forked from M-Labs/nac3
2087 lines
80 KiB
Rust
2087 lines
80 KiB
Rust
use std::iter::once;
|
|
|
|
use indexmap::IndexMap;
|
|
use inkwell::{
|
|
attributes::{Attribute, AttributeLoc},
|
|
types::{BasicMetadataTypeEnum, BasicType},
|
|
values::{BasicMetadataValueEnum, BasicValue, CallSiteValue},
|
|
IntPredicate,
|
|
};
|
|
use itertools::Either;
|
|
use strum::IntoEnumIterator;
|
|
|
|
use super::{
|
|
helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDef, PrimDefDetails},
|
|
numpy::make_ndarray_ty,
|
|
*,
|
|
};
|
|
use crate::{
|
|
codegen::{
|
|
builtin_fns,
|
|
numpy::*,
|
|
stmt::exn_constructor,
|
|
values::{ProxyValue, RangeValue},
|
|
},
|
|
symbol_resolver::SymbolValue,
|
|
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
|
|
};
|
|
|
|
type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>;
|
|
|
|
pub fn get_exn_constructor(
|
|
name: &str,
|
|
class_id: usize,
|
|
cons_id: usize,
|
|
unifier: &mut Unifier,
|
|
primitives: &PrimitiveStore,
|
|
) -> (TopLevelDef, TopLevelDef, Type, Type) {
|
|
let int32 = primitives.int32;
|
|
let int64 = primitives.int64;
|
|
let string = primitives.str;
|
|
let exception_fields = make_exception_fields(int32, int64, string);
|
|
let exn_cons_args = vec![
|
|
FuncArg {
|
|
name: "msg".into(),
|
|
ty: string,
|
|
default_value: Some(SymbolValue::Str(String::new())),
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "param0".into(),
|
|
ty: int64,
|
|
default_value: Some(SymbolValue::I64(0)),
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "param1".into(),
|
|
ty: int64,
|
|
default_value: Some(SymbolValue::I64(0)),
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "param2".into(),
|
|
ty: int64,
|
|
default_value: Some(SymbolValue::I64(0)),
|
|
is_vararg: false,
|
|
},
|
|
];
|
|
let exn_type = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(class_id),
|
|
fields: exception_fields
|
|
.clone()
|
|
.into_iter()
|
|
.map(|(name, ty, mutable)| (name, (ty, mutable)))
|
|
.collect(),
|
|
params: VarMap::default(),
|
|
});
|
|
let signature = unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: exn_cons_args,
|
|
ret: exn_type,
|
|
vars: VarMap::default(),
|
|
}));
|
|
let fun_def = TopLevelDef::Function {
|
|
name: format!("{name}.__init__"),
|
|
simple_name: "__init__".into(),
|
|
signature,
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(exn_constructor)))),
|
|
loc: None,
|
|
};
|
|
let class_def = TopLevelDef::Class {
|
|
name: name.into(),
|
|
object_id: DefinitionId(class_id),
|
|
type_vars: Vec::default(),
|
|
fields: exception_fields,
|
|
attributes: Vec::default(),
|
|
methods: vec![("__init__".into(), signature, DefinitionId(cons_id))],
|
|
ancestors: vec![
|
|
TypeAnnotation::CustomClass { id: DefinitionId(class_id), params: Vec::default() },
|
|
TypeAnnotation::CustomClass { id: PrimDef::Exception.id(), params: Vec::default() },
|
|
],
|
|
constructor: Some(signature),
|
|
resolver: None,
|
|
loc: None,
|
|
};
|
|
(fun_def, class_def, signature, exn_type)
|
|
}
|
|
|
|
/// Creates a NumPy [`TopLevelDef`] function by code generation.
|
|
///
|
|
/// * `name`: The name of the implemented NumPy function.
|
|
/// * `ret_ty`: The return type of this function.
|
|
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
|
|
/// [parameter type][Type] and the parameter symbol name.
|
|
/// * `codegen_callback`: A lambda generating LLVM IR for the implementation of this function.
