8(t)?;
}
None => {
writer.write_4x_u8(0x02)?;
}
}
writer.write_all(&[0x00, 0x00, 0x00, length])?;
writer.write_u32(addr)?;
// Section 9.6.2 (CXP-001-2021)
// only bytes after the first 4 are used in calculating the checksum
let checksum = get_cxp_crc(&writer.get_ref()[4..writer.position()]);
writer.write_u32(checksum)?;
}
UpConnPacket::CtrlWrite {
tag,
addr,
length,
data,
} => {
match tag {
Some(t) => {
writer.write_4x_u8(0x05)?;
writer.write_4x_u8(t)?;
}
None => {
writer.write_4x_u8(0x02)?;
}
}
writer.write_all(&[0x01, 0x00, 0x00, length])?;
writer.write_u32(addr)?;
writer.write_all(&data[0..length as usize])?;
// Section 9.6.2 (CXP-001-2021)
// only bytes after the first 4 are used in calculating the checksum
let checksum = get_cxp_crc(&writer.get_ref()[4..writer.position()]);
writer.write_u32(checksum)?;
}
UpConnPacket::EventAck { packet_tag } => {
writer.write_4x_u8(0x08)?;
writer.write_4x_u8(packet_tag)?;
}
// DEBUG: Loopback message
UpConnPacket::CtrlAckLoopback { ackcode, length, data } => {
writer.write_4x_u8(0x03)?;
writer.write_4x_u8(ackcode)?;
if ackcode == 0x00 || ackcode == 0x04 {
writer.write_all(&[0x00, 0x00, 0x00, length])?;
writer.write_all(&data[0..length as usize])?;
}
let checksum = get_cxp_crc(&writer.get_ref()[4..writer.position()]);
writer.write_u32(checksum)?;
}
UpConnPacket::Event {
conn_id,
packet_tag,
length,
event_size,
namespace,
event_id,
timestamp,
data,
} => {
// event packet header
writer.write_4x_u8(0x07)?;
writer.write_4x_u32(conn_id)?;
writer.write_4x_u8(packet_tag)?;
writer.write_4x_u16(length)?;
// event message
let ev_size = event_size.to_be_bytes();
let p2: u8 = ((namespace & 0b11) << 6) | ((event_id & 0xF00) >> 8) as u8;
let p3: u8 = (event_id & 0xFF) as u8;
writer.write_all(&[ev_size[0], ev_size[1], p2, p3])?;
writer.write_all(&timestamp.to_be_bytes())?;
writer.write_all(&data[0..event_size as usize])?;
let checksum = get_cxp_crc(&writer.get_ref()[4..writer.position()]);
writer.write_u32(checksum)?;
}
_ => {}
}
Ok(())
}
}
pub fn send(channel: usize, packet: &UpConnPacket) -> Result<(), Error> {
if unsafe { csr::cxp_phys::upconn_tx_enable_read() } == 0 {
Err(Error::LinkDown)?
}
match *packet {
UpConnPacket::TestPacket => send_test_packet(channel),
_ => send_data_packet(channel, packet),
}
}
fn send_data_packet(channel: usize, packet: &UpConnPacket) -> Result<(), Error> {
unsafe {
while (CXP[channel].upconn_bootstrap_tx_busy_read)() == 1 {}
let ptr = CXP_TX_MEM[0].base as *mut u32;
let mut writer = Cursor::new(slice::from_raw_parts_mut(ptr as *mut u8, BUF_LEN));
packet.write_to(&mut writer)?;
println!("TX MEM after writing");
print_packet(&writer.get_ref()[0..40]);
(CXP[channel].upconn_bootstrap_tx_word_len_write)(writer.position() as u16 / 4);
