implementing codegen

escape-analysis
pca006132 2021-08-05 14:55:23 +08:00
parent b01d0f6fbb
commit 29286210b5
10 changed files with 434 additions and 17 deletions

View File

@ -0,0 +1,389 @@
use std::{convert::TryInto, iter::once};
use crate::top_level::{CodeGenContext, TopLevelDef};
use crate::typecheck::typedef::{Type, TypeEnum};
use inkwell::{types::BasicType, values::BasicValueEnum};
use itertools::{chain, izip, zip, Itertools};
use rustpython_parser::ast::{self, Boolop, Constant, Expr, ExprKind, Operator};
impl<'ctx> CodeGenContext<'ctx> {
fn get_attr_index(&mut self, ty: Type, attr: &str) -> usize {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id];
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
fields.iter().find_position(|x| x.0 == attr).unwrap().0
} else {
unreachable!()
};
index
}
fn gen_const(&mut self, value: &Constant, ty: Type) -> BasicValueEnum<'ctx> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.top_level.primitives.bool));
let ty = self.ctx.bool_type();
ty.const_int(if *v { 1 } else { 0 }, false).into()
}
Constant::Int(v) => {
let ty = if self.unifier.unioned(ty, self.top_level.primitives.int32) {
self.ctx.i32_type()
} else if self.unifier.unioned(ty, self.top_level.primitives.int64) {
self.ctx.i64_type()
} else {
unreachable!();
};
ty.const_int(v.try_into().unwrap(), false).into()
}
Constant::Float(v) => {
assert!(self.unifier.unioned(ty, self.top_level.primitives.float));
let ty = self.ctx.f64_type();
ty.const_float(*v).into()
}
Constant::Tuple(v) => {
let ty = self.unifier.get_ty(ty);
let types =
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
let values = zip(types.into_iter(), v.iter())
.map(|(ty, v)| self.gen_const(v, ty))
.collect_vec();
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&types, false);
ty.const_named_struct(&values).into()
}
_ => unimplemented!(),
}
}
fn gen_int_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_int_add(lhs, rhs, "add").into(),
Operator::Sub => self.builder.build_int_sub(lhs, rhs, "sub").into(),
Operator::Mult => self.builder.build_int_mul(lhs, rhs, "mul").into(),
Operator::Div => {
let float = self.ctx.f64_type();
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
self.builder.build_float_div(left, right, "fdiv").into()
}
Operator::Mod => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
Operator::BitOr => self.builder.build_or(lhs, rhs, "or").into(),
Operator::BitXor => self.builder.build_xor(lhs, rhs, "xor").into(),
Operator::BitAnd => self.builder.build_and(lhs, rhs, "and").into(),
Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
Operator::RShift => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
Operator::FloorDiv => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
// special implementation?
Operator::Pow => unimplemented!(),
Operator::MatMult => unreachable!(),
}
}
fn gen_float_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
(lhs, rhs)
{
(lhs, rhs)
} else {
unreachable!()
};
match op {
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
Operator::FloorDiv => {
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
let floor_intrinsic =
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
let float = self.ctx.f64_type();
let fn_type = float.fn_type(&[float.into()], false);
self.module.add_function("llvm.floor.f64", fn_type, None)
});
self.builder
.build_call(floor_intrinsic, &[div.into()], "floor")
.try_as_basic_value()
.left()
.unwrap()
}
// special implementation?
_ => unimplemented!(),
}
}
pub fn gen_expr(&mut self, expr: &Expr<Option<Type>>) -> BasicValueEnum<'ctx> {
let zero = self.ctx.i32_type().const_int(0, false);
let primitives = &self.top_level.primitives;
match &expr.node {
ExprKind::Constant { value, .. } => {
let ty = expr.custom.clone().unwrap();
self.gen_const(value, ty)
}
ExprKind::Name { id, .. } => {
let ptr = self.var_assignment.get(id).unwrap();
self.builder.build_load(*ptr, "load")
}
ExprKind::List { elts, .. } => {
// this shall be optimized later for constant primitive lists...
let elements = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
let ty = if elements.is_empty() {
self.ctx.i32_type().into()
} else {
elements[0].get_type()
};
// this length includes the leading length element
let arr_ty = self.ctx.struct_type(
&[self.ctx.i32_type().into(), ty.array_type(elements.len() as u32).into()],
false,
);
let arr_ptr = self.builder.build_alloca(arr_ty, "tmparr");
unsafe {
let len_ptr = arr_ptr
.const_in_bounds_gep(&[zero, self.ctx.i32_type().const_int(0u64, false)]);
self.builder.build_store(
len_ptr,
self.ctx.i32_type().const_int(elements.len() as u64, false),
);
let arr_offset = self.ctx.i32_type().const_int(1, false);
for (i, v) in elements.iter().enumerate() {
let ptr = self.builder.build_in_bounds_gep(
arr_ptr,
&[zero, arr_offset, self.ctx.i32_type().const_int(i as u64, false)],
"arr_element",
);
self.builder.build_store(ptr, *v);
}
}
arr_ptr.into()
}
ExprKind::Tuple { elts, .. } => {