|
|
fn create_fn_by_codegen(
|
|
unifier: &mut Unifier,
|
|
var_map: &VarMap,
|
|
name: &'static str,
|
|
ret_ty: Type,
|
|
param_ty: &[(Type, &'static str)],
|
|
codegen_callback: Box<GenCallCallback>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name: name.into(),
|
|
simple_name: name.into(),
|
|
signature: unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: param_ty
|
|
.iter()
|
|
.map(|p| FuncArg {
|
|
name: p.1.into(),
|
|
ty: p.0,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
})
|
|
.collect(),
|
|
ret: ret_ty,
|
|
vars: var_map.clone(),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(codegen_callback))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Creates a NumPy [`TopLevelDef`] function using an LLVM intrinsic.
|
|
///
|
|
/// * `name`: The name of the implemented NumPy function.
|
|
/// * `ret_ty`: The return type of this function.
|
|
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
|
|
/// [parameter type][Type] and the parameter symbol name.
|
|
/// * `intrinsic_fn`: The fully-qualified name of the LLVM intrinsic function.
|
|
fn create_fn_by_intrinsic(
|
|
unifier: &mut Unifier,
|
|
var_map: &VarMap,
|
|
name: &'static str,
|
|
ret_ty: Type,
|
|
params: &[(Type, &'static str)],
|
|
intrinsic_fn: &'static str,
|
|
) -> TopLevelDef {
|
|
let param_tys = params.iter().map(|p| p.0).collect_vec();
|
|
|
|
create_fn_by_codegen(
|
|
unifier,
|
|
var_map,
|
|
name,
|
|
ret_ty,
|
|
params,
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
|
|
|
|
assert!(param_tys
|
|
.iter()
|
|
.zip(&args_ty)
|
|
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
|
|
|
|
let args_val = args_ty
|
|
.iter()
|
|
.zip_eq(args.iter())
|
|
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
|
|
.map_into::<BasicMetadataValueEnum>()
|
|
.collect_vec();
|
|
|
|
let intrinsic_fn = ctx.module.get_function(intrinsic_fn).unwrap_or_else(|| {
|
|
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
|
|
let param_llvm_ty = param_tys
|
|
.iter()
|
|
.map(|p| ctx.get_llvm_abi_type(generator, *p))
|
|
.map_into::<BasicMetadataTypeEnum>()
|
|
.collect_vec();
|
|
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
|
|
|
|
ctx.module.add_function(intrinsic_fn, fn_type, None)
|
|
});
|
|
|
|
let val = ctx
|
|
.builder
|
|
.build_call(intrinsic_fn, args_val.as_slice(), name)
|
|
.map(CallSiteValue::try_as_basic_value)
|
|
.map(Either::unwrap_left)
|
|
.unwrap();
|
|
Ok(val.into())
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Creates a unary NumPy [`TopLevelDef`] function using an extern function (e.g. from `libc` or
|
|
/// `libm`).
|
|
///
|
|
/// * `name`: The name of the implemented NumPy function.
|
|
/// * `ret_ty`: The return type of this function.
|
|
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
|
|
/// [parameter type][Type] and the parameter symbol name.
|
|
/// * `extern_fn`: The fully-qualified name of the extern function used as the implementation.
|
|
/// * `attrs`: The list of attributes to apply to this function declaration. Note that `nounwind` is
|
|
/// already implied by the C ABI.