(CXP[channel].upconn_bootstrap_tx_write)(1);
}
Ok(())
}
fn send_test_packet(channel: usize) -> Result<(), Error> {
unsafe {
while (CXP[channel].upconn_bootstrap_tx_busy_read)() == 1 {}
(CXP[channel].upconn_bootstrap_tx_testseq_write)(1);
}
Ok(())
}
pub fn write_u32(channel: u8, addr: u32, val: u32) -> Result<(), Error> {
// TODO: add tags after connection & verify it's CXPv2
let mut data: [u8; DATA_MAXSIZE] = [0; DATA_MAXSIZE];
NetworkEndian::write_u32(&mut data[..4], val);
send(
channel as usize,
&UpConnPacket::CtrlWrite {
tag: None,
addr,
length: 4,
data,
},
)?;
Ok(())
}
pub fn read_u32(channel: u8, addr: u32) -> Result<(), Error> {
// TODO: add tags after connection & verify it's CXPv2
send(
channel as usize,
&UpConnPacket::CtrlRead {
tag: None,
addr,
length: 4,
},
)?;
Ok(())
}
// pub fn write_u64(channel: usize, addr: u32, data: u64) -> Result<(), Error> {
// let mut data_slice: [u8; DATA_MAXSIZE] = [0; DATA_MAXSIZE];
// data_slice[..8].clone_from_slice(&data.to_be_bytes());
// send(
// channel,
// &UpConnPacket::CtrlWrite {
// tag: None,
// addr,
// length: 8,
// data: data_slice,
// },
// )?;
// Ok(())
// }
//
// DEBUG: use only
//
//
//
pub fn print_packet(pak: &[u8]) {
println!("pak = [");
for i in 0..(pak.len() / 4) {
println!(
"{:#03} {:#04X} {:#04X} {:#04X} {:#04X},",
i + 1,
pak[i * 4],
pak[i * 4 + 1],
pak[i * 4 + 2],
pak[i * 4 + 3]
)
}
println!("]");
println!("============================================");
}
pub fn print_packetu32(pak: &[u32], k: &[u8]) {
println!("pak = [");
for i in 0..(pak.len()) {
let data: [u8; 4] = pak[i].to_le_bytes();
println!(
"{:#03} {:#04X} {:#04X} {:#04X} {:#04X} | K {:04b},",
i + 1,
data[0],
data[1],
data[2],
data[3],
k[i],
)
}
println!("]");
println!("============================================");
}
pub fn downconn_debug_send(channel: usize, packet: &UpConnPacket) -> Result<(), Error> {
unsafe {
while (CXP[channel].downconn_bootstrap_loopback_tx_busy_read)() == 1 {}
let ptr = CXP_LOOPBACK_MEM[0].base as *mut u32;
let mut writer = Cursor::new(slice::from_raw_parts_mut(ptr as *mut u8, BUF_LEN));
packet.write_to(&mut writer)?;
(CXP[channel].downconn_bootstrap_loopback_tx_word_len_write)(writer.position() as u16 / 4);
(CXP[channel].downconn_bootstrap_loopback_tx_write)(1);
}
Ok(())
}
pub fn downconn_debug_mem_print(channel: usize) {
unsafe {
let ptr = CXP_RX_MEM[channel].base as *mut u32;
let arr = slice::from_raw_parts_mut(ptr as *mut u8, BUF_LEN * 4);
print_packet(arr);
}
}
pub fn downconn_debug_send_trig_ack(channel: usize) {
unsafe {
(CXP[channel].downconn_ack_write)(1);
}
}
pub fn downconn_send_test_packet(channel: usize) {
unsafe {
while (CXP[channel].downconn_bootstrap_loopback_tx_busy_read)() == 1 {}
(CXP[channel].downconn_bootstrap_loopback_tx_testseq_write)(1);
}
}

