nac3/nac3core/src/codegen/expr.rs

1332 lines
58 KiB
Rust

use std::{collections::HashMap, convert::TryInto, iter::once};
use crate::{
codegen::{
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
get_llvm_type,
irrt::*,
stmt::gen_raise,
CodeGenContext, CodeGenTask,
},
symbol_resolver::{SymbolValue, ValueEnum},
toplevel::{DefinitionId, TopLevelDef},
typecheck::typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
};
use inkwell::{
types::{BasicType, BasicTypeEnum},
values::{BasicValueEnum, FunctionValue, IntValue, PointerValue},
AddressSpace,
};
use itertools::{chain, izip, zip, Itertools};
use nac3parser::ast::{
self, Boolop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
};
use super::CodeGenerator;
pub fn get_subst_key(
unifier: &mut Unifier,
obj: Option<Type>,
fun_vars: &HashMap<u32, Type>,
filter: Option<&Vec<u32>>,
) -> String {
let mut vars = obj
.map(|ty| {
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty(ty) {
params.clone()
} else {
unreachable!()
}
})
.unwrap_or_default();
vars.extend(fun_vars.iter());
let sorted = vars.keys().filter(|id| filter.map(|v| v.contains(id)).unwrap_or(true)).sorted();
sorted
.map(|id| {
unifier.internal_stringify(
vars[id],
&mut |id| id.to_string(),
&mut |id| id.to_string(),
&mut None,
)
})
.join(", ")
}
impl<'ctx, 'a> CodeGenContext<'ctx, 'a> {
pub fn build_gep_and_load(
&mut self,
ptr: PointerValue<'ctx>,
index: &[IntValue<'ctx>],
) -> BasicValueEnum<'ctx> {
unsafe { self.builder.build_load(self.builder.build_gep(ptr, index, "gep"), "load") }
}
fn get_subst_key(
&mut self,
obj: Option<Type>,
fun: &FunSignature,
filter: Option<&Vec<u32>>,
) -> String {
get_subst_key(&mut self.unifier, obj, &fun.vars, filter)
}
pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> usize {
let obj_id = match &*self.unifier.get_ty(ty) {
TypeEnum::TObj { obj_id, .. } => *obj_id,
// we cannot have other types, virtual type should be handled by function calls
_ => unreachable!(),
};
let def = &self.top_level.definitions.read()[obj_id.0];
let index = if let TopLevelDef::Class { fields, .. } = &*def.read() {
fields.iter().find_position(|x| x.0 == attr).unwrap().0
} else {
unreachable!()
};
index
}
pub fn gen_symbol_val(
&mut self,
generator: &mut dyn CodeGenerator,
val: &SymbolValue,
) -> BasicValueEnum<'ctx> {
match val {
SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(),
SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(),
SymbolValue::U32(v) => self.ctx.i32_type().const_int(*v as u64, false).into(),
SymbolValue::U64(v) => self.ctx.i64_type().const_int(*v as u64, false).into(),
SymbolValue::Bool(v) => self.ctx.bool_type().const_int(*v as u64, true).into(),
SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(),
SymbolValue::Str(v) => {
let str_ptr =
self.builder.build_global_string_ptr(v, "const").as_pointer_value().into();
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
let ty = self.get_llvm_type(generator, self.primitives.str).into_struct_type();
ty.const_named_struct(&[str_ptr, size.into()]).into()
}
SymbolValue::Tuple(ls) => {
let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v)).collect_vec();
let fields = vals.iter().map(|v| v.get_type()).collect_vec();
let ty = self.ctx.struct_type(&fields, false);
let ptr = self.builder.build_alloca(ty, "tuple");
let zero = self.ctx.i32_type().const_zero();
unsafe {
for (i, val) in vals.into_iter().enumerate() {
let p = self.builder.build_in_bounds_gep(
ptr,
&[zero, self.ctx.i32_type().const_int(i as u64, false)],
"elemptr",
);
self.builder.build_store(p, val);
}
}
self.builder.build_load(ptr, "tup_val")
}
}
}
pub fn get_llvm_type(
&mut self,
generator: &mut dyn CodeGenerator,
ty: Type,
) -> BasicTypeEnum<'ctx> {
get_llvm_type(
self.ctx,
generator,
&mut self.unifier,
self.top_level,
&mut self.type_cache,
ty,
)
}
pub fn gen_const(
&mut self,
generator: &mut dyn CodeGenerator,
value: &Constant,
ty: Type,
) -> BasicValueEnum<'ctx> {
match value {
Constant::Bool(v) => {
assert!(self.unifier.unioned(ty, self.primitives.bool));
let ty = self.ctx.bool_type();
ty.const_int(if *v { 1 } else { 0 }, false).into()
}
Constant::Int(val) => {
let ty = if self.unifier.unioned(ty, self.primitives.int32)
|| self.unifier.unioned(ty, self.primitives.uint32)
{
self.ctx.i32_type()
} else if self.unifier.unioned(ty, self.primitives.int64)
|| self.unifier.unioned(ty, self.primitives.uint64)
{
self.ctx.i64_type()