|
|
fn create_fn_by_extern(
|
|
unifier: &mut Unifier,
|
|
var_map: &VarMap,
|
|
name: &'static str,
|
|
ret_ty: Type,
|
|
params: &[(Type, &'static str)],
|
|
extern_fn: &'static str,
|
|
attrs: &'static [&str],
|
|
) -> TopLevelDef {
|
|
let param_tys = params.iter().map(|p| p.0).collect_vec();
|
|
|
|
create_fn_by_codegen(
|
|
unifier,
|
|
var_map,
|
|
name,
|
|
ret_ty,
|
|
params,
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
|
|
|
|
assert!(param_tys
|
|
.iter()
|
|
.zip(&args_ty)
|
|
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
|
|
|
|
let args_val = args_ty
|
|
.iter()
|
|
.zip_eq(args.iter())
|
|
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
|
|
.map_into::<BasicMetadataValueEnum>()
|
|
.collect_vec();
|
|
|
|
let intrinsic_fn = ctx.module.get_function(extern_fn).unwrap_or_else(|| {
|
|
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
|
|
let param_llvm_ty = param_tys
|
|
.iter()
|
|
.map(|p| ctx.get_llvm_abi_type(generator, *p))
|
|
.map_into::<BasicMetadataTypeEnum>()
|
|
.collect_vec();
|
|
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
|
|
let func = ctx.module.add_function(extern_fn, fn_type, None);
|
|
func.add_attribute(
|
|
AttributeLoc::Function,
|
|
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
|
|
);
|
|
|
|
for attr in attrs {
|
|
func.add_attribute(
|
|
AttributeLoc::Function,
|
|
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
|
);
|
|
}
|
|
|
|
func
|
|
});
|
|
|
|
let val = ctx
|
|
.builder
|
|
.build_call(intrinsic_fn, &args_val, name)
|
|
.map(CallSiteValue::try_as_basic_value)
|
|
.map(Either::unwrap_left)
|
|
.unwrap();
|
|
Ok(val.into())
|
|
}),
|
|
)
|
|
}
|
|
|
|
pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> BuiltinInfo {
|
|
BuiltinBuilder::new(unifier, primitives)
|
|
.build_all_builtins()
|
|
.into_iter()
|
|
.map(|tld| {
|
|
let tld = Arc::new(RwLock::new(tld));
|
|
let ast = None;
|
|
(tld, ast)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// A helper enum used by [`BuiltinBuilder`]
|
|
#[derive(Clone, Copy)]
|
|
enum SizeVariant {
|
|
Bits32,
|
|
Bits64,
|
|
}
|
|
|
|
impl SizeVariant {
|
|
fn of_int(self, primitives: &PrimitiveStore) -> Type {
|
|
match self {
|
|
SizeVariant::Bits32 => primitives.int32,
|
|
SizeVariant::Bits64 => primitives.int64,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct BuiltinBuilder<'a> {
|
|
unifier: &'a mut Unifier,
|
|
primitives: &'a PrimitiveStore,
|
|
|
|
is_some_ty: (Type, bool),
|
|
unwrap_ty: (Type, bool),
|
|
option_tvar: TypeVar,
|
|
|
|
list_tvar: TypeVar,
|
|
|
|
ndarray_dtype_tvar: TypeVar,
|
|
ndarray_ndims_tvar: TypeVar,
|
|
ndarray_copy_ty: (Type, bool),
|
|
ndarray_fill_ty: (Type, bool),
|
|
|
|
list_int32: Type,
|
|
|
|
num_ty: TypeVar,
|
|
num_var_map: VarMap,
|
|
|
|
ndarray_float: Type,
|
|
ndarray_float_2d: Type,
|
|
ndarray_num_ty: Type,
|
|
|
|
float_or_ndarray_ty: TypeVar,
|
|
float_or_ndarray_var_map: VarMap,
|
|
|
|
num_or_ndarray_ty: TypeVar,
|
|
num_or_ndarray_var_map: VarMap,
|
|
|
|
/// See [`BuiltinBuilder::build_ndarray_from_shape_factory_function`]
|
|
ndarray_factory_fn_shape_arg_tvar: TypeVar,
|
|
}
|
|
|
|
impl<'a> BuiltinBuilder<'a> {
|
|
fn new(unifier: &'a mut Unifier, primitives: &'a PrimitiveStore) -> BuiltinBuilder<'a> {
|
|
let PrimitiveStore {
|
|
int32,
|
|
int64,
|
|
uint32,
|
|
uint64,
|
|
float,
|
|
bool: boolean,
|
|
ndarray,
|
|
option,
|
|
..