View File

@ -0,0 +1,42 @@
use embedded_hal::prelude::_embedded_hal_blocking_delay_DelayUs;
use libboard_zynq::timer::GlobalTimer;
pub use crate::cxp_proto;
use crate::pl::{csr, csr::CXP};
pub fn tx_test(channel: usize, timer: &mut GlobalTimer) {
const LEN: usize = 4 * 30;
let mut pak_arr: [u8; LEN] = [0; LEN];
unsafe {
// cxp_proto::read_u32(channel, 0x00).expect("Cannot Write CoaXpress Register");
// cxp_proto::write_u64(channel, 0x00, 0x01);
// cxp_proto::send(channel, &cxp_proto::Packet::EventAck { packet_tag: 0x04 }).expect("Cannot send CoaXpress packet");
// cxp_proto::send(channel, &cxp_proto::Packet::TestPacket).expect("Cannot send CoaXpress packet");
timer.delay_us(2); // send one word
// DEBUG: Trigger packet
(CXP[channel].upconn_trig_delay_write)(0x86);
(CXP[channel].upconn_linktrigger_write)(0x00);
(CXP[channel].upconn_trig_stb_write)(1); // send trig
// DEBUG: Trigger ACK packet
// CXP[channel].upconn_ack_write(1);
timer.delay_us(20);
csr::cxp_phys::upconn_tx_enable_write(0);
// Collect data
let mut i: usize = 0;
while csr::cxp_phys::upconn_tx0_debug_buf_dout_valid_read() == 1 {
pak_arr[i] = csr::cxp_phys::upconn_tx0_debug_buf_dout_pak_read();
csr::cxp_phys::upconn_tx0_debug_buf_inc_write(1);
i += 1;
if i == LEN {
break;
}
}
cxp_proto::print_packet(&pak_arr);
}
}

View File

@ -3,6 +3,7 @@
#![feature(naked_functions)]
#![feature(asm)]
extern crate byteorder;
extern crate core_io;
extern crate crc;
extern crate embedded_hal;
@ -25,7 +26,7 @@ pub mod fiq;
#[cfg(feature = "target_kasli_soc")]
pub mod io_expander;
pub mod logger;
#[cfg(has_drtio)]
#[cfg(any(has_drtio, has_cxp_phys))]
#[rustfmt::skip]
#[path = "../../../build/mem.rs"]
pub mod mem;
@ -42,6 +43,15 @@ pub mod si5324;
pub mod si549;
use core::{cmp, str};
#[cfg(has_cxp_phys)]
pub mod cxp_downconn;
#[cfg(has_cxp_phys)]
pub mod cxp_upconn;
pub mod cxp_proto;
pub mod cxp_phys;
pub fn identifier_read(buf: &mut [u8]) -> &str {
unsafe {
pl::csr::identifier::address_write(0);

View File

@ -34,7 +34,7 @@ io = { path = "../libio" }
libboard_artiq = { path = "../libboard_artiq" }
[dependencies.nalgebra]
git = "https://git.m-labs.hk/M-labs/nalgebra.git"
git = "https://git.m-labs.hk/M-Labs/nalgebra.git"
rev = "dd00f9b"
default-features = false
features = ["libm", "alloc"]

View File

@ -0,0 +1,11 @@
use libboard_artiq::cxp_proto;
pub extern "C" fn cxp_readu32(channel: i32, addr: i32) {
// TODO: use artiq_raise like i2c?
cxp_proto::read_u32(channel as u8, addr as u32).expect("CXP transmission failed");
}
pub extern "C" fn cxp_writeu32(channel: i32, addr: i32, val: i32) {
// TODO: use artiq_raise like i2c?
cxp_proto::write_u32(channel as u8, addr as u32, val as u32).expect("CXP transmission failed");
}