} else {
unreachable!();
};
ty.const_int(*val as u64, false).into()
}
Constant::Float(v) => {
assert!(self.unifier.unioned(ty, self.primitives.float));
let ty = self.ctx.f64_type();
ty.const_float(*v).into()
}
Constant::Tuple(v) => {
let ty = self.unifier.get_ty(ty);
let types =
if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() };
let values = zip(types.into_iter(), v.iter())
.map(|(ty, v)| self.gen_const(generator, v, ty))
.collect_vec();
let types = values.iter().map(BasicValueEnum::get_type).collect_vec();
let ty = self.ctx.struct_type(&types, false);
ty.const_named_struct(&values).into()
}
Constant::Str(v) => {
assert!(self.unifier.unioned(ty, self.primitives.str));
if let Some(v) = self.const_strings.get(v) {
*v
} else {
let str_ptr =
self.builder.build_global_string_ptr(v, "const").as_pointer_value().into();
let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false);
let ty = self.get_llvm_type(generator, self.primitives.str);
let val =
ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into();
self.const_strings.insert(v.to_string(), val);
val
}
}
_ => unreachable!(),
}
}
pub fn gen_int_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
signed: bool
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) =
if let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) {
(lhs, rhs)
} else {
unreachable!()
};
let float = self.ctx.f64_type();
match (op, signed) {
(Operator::Add, _) => self.builder.build_int_add(lhs, rhs, "add").into(),
(Operator::Sub, _) => self.builder.build_int_sub(lhs, rhs, "sub").into(),
(Operator::Mult, _) => self.builder.build_int_mul(lhs, rhs, "mul").into(),
(Operator::Div, true) => {
let left = self.builder.build_signed_int_to_float(lhs, float, "i2f");
let right = self.builder.build_signed_int_to_float(rhs, float, "i2f");
self.builder.build_float_div(left, right, "fdiv").into()
}
(Operator::Div, false) => {
let left = self.builder.build_unsigned_int_to_float(lhs, float, "i2f");
let right = self.builder.build_unsigned_int_to_float(rhs, float, "i2f");
self.builder.build_float_div(left, right, "fdiv").into()
}
(Operator::Mod, true) => self.builder.build_int_signed_rem(lhs, rhs, "mod").into(),
(Operator::Mod, false) => self.builder.build_int_unsigned_rem(lhs, rhs, "mod").into(),
(Operator::BitOr, _) => self.builder.build_or(lhs, rhs, "or").into(),
(Operator::BitXor, _) => self.builder.build_xor(lhs, rhs, "xor").into(),
(Operator::BitAnd, _) => self.builder.build_and(lhs, rhs, "and").into(),
(Operator::LShift, _) => self.builder.build_left_shift(lhs, rhs, "lshift").into(),
(Operator::RShift, _) => self.builder.build_right_shift(lhs, rhs, true, "rshift").into(),
(Operator::FloorDiv, true) => self.builder.build_int_signed_div(lhs, rhs, "floordiv").into(),
(Operator::FloorDiv, false) => self.builder.build_int_unsigned_div(lhs, rhs, "floordiv").into(),
(Operator::Pow, s) => integer_power(self, lhs, rhs, s).into(),
// special implementation?
(Operator::MatMult, _) => unreachable!(),
}
}
pub fn gen_float_ops(
&mut self,
op: &Operator,
lhs: BasicValueEnum<'ctx>,
rhs: BasicValueEnum<'ctx>,
) -> BasicValueEnum<'ctx> {
let (lhs, rhs) = if let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) =
(lhs, rhs)
{
(lhs, rhs)
} else {
unreachable!()
};
let float = self.ctx.f64_type();
match op {
Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").into(),
Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").into(),
Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").into(),
Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").into(),
Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").into(),
Operator::FloorDiv => {
let div = self.builder.build_float_div(lhs, rhs, "fdiv");
let floor_intrinsic =
self.module.get_function("llvm.floor.f64").unwrap_or_else(|| {
let fn_type = float.fn_type(&[float.into()], false);
self.module.add_function("llvm.floor.f64", fn_type, None)
});
self.builder
.build_call(floor_intrinsic, &[div.into()], "floor")
.try_as_basic_value()
.left()
.unwrap()
}
Operator::Pow => {
let pow_intrinsic = self.module.get_function("llvm.pow.f64").unwrap_or_else(|| {
let fn_type = float.fn_type(&[float.into(), float.into()], false);
self.module.add_function("llvm.pow.f64", fn_type, None)
});
self.builder
.build_call(pow_intrinsic, &[lhs.into(), rhs.into()], "f_pow")
.try_as_basic_value()
.unwrap_left()
}
// special implementation?
