nac3_sca/nac3core/src/codegen/expr.rs

390 lines
18 KiB
Rust
Raw Normal View History

2021-08-05 14:55:23 +08:00
use std::{convert::TryInto, iter::once};
use crate::top_level::{CodeGenContext, TopLevelDef};
use crate::typecheck::typedef::{Type, TypeEnum};
use inkwell::{types::BasicType, values::BasicValueEnum};
use itertools::{chain, izip, zip, Itertools};
use rustpython_parser::ast::{self, Boolop, Constant, Expr, ExprKind, Operator};
impl<'ctx> CodeGenContext<'ctx> {
fn get_attr_index(&mut self, ty: Type, attr: &str) -> usize {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id];
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
fields.iter().find_position(|x| x.0 == attr).unwrap().0
} else {
unreachable!()
};
index
}
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.top_level.primitives.bool));
let ty = self.ctx.bool_type();
ty.const_int(if *v { 1 } else { 0 }, false).into()
}
Constant::Int(v) => {
let ty = if self.unifier.unioned(ty, self.top_level.primitives.int32) {
self.ctx.i32_type()
} else if self.unifier.unioned(ty, self.top_level.primitives.int64) {
self.ctx.i64_type()
} else {
unreachable!();
};
ty.const_int(v.try_into().unwrap(), false).into()
}
Constant::Float(v) => {
assert!(self.unifier.unioned(ty, self.top_level.primitives.float));
let ty = self.ctx.f64_type();
ty.const_float(*v).into()
}
Constant::Tuple(v) => {
let ty = self.unifier.get_ty(ty);
let types =
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
let values = zip(types.into_iter(), v.iter())
.map(|(ty, v)| self.gen_const(v, ty))
.collect_vec();
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&types, false);
ty.const_named_struct(&values).into()
}
_ => unimplemented!(),
}
}
fn gen_int_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
Operator::Div => {
let float = self.ctx.f64_type();
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
self.builder.build_float_div(left, right, "fdiv").into()
}
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
// special implementation?
Operator::Pow => unimplemented!(),
Operator::MatMult => unreachable!(),
}
}
fn gen_float_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
(lhs, rhs)
{
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
Operator::FloorDiv => {
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
let floor_intrinsic =
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
let float = self.ctx.f64_type();
let fn_type = float.fn_type(&[float.into()], false);
self.module.add_function("llvm.floor.f64", fn_type, None)
});
self.builder
.build_call(floor_intrinsic, &[div.into()], "floor")
.try_as_basic_value()
.left()
.unwrap()
}
// special implementation?
_ => unimplemented!(),
}
}
pub fn gen_expr(&mut self, expr: &Expr<Option<Type>>) -> BasicValueEnum<'ctx> {
let zero = self.ctx.i32_type().const_int(0, false);
let primitives = &self.top_level.primitives;
match &expr.node {
ExprKind::Constant { value, .. } => {
let ty = expr.custom.clone().unwrap();
self.gen_const(value, ty)
}
ExprKind::Name { id, .. } => {
let ptr = self.var_assignment.get(id).unwrap();
self.builder.build_load(*ptr, "load")
}
ExprKind::List { elts, .. } => {
// this shall be optimized later for constant primitive lists...
let elements = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
let ty = if elements.is_empty() {
self.ctx.i32_type().into()
} else {
elements[0].get_type()
};
// this length includes the leading length element
let arr_ty = self.ctx.struct_type(
&[self.ctx.i32_type().into(), ty.array_type(elements.len() as u32).into()],
false,
);
let arr_ptr = self.builder.build_alloca(arr_ty, "tmparr");
unsafe {
let len_ptr = arr_ptr
.const_in_bounds_gep(&[zero, self.ctx.i32_type().const_int(0u64, false)]);
self.builder.build_store(
len_ptr,
self.ctx.i32_type().const_int(elements.len() as u64, false),
);
let arr_offset = self.ctx.i32_type().const_int(1, false);
for (i, v) in elements.iter().enumerate() {
let ptr = self.builder.build_in_bounds_gep(
arr_ptr,
&[zero, arr_offset, self.ctx.i32_type().const_int(i as u64, false)],
"arr_element",
);
self.builder.build_store(ptr, *v);
}
}
arr_ptr.into()
}
ExprKind::Tuple { elts, .. } => {
let element_val = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
let tuple_ty = self.ctx.struct_type(&element_ty, false);
let tuple_ptr = self.builder.build_alloca(tuple_ty, "tuple");
for (i, v) in element_val.into_iter().enumerate() {
unsafe {
let ptr = tuple_ptr.const_in_bounds_gep(&[
zero,
self.ctx.i32_type().const_int(i as u64, false),
]);
self.builder.build_store(ptr, v);
}
}
tuple_ptr.into()
}
ExprKind::Attribute { value, attr, .. } => {
// note that we would handle class methods directly in calls
let index = self.get_attr_index(value.custom.unwrap(), attr);
let val = self.gen_expr(value);
let ptr = if let BasicValueEnum::PointerValue(v) = val {
v
} else {
unreachable!();
};
unsafe {
let ptr = ptr.const_in_bounds_gep(&[
zero,
self.ctx.i32_type().const_int(index as u64, false),
]);
self.builder.build_load(ptr, "field")
}
}
ExprKind::BoolOp { op, values } => {
// requires conditional branches for short-circuiting...