View File

@ -15,7 +15,7 @@
use core::mem;
use core_io::Error as ReadError;
use cslice::CSlice;
use cslice::{AsCSlice, CSlice};
use dwarf::eh::{self, EHAction, EHContext};
use io::{Cursor, ProtoRead};
use libc::{c_int, c_void, uintptr_t};
@ -222,8 +222,6 @@ pub unsafe fn artiq_personality(
}
pub unsafe extern "C" fn raise(exception: *const Exception) -> ! {
use cslice::AsCSlice;
let count = EXCEPTION_BUFFER.exception_count;
let stack = &mut EXCEPTION_BUFFER.exception_stack;
let diff = exception as isize - EXCEPTION_BUFFER.exceptions.as_ptr() as isize;
@ -477,20 +475,28 @@ extern "C" fn stop_fn(
}
}
// Must be kept in sync with preallocate_runtime_exception_names() in artiq/language/embedding_map.py
static EXCEPTION_ID_LOOKUP: [(&str, u32); 12] = [
("RuntimeError", 0),
("RTIOUnderflow", 1),
("RTIOOverflow", 2),
("RTIODestinationUnreachable", 3),
("DMAError", 4),
("I2CError", 5),
("CacheError", 6),
("SPIError", 7),
("ZeroDivisionError", 8),
("IndexError", 9),
("UnwrapNoneError", 10),
("SubkernelError", 11),
// Must be kept in sync with preallocate_runtime_exception_names() in `artiq.compiler.embedding`
static EXCEPTION_ID_LOOKUP: [(&str, u32); 20] = [
("RTIOUnderflow", 0),
("RTIOOverflow", 1),
("RTIODestinationUnreachable", 2),
("DMAError", 3),
("I2CError", 4),
("CacheError", 5),
("SPIError", 6),
("SubkernelError", 7),
("AssertionError", 8),
("AttributeError", 9),
("IndexError", 10),
("IOError", 11),
("KeyError", 12),
("NotImplementedError", 13),
("OverflowError", 14),
("RuntimeError", 15),
("TimeoutError", 16),
("TypeError", 17),
("ValueError", 18),
("ZeroDivisionError", 19),
];
pub fn get_exception_id(name: &str) -> u32 {
@ -525,3 +531,29 @@ macro_rules! artiq_raise {
}};
($name:expr, $message:expr) => {{ artiq_raise!($name, $message, 0, 0, 0) }};
}
/// Takes as input exception id from host
/// Generates a new exception with:
/// * `id` set to `exn_id`
/// * `message` set to corresponding exception name from `EXCEPTION_ID_LOOKUP`
///
/// The message is matched on host to ensure correct exception is being referred
/// This test checks the synchronization of exception ids for runtime errors
#[no_mangle]
pub extern "C" fn test_exception_id_sync(exn_id: u32) {
let message = EXCEPTION_ID_LOOKUP
.iter()
.find_map(|&(name, id)| if id == exn_id { Some(name) } else { None })
.unwrap_or("unallocated internal exception id");
let exn = Exception {
id: exn_id,
file: file!().as_c_slice(),
line: 0,
column: 0,
function: "test_exception_id_sync".as_c_slice(),
message: message.as_c_slice(),
param: [0, 0, 0],
};
unsafe { raise(&exn) };
}

View File

@ -11,6 +11,8 @@ use super::{cache,
core1::rtio_get_destination_status,
dma, linalg,
rpc::{rpc_recv, rpc_send, rpc_send_async}};
#[cfg(has_cxp_phys)]
use crate::cxp;
use crate::{eh_artiq, i2c, rtio};
extern "C" {
@ -126,6 +128,12 @@ pub fn resolve(required: &[u8]) -> Option<u32> {
#[cfg(has_drtio)]
api!(subkernel_await_message = subkernel::await_message),
// CoaXPress
#[cfg(has_cxp_phys)]
api!(cxp_readu32 = cxp::cxp_readu32),
#[cfg(has_cxp_phys)]
api!(cxp_writeu32 = cxp::cxp_writeu32),
// Double-precision floating-point arithmetic helper functions
// RTABI chapter 4.1.2, Table 2
api!(__aeabi_dadd),
@ -332,6 +340,13 @@ pub fn resolve(required: &[u8]) -> Option<u32> {
api!(sp_linalg_schur = linalg::sp_linalg_schur),
api!(sp_linalg_hessenberg = linalg::sp_linalg_hessenberg),
/*
* syscall for unit tests
* Used in `artiq.tests.coredevice.test_exceptions.ExceptionTest.test_raise_exceptions_kernel`
* This syscall checks that the exception IDs used in the Python `EmbeddingMap` (in `artiq.language.embedding`)
* match the `EXCEPTION_ID_LOOKUP` defined in the firmware (`libksupport::src::eh_artiq`)
*/
api!(test_exception_id_sync = eh_artiq::test_exception_id_sync)
];
api.iter()
.find(|&&(exported, _)| exported.as_bytes() == required)