_ => unimplemented!(),
}
}
pub fn build_call_or_invoke(
&self,
fun: FunctionValue<'ctx>,
params: &[BasicValueEnum<'ctx>],
call_name: &str,
) -> Option<BasicValueEnum<'ctx>> {
if let Some(target) = self.unwind_target {
let current = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_block = self.ctx.append_basic_block(current, &format!("after.{}", call_name));
let result = self
.builder
.build_invoke(fun, params, then_block, target, call_name)
.try_as_basic_value()
.left();
self.builder.position_at_end(then_block);
result
} else {
let param: Vec<_> = params.iter().map(|v| (*v).into()).collect();
self.builder.build_call(fun, &param, call_name).try_as_basic_value().left()
}
}
pub fn gen_string<G: CodeGenerator, S: Into<String>>(
&mut self,
generator: &mut G,
s: S,
) -> BasicValueEnum<'ctx> {
self.gen_const(generator, &nac3parser::ast::Constant::Str(s.into()), self.primitives.str)
}
pub fn raise_exn<G: CodeGenerator>(
&mut self,
generator: &mut G,
name: &str,
msg: BasicValueEnum<'ctx>,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type();
let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into();
let zelf = self.builder.build_alloca(zelf_ty, "alloca");
let int32 = self.ctx.i32_type();
let zero = int32.const_zero();
unsafe {
let id_ptr = self.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id");
let id = self.resolver.get_string_id(name);
self.builder.build_store(id_ptr, int32.const_int(id as u64, false));
let ptr = self.builder.build_in_bounds_gep(
zelf,
&[zero, int32.const_int(5, false)],
"exn.msg",
);
self.builder.build_store(ptr, msg);
let i64_zero = self.ctx.i64_type().const_zero();
for (i, attr_ind) in [6, 7, 8].iter().enumerate() {
let ptr = self.builder.build_in_bounds_gep(
zelf,
&[zero, int32.const_int(*attr_ind, false)],
"exn.param",
);
let val = params[i].map_or(i64_zero, |v| {
self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext")
});
self.builder.build_store(ptr, val);
}
}
gen_raise(generator, self, Some(&zelf.into()), loc);
}
pub fn make_assert<G: CodeGenerator>(
&mut self,
generator: &mut G,
cond: IntValue<'ctx>,
err_name: &str,
err_msg: &str,
params: [Option<IntValue<'ctx>>; 3],
loc: Location,
) {
let i1 = self.ctx.bool_type();
let i1_true = i1.const_all_ones();
let expect_fun = self.module.get_function("llvm.expect.i1").unwrap_or_else(|| {
self.module.add_function(
"llvm.expect",
i1.fn_type(&[i1.into(), i1.into()], false),
None,
)
});
// we assume that the condition is most probably true, so the normal path is the most
// probable path
// even if this assumption is violated, it does not matter as exception unwinding is
// slow anyway...
let cond = self
.builder
.build_call(expect_fun, &[cond.into(), i1_true.into()], "expect")
.try_as_basic_value()
.left()
.unwrap()
.into_int_value();
let current_fun = self.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_block = self.ctx.append_basic_block(current_fun, "succ");
let exn_block = self.ctx.append_basic_block(current_fun, "fail");
self.builder.build_conditional_branch(cond, then_block, exn_block);
self.builder.position_at_end(exn_block);
let err_msg = self.gen_string(generator, err_msg);
self.raise_exn(generator, err_name, err_msg, params, loc);
self.builder.position_at_end(then_block);
}
}
pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
signature: &FunSignature,
def: &TopLevelDef,
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<BasicValueEnum<'ctx>, String> {
match def {
TopLevelDef::Class { methods, .. } => {
// TODO: what about other fields that require alloca?
let mut fun_id = None;
for (name, _, id) in methods.iter() {
if name == &"__init__".into() {
fun_id = Some(*id);
}
}
let ty = ctx.get_llvm_type(generator, signature.ret).into_pointer_type();
let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap();
let zelf: BasicValueEnum<'ctx> = ctx.builder.build_alloca(zelf_ty, "alloca").into();
// call `__init__` if there is one
if let Some(fun_id) = fun_id {
let mut sign = signature.clone();
sign.ret = ctx.primitives.none;
generator.gen_call(
ctx,
Some((signature.ret, zelf.into())),
(&sign, fun_id),
params,
)?;
}
Ok(zelf)
}
_ => unreachable!(),
}
}
pub fn gen_func_instance<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, &mut TopLevelDef, String),
id: usize,
) -> Result<String, String> {
if let (
sign,
TopLevelDef::Function {
name, instance_to_symbol, instance_to_stmt, var_id, resolver, ..
},
key,
) = fun
{
if let Some(sym) = instance_to_symbol.get(&key) {
return Ok(sym.clone());
}
let symbol = format!("{}.{}", name, instance_to_symbol.len());
instance_to_symbol.insert(key, symbol.clone());
let key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), sign, Some(var_id));
let instance = instance_to_stmt.get(&key).unwrap();
let mut store = ConcreteTypeStore::new();
let mut cache = HashMap::new();
let subst = sign
.vars
.iter()
.map(|(id, ty)| {
(
*instance.subst.get(id).unwrap(),
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache),
)
})
.collect();
let mut signature =
store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache);
if let Some(obj) = &obj {
let zelf =
store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache);
if let ConcreteTypeEnum::TFunc { args, .. } = &mut signature {
args.insert(
0,
ConcreteFuncArg { name: "self".into(), ty: zelf, default_value: None },
)
} else {
unreachable!()
}
}
let signature = store.add_cty(signature);
ctx.registry.add_task(CodeGenTask {
symbol_name: symbol.clone(),
body: instance.body.clone(),
resolver: resolver.as_ref().unwrap().clone(),
calls: instance.calls.clone(),
subst,
signature,
store,
unifier_index: instance.unifier_id,
id,
});
Ok(symbol)
} else {
unreachable!()
}
}
pub fn gen_call<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
obj: Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap();
let id;
let key;
let param_vals;
let symbol = {
// make sure this lock guard is dropped at the end of this scope...
let def = definition.read();
match &*def {
TopLevelDef::Function {
instance_to_symbol,
instance_to_stmt,
codegen_callback,
..