let element_val = elts.iter().map(|x| self.gen_expr(x)).collect_vec();
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
let tuple_ty = self.ctx.struct_type(&element_ty, false);
let tuple_ptr = self.builder.build_alloca(tuple_ty, "tuple");
for (i, v) in element_val.into_iter().enumerate() {
unsafe {
let ptr = tuple_ptr.const_in_bounds_gep(&[
zero,
self.ctx.i32_type().const_int(i as u64, false),
]);
self.builder.build_store(ptr, v);
}
}
tuple_ptr.into()
}
ExprKind::Attribute { value, attr, .. } => {
// note that we would handle class methods directly in calls
let index = self.get_attr_index(value.custom.unwrap(), attr);
let val = self.gen_expr(value);
let ptr = if let BasicValueEnum::PointerValue(v) = val {
v
} else {
unreachable!();
};
unsafe {
let ptr = ptr.const_in_bounds_gep(&[
zero,
self.ctx.i32_type().const_int(index as u64, false),
]);
self.builder.build_load(ptr, "field")
}
}
ExprKind::BoolOp { op, values } => {
// requires conditional branches for short-circuiting...
let left = if let BasicValueEnum::IntValue(left) = self.gen_expr(&values[0]) {
left
} else {
unreachable!()
};
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = self.ctx.append_basic_block(current, "a");
let b_bb = self.ctx.append_basic_block(current, "b");
let cont_bb = self.ctx.append_basic_block(current, "cont");
self.builder.build_conditional_branch(left, a_bb, b_bb);
let (a, b) = match op {
Boolop::Or => {
self.builder.position_at_end(a_bb);
let a = self.ctx.bool_type().const_int(1, false);
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(b_bb);
let b = if let BasicValueEnum::IntValue(b) = self.gen_expr(&values[1]) {
b
} else {
unreachable!()
};
self.builder.build_unconditional_branch(cont_bb);
(a, b)
}
Boolop::And => {
self.builder.position_at_end(a_bb);
let a = if let BasicValueEnum::IntValue(a) = self.gen_expr(&values[1]) {
a
} else {
unreachable!()
};
self.builder.build_unconditional_branch(cont_bb);
self.builder.position_at_end(b_bb);
let b = self.ctx.bool_type().const_int(0, false);
self.builder.build_unconditional_branch(cont_bb);
(a, b)
}
};
self.builder.position_at_end(cont_bb);
let phi = self.builder.build_phi(self.ctx.bool_type(), "phi");
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value()
}
ExprKind::BinOp { op, left, right } => {
let ty1 = self.unifier.get_representative(left.custom.unwrap());
let ty2 = self.unifier.get_representative(left.custom.unwrap());
let left = self.gen_expr(left);
let right = self.gen_expr(right);
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
if ty1 != ty2 {
unimplemented!()
} else if [primitives.int32, primitives.int64].contains(&ty1) {
self.gen_int_ops(op, left, right)
} else if primitives.float == ty1 {
self.gen_float_ops(op, left, right)
} else {
unimplemented!()
}
}
ExprKind::UnaryOp { op, operand } => {
let ty = self.unifier.get_representative(operand.custom.unwrap());
let val = self.gen_expr(operand);
if ty == primitives.bool {
let val =
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
match op {
ast::Unaryop::Invert | ast::Unaryop::Not => {
self.builder.build_not(val, "not").into()
}
_ => val.into(),
}
} else if [primitives.int32, primitives.int64].contains(&ty) {
let val =
if let BasicValueEnum::IntValue(val) = val { val } else { unreachable!() };
match op {
ast::Unaryop::USub => self.builder.build_int_neg(val, "neg").into(),
ast::Unaryop::Invert => self.builder.build_not(val, "not").into(),
ast::Unaryop::Not => self
.builder
.build_int_compare(
inkwell::IntPredicate::EQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else if ty == primitives.float {
let val = if let BasicValueEnum::FloatValue(val) = val {
val
} else {
unreachable!()
};
match op {
ast::Unaryop::USub => self.builder.build_float_neg(val, "neg").into(),
ast::Unaryop::Not => self
.builder
.build_float_compare(
inkwell::FloatPredicate::OEQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else {
unimplemented!()
}
}
ExprKind::Compare { left, ops, comparators } => {
izip!(
chain(once(left.as_ref()), comparators.iter()),
comparators.iter(),
ops.iter(),
)
.fold(None, |prev, (lhs, rhs, op)| {
let ty = lhs.custom.unwrap();
let current = if [primitives.int32, primitives.int64, primitives.bool]
.contains(&ty)
{
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) =
(self.gen_expr(lhs), self.gen_expr(rhs))
{
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
_ => unreachable!(),
};
self.builder.build_int_compare(op, lhs, rhs, "cmp")
} else if ty == primitives.float {
let (lhs, rhs) = if let (
BasicValueEnum::FloatValue(lhs),
BasicValueEnum::FloatValue(rhs),
) = (self.gen_expr(lhs), self.gen_expr(rhs))
{
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
};
self.builder.build_float_compare(op, lhs, rhs, "cmp")
} else {
unimplemented!()
};
prev.map(|v| self.builder.build_and(v, current, "cmp")).or(Some(current))
})
.unwrap()
.into() // as there should be at least 1 element, it should never be none
}
_ => unimplemented!(),
}
}
}