|
|
} = *primitives;
|
|
|
|
// Option-related
|
|
let (is_some_ty, unwrap_ty, option_tvar) =
|
|
if let TypeEnum::TObj { fields, params, .. } = unifier.get_ty(option).as_ref() {
|
|
(
|
|
*fields.get(&PrimDef::FunOptionIsSome.simple_name().into()).unwrap(),
|
|
*fields.get(&PrimDef::FunOptionUnwrap.simple_name().into()).unwrap(),
|
|
iter_type_vars(params).next().unwrap(),
|
|
)
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
|
|
let TypeEnum::TObj { fields: ndarray_fields, params: ndarray_params, .. } =
|
|
&*unifier.get_ty(ndarray)
|
|
else {
|
|
unreachable!()
|
|
};
|
|
let ndarray_dtype_tvar = iter_type_vars(ndarray_params).next().unwrap();
|
|
let ndarray_ndims_tvar = iter_type_vars(ndarray_params).nth(1).unwrap();
|
|
let ndarray_copy_ty =
|
|
*ndarray_fields.get(&PrimDef::FunNDArrayCopy.simple_name().into()).unwrap();
|
|
let ndarray_fill_ty =
|
|
*ndarray_fields.get(&PrimDef::FunNDArrayFill.simple_name().into()).unwrap();
|
|
|
|
let num_ty = unifier.get_fresh_var_with_range(
|
|
&[int32, int64, float, boolean, uint32, uint64],
|
|
Some("N".into()),
|
|
None,
|
|
);
|
|
let num_var_map = into_var_map([num_ty]);
|
|
|
|
let ndarray_float = make_ndarray_ty(unifier, primitives, Some(float), None);
|
|
let ndarray_float_2d = {
|
|
let value = match primitives.size_t {
|
|
64 => SymbolValue::U64(2u64),
|
|
32 => SymbolValue::U32(2u32),
|
|
_ => unreachable!(),
|
|
};
|
|
let ndims = unifier.add_ty(TypeEnum::TLiteral { values: vec![value], loc: None });
|
|
|
|
make_ndarray_ty(unifier, primitives, Some(float), Some(ndims))
|
|
};
|
|
|
|
let ndarray_num_ty = make_ndarray_ty(unifier, primitives, Some(num_ty.ty), None);
|
|
let float_or_ndarray_ty =
|
|
unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None);
|
|
let float_or_ndarray_var_map = into_var_map([float_or_ndarray_ty]);
|
|
|
|
let num_or_ndarray_ty =
|
|
unifier.get_fresh_var_with_range(&[num_ty.ty, ndarray_num_ty], Some("T".into()), None);
|
|
let num_or_ndarray_var_map = into_var_map([num_ty, num_or_ndarray_ty]);
|
|
|
|
let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } =
|
|
&*unifier.get_ty_immutable(primitives.list)
|
|
{
|
|
assert_eq!(*obj_id, PrimDef::List.id());
|
|
iter_type_vars(params).nth(0).unwrap()
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
let list_int32 = unifier
|
|
.subst(primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty: int32 }]))
|
|
.unwrap();
|
|
|
|
let ndarray_factory_fn_shape_arg_tvar = unifier.get_fresh_var(Some("Shape".into()), None);
|
|
|
|
BuiltinBuilder {
|
|
unifier,
|
|
primitives,
|
|
|
|
is_some_ty,
|
|
unwrap_ty,
|
|
option_tvar,
|
|
|
|
list_tvar,
|
|
|
|
ndarray_dtype_tvar,
|
|
ndarray_ndims_tvar,
|
|
ndarray_copy_ty,
|
|
ndarray_fill_ty,
|
|
|
|
list_int32,
|
|
|
|
num_ty,
|
|
num_var_map,
|
|
|
|
ndarray_float,
|
|
ndarray_float_2d,
|
|
ndarray_num_ty,
|
|
|
|
float_or_ndarray_ty,
|
|
float_or_ndarray_var_map,
|
|
|
|
num_or_ndarray_ty,
|
|
num_or_ndarray_var_map,
|
|
|
|
ndarray_factory_fn_shape_arg_tvar,
|
|
}
|
|
}
|
|
|
|
/// Construct every function from every [`PrimDef`], in the order of [`PrimDef`]'s definition.
|
|
fn build_all_builtins(&mut self) -> Vec<TopLevelDef> {
|
|
PrimDef::iter().map(|prim| self.build_builtin_of_prim(prim)).collect_vec()
|
|
}
|
|
|
|
/// Build the [`TopLevelDef`] associated of a [`PrimDef`].