} => {
if let Some(callback) = codegen_callback {
return callback.run(ctx, obj, fun, params, generator);
}
let old_key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), fun.0, None);
let mut keys = fun.0.args.clone();
let mut mapping = HashMap::new();
for (key, value) in params.into_iter() {
mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value);
}
// default value handling
for k in keys.into_iter() {
if mapping.get(&k.name).is_some() {
continue;
}
mapping.insert(
k.name,
ctx.gen_symbol_val(generator, &k.default_value.unwrap()).into(),
);
}
// reorder the parameters
let mut real_params =
fun.0.args.iter().map(|arg| mapping.remove(&arg.name).unwrap()).collect_vec();
if let Some(obj) = &obj {
real_params.insert(0, obj.1.clone());
}
let static_params = real_params
.iter()
.enumerate()
.filter_map(|(i, v)| {
if let ValueEnum::Static(s) = v {
Some((i, s.clone()))
} else {
None
}
})
.collect_vec();
id = {
let ids = static_params
.iter()
.map(|(i, v)| (*i, v.get_unique_identifier()))
.collect_vec();
let mut store = ctx.static_value_store.lock();
match store.lookup.get(&ids) {
Some(index) => *index,
None => {
let length = store.store.len();
store.lookup.insert(ids, length);
store.store.push(static_params.into_iter().collect());
length
}
}
};
// special case: extern functions
key = if instance_to_stmt.is_empty() {
"".to_string()
} else {
format!("{}:{}", id, old_key)
};
param_vals = real_params
.into_iter()
.map(|p| p.to_basic_value_enum(ctx, generator))
.collect::<Result<Vec<_>, String>>()?;
instance_to_symbol.get(&key).cloned().ok_or_else(|| "".into())
}
TopLevelDef::Class { .. } => {
return Ok(Some(generator.gen_constructor(ctx, fun.0, &*def, params)?))
}
}
}
.or_else(|_: String| {
generator.gen_func_instance(ctx, obj.clone(), (fun.0, &mut *definition.write(), key), id)
})?;
let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| {
let mut args = fun.0.args.clone();
if let Some(obj) = &obj {
args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None });
}
let params =
args.iter().map(|arg| ctx.get_llvm_type(generator, arg.ty).into()).collect_vec();
let fun_ty = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
ctx.ctx.void_type().fn_type(&params, false)
} else {
ctx.get_llvm_type(generator, fun.0.ret).fn_type(&params, false)
};
ctx.module.add_function(&symbol, fun_ty, None)
});
Ok(ctx.build_call_or_invoke(fun_val, &param_vals, "call"))
}
pub fn destructure_range<'ctx, 'a>(
ctx: &mut CodeGenContext<'ctx, 'a>,
range: PointerValue<'ctx>,
) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) {
let int32 = ctx.ctx.i32_type();
let start = ctx
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(0, false)])
.into_int_value();
let end = ctx
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(1, false)])
.into_int_value();
let step = ctx
.build_gep_and_load(range, &[int32.const_zero(), int32.const_int(2, false)])
.into_int_value();
(start, end, step)
}
pub fn allocate_list<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ty: BasicTypeEnum<'ctx>,
length: IntValue<'ctx>,
) -> PointerValue<'ctx> {
let arr_ptr = ctx.builder.build_array_alloca(ty, length, "tmparr");
let size_t = generator.get_size_type(ctx.ctx);
let i32_t = ctx.ctx.i32_type();
let arr_ty =
ctx.ctx.struct_type(&[ty.ptr_type(AddressSpace::Generic).into(), size_t.into()], false);
let zero = ctx.ctx.i32_type().const_zero();
let arr_str_ptr = ctx.builder.build_alloca(arr_ty, "tmparrstr");
unsafe {
let len_ptr = ctx.builder.build_in_bounds_gep(
arr_str_ptr,
&[zero, i32_t.const_int(1, false)],
"len_ptr",
);
let length = ctx.builder.build_int_z_extend(length, size_t, "zext");
ctx.builder.build_store(len_ptr, length);
let ptr_to_arr =
ctx.builder.build_in_bounds_gep(arr_str_ptr, &[zero, i32_t.const_zero()], "ptr_to_arr");
ctx.builder.build_store(ptr_to_arr, arr_ptr);
arr_str_ptr
}
}
pub fn gen_comprehension<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
expr: &Expr<Option<Type>>,
) -> Result<BasicValueEnum<'ctx>, String> {
if let ExprKind::ListComp { elt, generators } = &expr.node {
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let test_bb = ctx.ctx.append_basic_block(current, "test");
let body_bb = ctx.ctx.append_basic_block(current, "body");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
let Comprehension { target, iter, ifs, .. } = &generators[0];
let iter_val = generator.gen_expr(ctx, iter)?.unwrap().to_basic_value_enum(ctx, generator)?;
let int32 = ctx.ctx.i32_type();
let size_t = generator.get_size_type(ctx.ctx);
let zero_size_t = size_t.const_zero();
let zero_32 = int32.const_zero();
let index = generator.gen_var_alloc(ctx, size_t.into())?;
ctx.builder.build_store(index, zero_size_t);
let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap());
let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
let list;
let list_content;
if is_range {
let iter_val = iter_val.into_pointer_value();
let (start, end, step) = destructure_range(ctx, iter_val);
let diff = ctx.builder.build_int_sub(end, start, "diff");
// add 1 to the length as the value is rounded to zero
// the length may be 1 more than the actual length if the division is exact, but the
// length is a upper bound only anyway so it does not matter.