let left = if let BasicValueEnum::IntValue(left) = self.gen_expr(&values[0]) {
left
} else {
unreachable!()
};
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = self.ctx.append_basic_block(current, "a");
let b_bb = self.ctx.append_basic_block(current, "b");
let cont_bb = self.ctx.append_basic_block(current, "cont");
self.builder.build_conditional_branch(left, a_bb, b_bb);
let (a, b) = match op {
Boolop::Or => {
self.builder.position_at_end(a_bb);
let a = self.ctx.bool_type().const_int(1, false);
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(b_bb);
let b = if let BasicValueEnum::IntValue(b) = self.gen_expr(&values[1]) {
b
} else {
unreachable!()
};
self.builder.build_unconditional_branch(cont_bb);
(a, b)
}
Boolop::And => {
self.builder.position_at_end(a_bb);
let a = if let BasicValueEnum::IntValue(a) = self.gen_expr(&values[1]) {
a
} else {
unreachable!()
};
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(b_bb);
let b = self.ctx.bool_type().const_int(0, false);
self.builder.build_unconditional_branch(cont_bb);
(a, b)
}
};
self.builder.position_at_end(cont_bb);
let phi = self.builder.build_phi(self.ctx.bool_type(), "phi");
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value()
}
ExprKind::BinOp { op, left, right } => {
let ty1 = self.unifier.get_representative(left.custom.unwrap());
let ty2 = self.unifier.get_representative(left.custom.unwrap());
let left = self.gen_expr(left);
let right = self.gen_expr(right);
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 != ty2 {
unimplemented!()
} else if [primitives.int32, primitives.int64].contains(&ty1) {
self.gen_int_ops(op, left, right)
} else if primitives.float == ty1 {
self.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
}
ExprKind::UnaryOp { op, operand } => {
let ty = self.unifier.get_representative(operand.custom.unwrap());
let val = self.gen_expr(operand);
if ty == primitives.bool {
let val =
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
match op {
ast::Unaryop::Invert | ast::Unaryop::Not => {
self.builder.build_not(val, "not").into()
}
_ => val.into(),
}
} else if [primitives.int32, primitives.int64].contains(&ty) {
let val =
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
match op {
ast::Unaryop::USub => self.builder.build_int_neg(val, "neg").into(),
ast::Unaryop::Invert => self.builder.build_not(val, "not").into(),
ast::Unaryop::Not => self
.builder
.build_int_compare(
inkwell::IntPredicate::EQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else if ty == primitives.float {
let val = if let BasicValueEnum::FloatValue(val) = val {
val
} else {
unreachable!()
};
match op {
ast::Unaryop::USub => self.builder.build_float_neg(val, "neg").into(),
ast::Unaryop::Not => self
.builder
.build_float_compare(
inkwell::FloatPredicate::OEQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else {
unimplemented!()
}
}
ExprKind::Compare { left, ops, comparators } => {
izip!(
chain(once(left.as_ref()), comparators.iter()),
comparators.iter(),
ops.iter(),
)
.fold(None, |prev, (lhs, rhs, op)| {
let ty = lhs.custom.unwrap();
let current = if [primitives.int32, primitives.int64, primitives.bool]
.contains(&ty)
{
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) =
(self.gen_expr(lhs), self.gen_expr(rhs))
{
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
_ => unreachable!(),
};
self.builder.build_int_compare(op, lhs, rhs, "cmp")
} else if ty == primitives.float {
let (lhs, rhs) = if let (
BasicValueEnum::FloatValue(lhs),
BasicValueEnum::FloatValue(rhs),
) = (self.gen_expr(lhs), self.gen_expr(rhs))
{
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
};
self.builder.build_float_compare(op, lhs, rhs, "cmp")
} else {
unimplemented!()
};
prev.map(|v| self.builder.build_and(v, current, "cmp")).or(Some(current))
})
.unwrap()
.into() // as there should be at least 1 element, it should never be none
}
_ => unimplemented!(),
}
}
}