View File

@ -55,8 +55,8 @@ pub unsafe extern "C" fn np_linalg_cholesky(mat1: *mut InputMatrix, out: *mut In
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_slice = slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]);
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix1.cholesky();
@ -93,9 +93,9 @@ pub unsafe extern "C" fn np_linalg_qr(mat1: *mut InputMatrix, out_q: *mut InputM
let outq_dim = (*out_q).get_dims();
let outr_dim = (*out_r).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, outq_dim[0] * outq_dim[1]) };
let out_r_slice = unsafe { slice::from_raw_parts_mut(out_r.data, outr_dim[0] * outr_dim[1]) };
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let out_q_slice = slice::from_raw_parts_mut(out_q.data, outq_dim[0] * outq_dim[1]);
let out_r_slice = slice::from_raw_parts_mut(out_r.data, outr_dim[0] * outr_dim[1]);
// Refer to https://github.com/dimforge/nalgebra/issues/735
let matrix1 = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
@ -138,10 +138,10 @@ pub unsafe extern "C" fn np_linalg_svd(
let outs_dim = (*outs).get_dims();
let outvh_dim = (*outvh).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(outu.data, outu_dim[0] * outu_dim[1]) };
let out_s_slice = unsafe { slice::from_raw_parts_mut(outs.data, outs_dim[0]) };
let out_vh_slice = unsafe { slice::from_raw_parts_mut(outvh.data, outvh_dim[0] * outvh_dim[1]) };
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let out_u_slice = slice::from_raw_parts_mut(outu.data, outu_dim[0] * outu_dim[1]);
let out_s_slice = slice::from_raw_parts_mut(outs.data, outs_dim[0]);
let out_vh_slice = slice::from_raw_parts_mut(outvh.data, outvh_dim[0] * outvh_dim[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let result = matrix.svd(true, true);
@ -180,8 +180,8 @@ pub unsafe extern "C" fn np_linalg_inv(mat1: *mut InputMatrix, out: *mut InputMa
}
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_slice = slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]);
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_invertible() {
@ -210,8 +210,8 @@ pub unsafe extern "C" fn np_linalg_pinv(mat1: *mut InputMatrix, out: *mut InputM
}
let dim1 = (*mat1).get_dims();
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_slice = slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]);
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let svd = matrix.svd(true, true);
@ -247,11 +247,11 @@ pub unsafe extern "C" fn np_linalg_matrix_power(mat1: *mut InputMatrix, mat2: *m
}
let dim1 = (*mat1).get_dims();
let power = unsafe { slice::from_raw_parts_mut(mat2.data, 1) };
let power = slice::from_raw_parts_mut(mat2.data, 1);
let power = power[0];
let outdim = out.get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_slice = slice::from_raw_parts_mut(out.data, outdim[0] * outdim[1]);
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let mut abs_power = power;
if abs_power < 0.0 {
abs_power = abs_power * -1.0;
@ -295,8 +295,8 @@ pub unsafe extern "C" fn np_linalg_det(mat1: *mut InputMatrix, out: *mut InputMa
);
}
let dim1 = (*mat1).get_dims();
let out_slice = unsafe { slice::from_raw_parts_mut(out.data, 1) };
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_slice = slice::from_raw_parts_mut(out.data, 1);
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
if !matrix.is_square() {
@ -334,9 +334,9 @@ pub unsafe extern "C" fn sp_linalg_lu(mat1: *mut InputMatrix, out_l: *mut InputM
let outl_dim = (*out_l).get_dims();
let outu_dim = (*out_u).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_l_slice = unsafe { slice::from_raw_parts_mut(out_l.data, outl_dim[0] * outl_dim[1]) };
let out_u_slice = unsafe { slice::from_raw_parts_mut(out_u.data, outu_dim[0] * outu_dim[1]) };
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let out_l_slice = slice::from_raw_parts_mut(out_l.data, outl_dim[0] * outl_dim[1]);
let out_u_slice = slice::from_raw_parts_mut(out_u.data, outu_dim[0] * outu_dim[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (_, l, u) = matrix.lu().unpack();
@ -379,9 +379,9 @@ pub unsafe extern "C" fn sp_linalg_schur(mat1: *mut InputMatrix, out_t: *mut Inp
let out_t_dim = (*out_t).get_dims();
let out_z_dim = (*out_z).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_t_slice = unsafe { slice::from_raw_parts_mut(out_t.data, out_t_dim[0] * out_t_dim[1]) };
let out_z_slice = unsafe { slice::from_raw_parts_mut(out_z.data, out_z_dim[0] * out_z_dim[1]) };
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let out_t_slice = slice::from_raw_parts_mut(out_t.data, out_t_dim[0] * out_t_dim[1]);
let out_z_slice = slice::from_raw_parts_mut(out_z.data, out_z_dim[0] * out_z_dim[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (z, t) = matrix.schur().unpack();
@ -428,9 +428,9 @@ pub unsafe extern "C" fn sp_linalg_hessenberg(
let out_h_dim = (*out_h).get_dims();
let out_q_dim = (*out_q).get_dims();
let data_slice1 = unsafe { slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]) };
let out_h_slice = unsafe { slice::from_raw_parts_mut(out_h.data, out_h_dim[0] * out_h_dim[1]) };
let out_q_slice = unsafe { slice::from_raw_parts_mut(out_q.data, out_q_dim[0] * out_q_dim[1]) };
let data_slice1 = slice::from_raw_parts_mut(mat1.data, dim1[0] * dim1[1]);
let out_h_slice = slice::from_raw_parts_mut(out_h.data, out_h_dim[0] * out_h_dim[1]);
let out_q_slice = slice::from_raw_parts_mut(out_q.data, out_q_dim[0] * out_q_dim[1]);
let matrix = DMatrix::from_row_slice(dim1[0], dim1[1], data_slice1);
let (q, h) = matrix.hessenberg().unpack();