let length = ctx.builder.build_int_signed_div(diff, step, "div");
let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1");
// in case length is non-positive
let is_valid =
ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, length, zero_32, "check");
let normal = ctx.ctx.append_basic_block(current, "normal_list");
let empty = ctx.ctx.append_basic_block(current, "empty_list");
let list_init = ctx.ctx.append_basic_block(current, "list_init");
ctx.builder.build_conditional_branch(is_valid, normal, empty);
// normal: allocate a list
ctx.builder.position_at_end(normal);
let list_a = allocate_list(
generator,
ctx,
elem_ty,
ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len"),
);
ctx.builder.build_unconditional_branch(list_init);
ctx.builder.position_at_end(empty);
let list_b = allocate_list(generator, ctx, elem_ty, zero_size_t);
ctx.builder.build_unconditional_branch(list_init);
ctx.builder.position_at_end(list_init);
let phi = ctx.builder.build_phi(list_a.get_type(), "phi");
phi.add_incoming(&[(&list_a, normal), (&list_b, empty)]);
list = phi.as_basic_value().into_pointer_value();
list_content =
ctx.build_gep_and_load(list, &[zero_size_t, zero_32]).into_pointer_value();
let i = generator.gen_store_target(ctx, target)?;
ctx.builder.build_store(i, ctx.builder.build_int_sub(start, step, "start_init"));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let sign =
ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, step, zero_32, "sign");
// add and test
let tmp = ctx.builder.build_int_add(
ctx.builder.build_load(i, "i").into_int_value(),
step,
"start_loop",
);
ctx.builder.build_store(i, tmp);
// if step > 0, continue when i < end
let cmp1 = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, end, "cmp1");
// if step < 0, continue when i > end
let cmp2 = ctx.builder.build_int_compare(inkwell::IntPredicate::SGT, tmp, end, "cmp2");
let pos = ctx.builder.build_and(sign, cmp1, "pos");
let neg = ctx.builder.build_and(ctx.builder.build_not(sign, "inv"), cmp2, "neg");
ctx.builder.build_conditional_branch(
ctx.builder.build_or(pos, neg, "or"),
body_bb,
cont_bb,
);
ctx.builder.position_at_end(body_bb);
} else {
let length = ctx
.build_gep_and_load(
iter_val.into_pointer_value(),
&[zero_size_t, int32.const_int(1, false)],
)
.into_int_value();
list = allocate_list(generator, ctx, elem_ty, length);
list_content =
ctx.build_gep_and_load(list, &[zero_size_t, zero_32]).into_pointer_value();
let counter = generator.gen_var_alloc(ctx, size_t.into())?;
// counter = -1
ctx.builder.build_store(counter, size_t.const_int(u64::max_value(), true));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(test_bb);
let tmp = ctx.builder.build_load(counter, "i").into_int_value();
let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc");
ctx.builder.build_store(counter, tmp);
let cmp = ctx.builder.build_int_compare(inkwell::IntPredicate::SLT, tmp, length, "cmp");
ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb);
ctx.builder.position_at_end(body_bb);
let arr_ptr = ctx
.build_gep_and_load(iter_val.into_pointer_value(), &[zero_size_t, zero_32])
.into_pointer_value();
let val = ctx.build_gep_and_load(arr_ptr, &[tmp]);
generator.gen_assign(ctx, target, val.into())?;
}
for cond in ifs.iter() {
let result = generator
.gen_expr(ctx, cond)?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_int_value();
let succ = ctx.ctx.append_basic_block(current, "then");
ctx.builder.build_conditional_branch(result, succ, test_bb);
ctx.builder.position_at_end(succ);
}
let elem = generator.gen_expr(ctx, elt)?.unwrap();
let i = ctx.builder.build_load(index, "i").into_int_value();
let elem_ptr = unsafe { ctx.builder.build_gep(list_content, &[i], "elem_ptr") };
let val = elem.to_basic_value_enum(ctx, generator)?;
ctx.builder.build_store(elem_ptr, val);
ctx.builder
.build_store(index, ctx.builder.build_int_add(i, size_t.const_int(1, false), "inc"));
ctx.builder.build_unconditional_branch(test_bb);
ctx.builder.position_at_end(cont_bb);
let len_ptr = unsafe {
ctx.builder.build_gep(list, &[zero_size_t, int32.const_int(1, false)], "length")
};
ctx.builder.build_store(len_ptr, ctx.builder.build_load(index, "index"));
Ok(list.into())
} else {
unreachable!()
}
}
pub fn gen_binop_expr<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
left: &Expr<Option<Type>>,
op: &Operator,
right: &Expr<Option<Type>>,
) -> Result<ValueEnum<'ctx>, String> {
let ty1 = ctx.unifier.get_representative(left.custom.unwrap());
let ty2 = ctx.unifier.get_representative(right.custom.unwrap());
let left = generator.gen_expr(ctx, left)?.unwrap().to_basic_value_enum(ctx, generator)?;
let right = generator.gen_expr(ctx, right)?.unwrap().to_basic_value_enum(ctx, generator)?;