|
|
fn build_builtin_of_prim(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
let tld = match prim {
|
|
PrimDef::Int32
|
|
| PrimDef::Int64
|
|
| PrimDef::UInt32
|
|
| PrimDef::UInt64
|
|
| PrimDef::Float
|
|
| PrimDef::Bool
|
|
| PrimDef::Str
|
|
| PrimDef::None => Self::build_simple_primitive_class(prim),
|
|
|
|
PrimDef::Range | PrimDef::FunRangeInit => self.build_range_class_related(prim),
|
|
|
|
PrimDef::Exception => self.build_exception_class_related(prim),
|
|
|
|
PrimDef::Option
|
|
| PrimDef::FunOptionIsSome
|
|
| PrimDef::FunOptionIsNone
|
|
| PrimDef::FunOptionUnwrap
|
|
| PrimDef::FunSome => self.build_option_class_related(prim),
|
|
|
|
PrimDef::List => self.build_list_class_related(prim),
|
|
|
|
PrimDef::NDArray | PrimDef::FunNDArrayCopy | PrimDef::FunNDArrayFill => {
|
|
self.build_ndarray_class_related(prim)
|
|
}
|
|
|
|
PrimDef::FunInt32
|
|
| PrimDef::FunInt64
|
|
| PrimDef::FunUInt32
|
|
| PrimDef::FunUInt64
|
|
| PrimDef::FunFloat
|
|
| PrimDef::FunBool => self.build_cast_function(prim),
|
|
|
|
PrimDef::FunNpNDArray
|
|
| PrimDef::FunNpEmpty
|
|
| PrimDef::FunNpZeros
|
|
| PrimDef::FunNpOnes => self.build_ndarray_from_shape_factory_function(prim),
|
|
|
|
PrimDef::FunNpArray
|
|
| PrimDef::FunNpFull
|
|
| PrimDef::FunNpEye
|
|
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
|
|
|
|
PrimDef::FunStr => self.build_str_function(),
|
|
|
|
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
|
|
self.build_ceil_floor_function(prim)
|
|
}
|
|
|
|
PrimDef::FunAbs => self.build_abs_function(),
|
|
|
|
PrimDef::FunRound | PrimDef::FunRound64 => self.build_round_function(prim),
|
|
|
|
PrimDef::FunNpFloor | PrimDef::FunNpCeil => self.build_np_ceil_floor_function(prim),
|
|
|
|
PrimDef::FunNpRound => self.build_np_round_function(),
|
|
|
|
PrimDef::FunLen => self.build_len_function(),
|
|
|
|
PrimDef::FunMin | PrimDef::FunMax => self.build_min_max_function(prim),
|
|
|
|
PrimDef::FunNpArgmin | PrimDef::FunNpArgmax | PrimDef::FunNpMin | PrimDef::FunNpMax => {
|
|
self.build_np_max_min_function(prim)
|
|
}
|
|
|
|
PrimDef::FunNpMinimum | PrimDef::FunNpMaximum => {
|
|
self.build_np_minimum_maximum_function(prim)
|
|
}
|
|
|
|
PrimDef::FunNpIsNan | PrimDef::FunNpIsInf => self.build_np_float_to_bool_function(prim),
|
|
|
|
PrimDef::FunNpSin
|
|
| PrimDef::FunNpCos
|
|
| PrimDef::FunNpTan
|
|
| PrimDef::FunNpArcsin
|
|
| PrimDef::FunNpArccos
|
|
| PrimDef::FunNpArctan
|
|
| PrimDef::FunNpSinh
|
|
| PrimDef::FunNpCosh
|
|
| PrimDef::FunNpTanh
|
|
| PrimDef::FunNpArcsinh
|
|
| PrimDef::FunNpArccosh
|
|
| PrimDef::FunNpArctanh
|
|
| PrimDef::FunNpExp
|
|
| PrimDef::FunNpExp2
|
|
| PrimDef::FunNpExpm1
|
|
| PrimDef::FunNpLog
|
|
| PrimDef::FunNpLog2
|
|
| PrimDef::FunNpLog10
|
|
| PrimDef::FunNpSqrt
|
|
| PrimDef::FunNpCbrt
|
|
| PrimDef::FunNpFabs
|
|
| PrimDef::FunNpRint
|
|
| PrimDef::FunSpSpecErf
|
|
| PrimDef::FunSpSpecErfc
|
|
| PrimDef::FunSpSpecGamma
|
|
| PrimDef::FunSpSpecGammaln
|
|
| PrimDef::FunSpSpecJ0
|
|
| PrimDef::FunSpSpecJ1 => self.build_np_sp_float_or_ndarray_1ary_function(prim),
|
|
|
|
PrimDef::FunNpArctan2
|
|
| PrimDef::FunNpCopysign
|
|
| PrimDef::FunNpFmax
|
|
| PrimDef::FunNpFmin
|
|
| PrimDef::FunNpLdExp
|
|
| PrimDef::FunNpHypot
|
|
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
|
|
|
|
PrimDef::FunNpTranspose | PrimDef::FunNpReshape => {
|
|
self.build_np_sp_ndarray_function(prim)
|
|
}
|
|
|
|
PrimDef::FunNpDot
|
|
| PrimDef::FunNpLinalgCholesky
|
|
| PrimDef::FunNpLinalgQr
|
|
| PrimDef::FunNpLinalgSvd
|
|
| PrimDef::FunNpLinalgInv