View File

@ -35,6 +35,8 @@ pub mod rtio;
#[path = "../../../build/pl.rs"]
pub mod pl;
#[cfg(has_cxp_phys)]
pub mod cxp;
#[derive(Debug, Clone)]
pub struct RPCException {

View File

@ -705,14 +705,15 @@ async fn load_and_run_idle_kernel(
timer: GlobalTimer,
) {
info!("Loading idle kernel");
let res = handle_flash_kernel(buffer, control, up_destinations, aux_mutex, routing_table, timer).await;
let res = handle_flash_kernel(buffer, control, up_destinations, aux_mutex, routing_table, timer).await;
match res {
Err(_) => warn!("error loading idle kernel"),
_ => (),
}
info!("Running idle kernel");
let _ = handle_run_kernel(None, control, up_destinations, aux_mutex, routing_table, timer)
.await.map_err(|_| warn!("error running idle kernel"));
.await
.map_err(|_| warn!("error running idle kernel"));
info!("Idle kernel terminated");
}

View File

@ -17,7 +17,7 @@ use libasync::task;
use libboard_artiq::drtio_eem;
#[cfg(feature = "target_kasli_soc")]
use libboard_artiq::io_expander;
use libboard_artiq::{identifier_read, logger, pl};
use libboard_artiq::{cxp_downconn, cxp_phys, cxp_proto, cxp_upconn, identifier_read, logger, pl};
use libboard_zynq::{gic, mpcore, timer::GlobalTimer};
use libconfig::Config;
use libcortex_a9::l2c::enable_l2_cache;
@ -150,5 +150,15 @@ pub fn main_core0() {
task::spawn(ksupport::report_async_rtio_errors());
cxp_phys::setup(&mut timer);
cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_1);
// cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_2);
// cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_3);
// cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_5);
// cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_6);
// cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_10);
// cxp_downconn::loopback_testing(0, &mut timer, cxp_phys::CXP_SPEED::CXP_12);
// cxp_upconn::tx_test(0, &mut timer);
comms::main(timer, cfg);
}