// we can directly compare the types, because we've got their representatives
// which would be unchanged until further unification, which we would never do
// when doing code generation for function instances
Ok(if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) {
ctx.gen_int_ops(op, left, right, true)
} else if ty1 == ty2 && [ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty1) {
ctx.gen_int_ops(op, left, right, false)
} else if ty1 == ty2 && ctx.primitives.float == ty1 {
ctx.gen_float_ops(op, left, right)
} else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 {
// Pow is the only operator that would pass typecheck between float and int
assert!(*op == Operator::Pow);
// TODO: throw exception when rhs is out of i16 bound
// since llvm intrinsic only support to i16 for f64
let i16_t = ctx.ctx.i16_type();
let pow_intr = ctx.module.get_function("llvm.powi.f64.i16").unwrap_or_else(|| {
let f64_t = ctx.ctx.f64_type();
let ty = f64_t.fn_type(&[f64_t.into(), i16_t.into()], false);
ctx.module.add_function("llvm.powi.f64.i16", ty, None)
});
let right = ctx.builder.build_int_truncate(right.into_int_value(), i16_t, "r_pow");
ctx.builder
.build_call(pow_intr, &[left.into(), right.into()], "f_pow_i")
.try_as_basic_value()
.unwrap_left()
} else {
unimplemented!()
}
.into())
}
pub fn gen_expr<'ctx, 'a, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
expr: &Expr<Option<Type>>,
) -> Result<Option<ValueEnum<'ctx>>, String> {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_int(0, false);
Ok(Some(match &expr.node {
ExprKind::Constant { value, .. } => {
let ty = expr.custom.unwrap();
ctx.gen_const(generator, value, ty).into()
}
ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) {
Some((ptr, None, _)) => ctx.builder.build_load(*ptr, "load").into(),
Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()),
None => {
let resolver = ctx.resolver.clone();
let val = resolver.get_symbol_value(*id, ctx).unwrap();
// if is tuple, need to deref it to handle tuple as value
if let (TypeEnum::TTuple { .. }, BasicValueEnum::PointerValue(ptr)) = (
&*ctx.unifier.get_ty(expr.custom.unwrap()),
resolver
.get_symbol_value(*id, ctx)
.unwrap()
.to_basic_value_enum(ctx, generator)?,
) {
ctx.builder.build_load(ptr, "tup_val").into()
} else {
val
}
}
},
ExprKind::List { elts, .. } => {
// this shall be optimized later for constant primitive lists...
// we should use memcpy for that instead of generating thousands of stores
let elements = elts
.iter()
.map(|x| {
generator
.gen_expr(ctx, x)
.map_or_else(|e| Err(e), |v| v.unwrap().to_basic_value_enum(ctx, generator))
})
.collect::<Result<Vec<_>, _>>()?;
let ty = if elements.is_empty() {
if let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(expr.custom.unwrap()) {
ctx.get_llvm_type(generator, *ty)
} else {
unreachable!()
}
} else {
elements[0].get_type()
};
let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false);
let arr_str_ptr = allocate_list(generator, ctx, ty, length);
let arr_ptr = ctx.build_gep_and_load(arr_str_ptr, &[zero, zero]).into_pointer_value();
unsafe {
for (i, v) in elements.iter().enumerate() {
let elem_ptr = ctx.builder.build_gep(
arr_ptr,
&[int32.const_int(i as u64, false)],
"elem_ptr",
);
ctx.builder.build_store(elem_ptr, *v);
}
}
arr_str_ptr.into()
}
ExprKind::Tuple { elts, .. } => {
let element_val = elts
.iter()
.map(|x| {
generator
.gen_expr(ctx, x)
.map_or_else(|e| Err(e), |v| v.unwrap().to_basic_value_enum(ctx, generator))
})
.collect::<Result<Vec<_>, _>>()?;
let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec();
let tuple_ty = ctx.ctx.struct_type(&element_ty, false);
let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple");
for (i, v) in element_val.into_iter().enumerate() {
unsafe {
let ptr = ctx.builder.build_in_bounds_gep(
tuple_ptr,
&[zero, int32.const_int(i as u64, false)],
"ptr",
);
ctx.builder.build_store(ptr, v);
}
}
ctx.builder.build_load(tuple_ptr, "tup_val").into()
}
ExprKind::Attribute { value, attr, .. } => {
// note that we would handle class methods directly in calls
match generator.gen_expr(ctx, value)?.unwrap() {
ValueEnum::Static(v) => v.get_field(*attr, ctx).map_or_else(|| {
let v = v.to_basic_value_enum(ctx, generator)?;
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
Ok(ValueEnum::Dynamic(ctx.build_gep_and_load(
v.into_pointer_value(),
&[zero, int32.const_int(index as u64, false)],
))) as Result<_, String>
}, |v| Ok(v))?,
ValueEnum::Dynamic(v) => {
let index = ctx.get_attr_index(value.custom.unwrap(), *attr);
ValueEnum::Dynamic(ctx.build_gep_and_load(
v.into_pointer_value(),
&[zero, int32.const_int(index as u64, false)],
))
}
}
}
ExprKind::BoolOp { op, values } => {
// requires conditional branches for short-circuiting...