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,2 @@
mod expr;
mod helper;

View File

@ -1,4 +1,6 @@
#![warn(clippy::all)]
#![allow(dead_code)]
mod codegen;
mod top_level;
mod typecheck;

View File

@ -1,7 +1,9 @@
use std::{collections::HashMap, sync::Arc};
use super::typedef::{SharedUnifier, Type, Unifier};
use crossbeam::queue::SegQueue;
use super::typecheck::symbol_resolver::SymbolResolver;
use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, Unifier};
use inkwell::{builder::Builder, context::Context, module::Module, values::PointerValue};
use parking_lot::RwLock;
use rustpython_parser::ast::Stmt;
@ -33,24 +35,29 @@ pub enum TopLevelDef {
/// variables.
/// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Type>, usize)>,
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
},
}
pub struct CodeGenTask {
pub subst: HashMap<usize, Type>,
pub symbol_name: String,
pub body: Stmt<Type>,
pub body: Stmt<Option<Type>>,
pub unifier: SharedUnifier,
}
pub struct TopLevelContext {
pub definitions: Vec<RwLock<TopLevelDef>>,
pub unifiers: Vec<SharedUnifier>,
pub codegen_queue: SegQueue<CodeGenTask>,
pub primitives: PrimitiveStore,
pub definitions: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
pub unifiers: Arc<RwLock<Vec<SharedUnifier>>>,
}
pub struct WorkerContext {
pub struct CodeGenContext<'ctx> {
pub ctx: &'ctx Context,
pub builder: Builder<'ctx>,
pub module: Module<'ctx>,
pub top_level: &'ctx TopLevelContext,
pub unifier: Unifier,
pub top_level_ctx: Arc<RwLock<TopLevelContext>>,
pub resolver: Box<dyn SymbolResolver>,
pub var_assignment: HashMap<String, PointerValue<'ctx>>,
}

View File

@ -1,9 +1,7 @@
#![allow(dead_code)]
mod function_check;
pub mod location;
mod magic_methods;
pub mod symbol_resolver;
mod top_level;
pub mod type_inferencer;
pub mod typedef;
mod unification_table;

View File

@ -1,8 +1,8 @@
use super::super::location::Location;
use super::super::symbol_resolver::*;
use super::super::top_level::DefinitionId;
use super::super::typedef::*;
use super::*;
use crate::top_level::DefinitionId;
use indoc::indoc;
use itertools::zip;
use rustpython_parser::ast;
@ -490,4 +490,3 @@ fn test_primitive_magic_methods(source: &str, mapping: HashMap<&str, &str>) {
assert_eq!(format!("{}: {}", k, v), format!("{}: {}", k, name));
}
}

View File

@ -103,6 +103,11 @@ impl Unifier {
Unifier { unification_table: UnificationTable::new(), var_id: 0 }
}
/// Determine if the two types are the same
pub fn unioned(&mut self, a: Type, b: Type) -> bool {
self.unification_table.unioned(a, b)
}
pub fn from_shared_unifier(unifier: &SharedUnifier) -> Unifier {
let lock = unifier.lock().unwrap();
Unifier { unification_table: UnificationTable::from_send(&lock.0), var_id: lock.1 }
@ -128,6 +133,10 @@ impl Unifier {
})
}
pub fn get_representative(&mut self, ty: Type) -> Type {
self.unification_table.get_representative(ty)
}
pub fn add_sequence(&mut self, sequence: Mapping<i32>) -> Type {
let id = self.var_id + 1;
self.var_id += 1;

View File

@ -1,8 +1,8 @@
use super::*;
use indoc::indoc;
use itertools::Itertools;
use std::collections::HashMap;
use test_case::test_case;
use indoc::indoc;
impl Unifier {
/// Check whether two types are equal.
@ -335,7 +335,11 @@ fn test_virtual() {
}));
let bar = env.unifier.add_ty(TypeEnum::TObj {
obj_id: 5,
fields: [("f".to_string(), fun), ("a".to_string(), int)].iter().cloned().collect::<HashMap<_, _>>().into(),
fields: [("f".to_string(), fun), ("a".to_string(), int)]
.iter()
.cloned()
.collect::<HashMap<_, _>>()
.into(),
params: HashMap::new(),
});
let v0 = env.unifier.get_fresh_var().0;
@ -515,7 +519,9 @@ fn test_instantiation() {
tuple[int, list[int], float]
tuple[int, list[int], list[int]]
v5"
}.split('\n').collect_vec();
}
.split('\n')
.collect_vec();
let types = types
.iter()
.map(|ty| {

View File

@ -51,6 +51,10 @@ impl<V> UnificationTable<V> {
self.find(a) == self.find(b)
}
pub fn get_representative(&mut self, key: UnificationKey) -> UnificationKey {
UnificationKey(self.find(key))
}
fn find(&mut self, key: UnificationKey) -> usize {
let mut root = key.0;
let mut parent = self.parents[root];