|
|
| PrimDef::FunNpLinalgPinv
|
|
| PrimDef::FunNpLinalgMatrixPower
|
|
| PrimDef::FunNpLinalgDet
|
|
| PrimDef::FunSpLinalgLu
|
|
| PrimDef::FunSpLinalgSchur
|
|
| PrimDef::FunSpLinalgHessenberg => self.build_linalg_methods(prim),
|
|
};
|
|
|
|
if cfg!(debug_assertions) {
|
|
// Sanity checks on the constructed [`TopLevelDef`]
|
|
|
|
match (&tld, prim.details()) {
|
|
(
|
|
TopLevelDef::Class { name, object_id, .. },
|
|
PrimDefDetails::PrimClass { name: exp_name, .. },
|
|
) => {
|
|
let exp_object_id = prim.id();
|
|
assert_eq!(name, &exp_name.into());
|
|
assert_eq!(object_id, &exp_object_id);
|
|
}
|
|
(
|
|
TopLevelDef::Function { name, simple_name, .. },
|
|
PrimDefDetails::PrimFunction { name: exp_name, simple_name: exp_simple_name },
|
|
) => {
|
|
assert_eq!(name, exp_name);
|
|
assert_eq!(simple_name, &exp_simple_name.into());
|
|
}
|
|
_ => {
|
|
panic!("Class/function variant of the constructed TopLevelDef of PrimDef {prim:?} is different than what is defined by {prim:?}")
|
|
}
|
|
}
|
|
}
|
|
|
|
tld
|
|
}
|
|
|
|
/// Build "simple" primitive classes.
|
|
fn build_simple_primitive_class(prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[
|
|
PrimDef::Int32,
|
|
PrimDef::Int64,
|
|
PrimDef::UInt32,
|
|
PrimDef::UInt64,
|
|
PrimDef::Float,
|
|
PrimDef::Bool,
|
|
PrimDef::Str,
|
|
PrimDef::None,
|
|
],
|
|
);
|
|
|
|
TopLevelComposer::make_top_level_class_def(prim.id(), None, prim.name().into(), None, None)
|
|
}
|
|
|
|
fn build_range_class_related(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::Range, PrimDef::FunRangeInit]);
|
|
|
|
let PrimitiveStore { int32, range, .. } = *self.primitives;
|
|
|
|
let make_ctor_signature = |unifier: &mut Unifier| {
|
|
unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![
|
|
FuncArg {
|
|
name: "start".into(),
|
|
ty: int32,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "stop".into(),
|
|
ty: int32,
|
|
// placeholder
|
|
default_value: Some(SymbolValue::I32(0)),
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "step".into(),
|
|
ty: int32,
|
|
default_value: Some(SymbolValue::I32(1)),
|
|
is_vararg: false,
|
|
},
|
|
],
|
|
ret: range,
|
|
vars: VarMap::default(),
|
|
}))
|
|
};
|
|
|
|
match prim {
|
|
PrimDef::Range => {
|
|
let fields = vec![
|
|
("start".into(), int32, true),
|
|
("stop".into(), int32, true),
|
|
("step".into(), int32, true),
|
|
];
|
|
let ctor_signature = make_ctor_signature(self.unifier);
|
|
|
|
TopLevelDef::Class {
|
|
name: prim.name().into(),
|
|
object_id: prim.id(),
|
|
type_vars: Vec::default(),
|
|
fields,
|
|
attributes: Vec::default(),
|
|
methods: vec![("__init__".into(), ctor_signature, PrimDef::FunRangeInit.id())],
|
|
ancestors: Vec::default(),
|
|
constructor: Some(ctor_signature),
|
|
resolver: None,
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
PrimDef::FunRangeInit => TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: make_ctor_signature(self.unifier),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, obj, _, args, generator| {
|
|
let (zelf_ty, zelf) = obj.unwrap();
|
|
let zelf =
|
|
zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value();
|
|
let zelf = RangeValue::from_ptr_val(zelf, Some("range"));
|
|
|
|
let mut start = None;
|
|
let mut stop = None;
|
|
let mut step = None;
|
|
let int32 = ctx.ctx.i32_type();
|
|
let ty_i32 = ctx.primitives.int32;
|
|
for (i, arg) in args.iter().enumerate() {
|
|
if arg.0 == Some("start".into()) {
|
|
start = Some(
|
|
arg.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ty_i32)?