let left = generator
.gen_expr(ctx, &values[0])?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_int_value();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let a_bb = ctx.ctx.append_basic_block(current, "a");
let b_bb = ctx.ctx.append_basic_block(current, "b");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(left, a_bb, b_bb);
let (a, b) = match op {
Boolop::Or => {
ctx.builder.position_at_end(a_bb);
let a = ctx.ctx.bool_type().const_int(1, false);
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(b_bb);
let b = generator
.gen_expr(ctx, &values[1])?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_int_value();
ctx.builder.build_unconditional_branch(cont_bb);
(a, b)
}
Boolop::And => {
ctx.builder.position_at_end(a_bb);
let a = generator
.gen_expr(ctx, &values[1])?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_int_value();
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(b_bb);
let b = ctx.ctx.bool_type().const_int(0, false);
ctx.builder.build_unconditional_branch(cont_bb);
(a, b)
}
};
ctx.builder.position_at_end(cont_bb);
let phi = ctx.builder.build_phi(ctx.ctx.bool_type(), "phi");
phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]);
phi.as_basic_value().into()
}
ExprKind::BinOp { op, left, right } => gen_binop_expr(generator, ctx, left, op, right)?,
ExprKind::UnaryOp { op, operand } => {
let ty = ctx.unifier.get_representative(operand.custom.unwrap());
let val =
generator.gen_expr(ctx, operand)?.unwrap().to_basic_value_enum(ctx, generator)?;
if ty == ctx.primitives.bool {
let val = val.into_int_value();
match op {
ast::Unaryop::Invert | ast::Unaryop::Not => {
ctx.builder.build_not(val, "not").into()
}
_ => val.into(),
}
} else if [ctx.primitives.int32, ctx.primitives.int64].contains(&ty) {
let val = val.into_int_value();
match op {
ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").into(),
ast::Unaryop::Invert => ctx.builder.build_not(val, "not").into(),
ast::Unaryop::Not => ctx
.builder
.build_int_compare(
inkwell::IntPredicate::EQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else if ty == ctx.primitives.float {
let val =
if let BasicValueEnum::FloatValue(val) = val { val } else { unreachable!() };
match op {
ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").into(),
ast::Unaryop::Not => ctx
.builder
.build_float_compare(
inkwell::FloatPredicate::OEQ,
val,
val.get_type().const_zero(),
"not",
)
.into(),
_ => val.into(),
}
} else {
unimplemented!()
}
}
ExprKind::Compare { left, ops, comparators } => {
izip!(chain(once(left.as_ref()), comparators.iter()), comparators.iter(), ops.iter(),)
.fold(Ok(None), |prev: Result<Option<_>, String>, (lhs, rhs, op)| {
let ty = ctx.unifier.get_representative(lhs.custom.unwrap());
let current =
if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.bool]
.contains(&ty)
{
let (lhs, rhs) = if let (
BasicValueEnum::IntValue(lhs),
BasicValueEnum::IntValue(rhs),
) = (
generator
.gen_expr(ctx, lhs)?
.unwrap()
.to_basic_value_enum(ctx, generator)?,
generator
.gen_expr(ctx, rhs)?
.unwrap()
.to_basic_value_enum(ctx, generator)?,
) {
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::IntPredicate::EQ,
ast::Cmpop::NotEq => inkwell::IntPredicate::NE,
ast::Cmpop::Lt => inkwell::IntPredicate::SLT,
ast::Cmpop::LtE => inkwell::IntPredicate::SLE,
ast::Cmpop::Gt => inkwell::IntPredicate::SGT,
ast::Cmpop::GtE => inkwell::IntPredicate::SGE,
_ => unreachable!(),
};
ctx.builder.build_int_compare(op, lhs, rhs, "cmp")
} else if ty == ctx.primitives.float {
let (lhs, rhs) = if let (
BasicValueEnum::FloatValue(lhs),
BasicValueEnum::FloatValue(rhs),
) = (
generator
.gen_expr(ctx, lhs)?
.unwrap()
.to_basic_value_enum(ctx, generator)?,
generator
.gen_expr(ctx, rhs)?
.unwrap()
.to_basic_value_enum(ctx, generator)?,
) {
(lhs, rhs)
} else {
unreachable!()
};
let op = match op {
ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ,
ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE,
ast::Cmpop::Lt => inkwell::FloatPredicate::OLT,
ast::Cmpop::LtE => inkwell::FloatPredicate::OLE,
ast::Cmpop::Gt => inkwell::FloatPredicate::OGT,
ast::Cmpop::GtE => inkwell::FloatPredicate::OGE,
_ => unreachable!(),
};
ctx.builder.build_float_compare(op, lhs, rhs, "cmp")
} else {
unimplemented!()
};
Ok(prev?.map(|v| ctx.builder.build_and(v, current, "cmp")).or(Some(current)))
})?
.unwrap()
.into() // as there should be at least 1 element, it should never be none
}
ExprKind::IfExp { test, body, orelse } => {
let test = generator
.gen_expr(ctx, test)?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_int_value();
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
let then_bb = ctx.ctx.append_basic_block(current, "then");
let else_bb = ctx.ctx.append_basic_block(current, "else");
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
ctx.builder.build_conditional_branch(test, then_bb, else_bb);
ctx.builder.position_at_end(then_bb);
let a = generator.gen_expr(ctx, body)?.unwrap().to_basic_value_enum(ctx, generator)?;
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(else_bb);
let b = generator.gen_expr(ctx, orelse)?.unwrap().to_basic_value_enum(ctx, generator)?;
ctx.builder.build_unconditional_branch(cont_bb);
ctx.builder.position_at_end(cont_bb);
let phi = ctx.builder.build_phi(a.get_type(), "ifexpr");
phi.add_incoming(&[(&a, then_bb), (&b, else_bb)]);
phi.as_basic_value().into()
}
ExprKind::Call { func, args, keywords } => {
let mut params = args
.iter()
.map(|arg| Ok((None, generator.gen_expr(ctx, arg)?.unwrap())) as Result<_, String>)
.collect::<Result<Vec<_>, _>>()?;
let kw_iter = keywords.iter().map(|kw| {
Ok((
Some(*kw.node.arg.as_ref().unwrap()),
generator.gen_expr(ctx, &kw.node.value)?.unwrap(),
)) as Result<_, String>
});
let kw_iter = kw_iter.collect::<Result<Vec<_>, _>>()?;
params.extend(kw_iter);
let call = ctx.calls.get(&expr.location.into());
let signature = match call {
Some(call) => ctx.unifier.get_call_signature(*call).unwrap(),
None => {
let ty = func.custom.unwrap();
if let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) {
sign.clone()
} else {
unreachable!()
}
}
};
let func = func.as_ref();
match &func.node {
ExprKind::Name { id, .. } => {
// TODO: handle primitive casts and function pointers
let fun = ctx
.resolver
.get_identifier_def(*id)
.map_err(|e| format!("{} (at {})", e, func.location))?;
return Ok(generator
.gen_call(ctx, None, (&signature, fun), params)?
.map(|v| v.into()));
}
ExprKind::Attribute { value, attr, .. } => {
let val = generator.gen_expr(ctx, value)?.unwrap();
let id = if let TypeEnum::TObj { obj_id, .. } =
&*ctx.unifier.get_ty(value.custom.unwrap())
{
*obj_id
} else {
unreachable!()
};
let fun_id = {
let defs = ctx.top_level.definitions.read();
let obj_def = defs.get(id.0).unwrap().read();
if let TopLevelDef::Class { methods, .. } = &*obj_def {
let mut fun_id = None;
for (name, _, id) in methods.iter() {
if name == attr {
fun_id = Some(*id);
}
}
fun_id.unwrap()
} else {
unreachable!()
}
};
return Ok(generator
.gen_call(
ctx,
Some((value.custom.unwrap(), val)),
(&signature, fun_id),
params,
)?
.map(|v| v.into()));
}
_ => unimplemented!(),
}
}
ExprKind::Subscript { value, slice, .. } => {
if let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(value.custom.unwrap()) {
let v = generator
.gen_expr(ctx, value)?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_pointer_value();
let ty = ctx.get_llvm_type(generator, *ty);
let arr_ptr = ctx.build_gep_and_load(v, &[zero, zero]).into_pointer_value();
if let ExprKind::Slice { lower, upper, step } = &slice.node {
let one = int32.const_int(1, false);
let (start, end, step) =
handle_slice_indices(lower, upper, step, ctx, generator, v)?;
let length = calculate_len_for_slice_range(
ctx,
start,
ctx.builder
.build_select(
ctx.builder.build_int_compare(
inkwell::IntPredicate::SLT,
step,
zero,
"is_neg",
),
ctx.builder.build_int_sub(end, one, "e_min_one"),
ctx.builder.build_int_add(end, one, "e_add_one"),
"final_e",
)
.into_int_value(),
step,
);
let res_array_ret = allocate_list(generator, ctx, ty, length);
let res_ind =
handle_slice_indices(&None, &None, &None, ctx, generator, res_array_ret)?;
list_slice_assignment(
ctx,
generator.get_size_type(ctx.ctx),
ty,
res_array_ret,
res_ind,
v,
(start, end, step),
);
res_array_ret.into()
} else {
let len = ctx
.build_gep_and_load(v, &[zero, int32.const_int(1, false)])
.into_int_value();
let raw_index = generator
.gen_expr(ctx, slice)?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_int_value();
let raw_index = ctx.builder.build_int_s_extend(
raw_index,
generator.get_size_type(ctx.ctx),
"sext",
);
// handle negative index
let is_negative = ctx.builder.build_int_compare(
inkwell::IntPredicate::SLT,
raw_index,
generator.get_size_type(ctx.ctx).const_zero(),
"is_neg",
);
let adjusted = ctx.builder.build_int_add(raw_index, len, "adjusted");
let index = ctx
.builder
.build_select(is_negative, adjusted, raw_index, "index")
.into_int_value();
// unsigned less than is enough, because negative index after adjustment is
// bigger than the length (for unsigned cmp)
let bound_check = ctx.builder.build_int_compare(
inkwell::IntPredicate::ULT,
index,
len,
"inbound",
);
ctx.make_assert(
generator,
bound_check,
"0:IndexError",
"index {0} out of bounds 0:{1}",
[Some(raw_index), Some(len), None],
expr.location,
);
ctx.build_gep_and_load(arr_ptr, &[index])
}
} else if let TypeEnum::TTuple { .. } = &*ctx.unifier.get_ty(value.custom.unwrap()) {
let v = generator
.gen_expr(ctx, value)?
.unwrap()
.to_basic_value_enum(ctx, generator)?
.into_struct_value();
let index: u32 =
if let ExprKind::Constant { value: ast::Constant::Int(v), .. } = &slice.node {
(*v).try_into().unwrap()
} else {
unreachable!("tuple subscript must be const int after type check");
};
ctx.builder.build_extract_value(v, index, "tup_elem").unwrap()
} else {
unreachable!("should not be other subscriptable types after type check");
}
}
.into(),
ExprKind::ListComp { .. } => gen_comprehension(generator, ctx, expr)?.into(),
_ => unimplemented!(),
}))
}