|
|
.into_int_value(),
|
|
);
|
|
} else if arg.0 == Some("stop".into()) {
|
|
stop = Some(
|
|
arg.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ty_i32)?
|
|
.into_int_value(),
|
|
);
|
|
} else if arg.0 == Some("step".into()) {
|
|
step = Some(
|
|
arg.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ty_i32)?
|
|
.into_int_value(),
|
|
);
|
|
} else if i == 0 {
|
|
start = Some(
|
|
arg.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ty_i32)?
|
|
.into_int_value(),
|
|
);
|
|
} else if i == 1 {
|
|
stop = Some(
|
|
arg.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ty_i32)?
|
|
.into_int_value(),
|
|
);
|
|
} else if i == 2 {
|
|
step = Some(
|
|
arg.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, ty_i32)?
|
|
.into_int_value(),
|
|
);
|
|
}
|
|
}
|
|
let step = match step {
|
|
Some(step) => {
|
|
// assert step != 0, throw exception if not
|
|
let not_zero = ctx
|
|
.builder
|
|
.build_int_compare(
|
|
IntPredicate::NE,
|
|
step,
|
|
step.get_type().const_zero(),
|
|
"range_step_ne",
|
|
)
|
|
.unwrap();
|
|
ctx.make_assert(
|
|
generator,
|
|
not_zero,
|
|
"0:ValueError",
|
|
"range() step must not be zero",
|
|
[None, None, None],
|
|
ctx.current_loc,
|
|
);
|
|
step
|
|
}
|
|
None => int32.const_int(1, false),
|
|
};
|
|
let stop = stop.unwrap_or_else(|| {
|
|
let v = start.unwrap();
|
|
start = None;
|
|
v
|
|
});
|
|
let start = start.unwrap_or_else(|| int32.const_zero());
|
|
|
|
zelf.store_start(ctx, start);
|
|
zelf.store_end(ctx, stop);
|
|
zelf.store_step(ctx, step);
|
|
|
|
Ok(Some(zelf.as_base_value().into()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
},
|
|
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Build the class `Exception` and its associated methods.
|
|
fn build_exception_class_related(&self, prim: PrimDef) -> TopLevelDef {
|
|
// NOTE: currently only contains the class `Exception`
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::Exception]);
|
|
|
|
let PrimitiveStore { int32, int64, str, .. } = *self.primitives;
|
|
|
|
match prim {
|
|
PrimDef::Exception => TopLevelDef::Class {
|
|
name: prim.name().into(),
|
|
object_id: prim.id(),
|
|
type_vars: Vec::default(),
|
|
fields: make_exception_fields(int32, int64, str),
|
|
attributes: Vec::default(),
|
|
methods: Vec::default(),
|
|
ancestors: vec![],
|
|
constructor: None,
|
|
resolver: None,
|
|
loc: None,
|
|
},
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Build the class `Option`, its associated methods and the function `Some()`.
|
|
fn build_option_class_related(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[
|
|
PrimDef::Option,
|
|
PrimDef::FunOptionIsSome,
|
|
PrimDef::FunOptionIsNone,
|
|
PrimDef::FunOptionUnwrap,
|
|
PrimDef::FunSome,
|
|
],
|
|
);
|
|
|
|
match prim {
|
|
PrimDef::Option => TopLevelDef::Class {
|
|
name: prim.name().into(),
|
|
object_id: prim.id(),
|
|
type_vars: vec![self.option_tvar.ty],
|
|
fields: Vec::default(),
|
|
attributes: Vec::default(),
|
|
methods: vec![
|
|
Self::create_method(PrimDef::FunOptionIsSome, self.is_some_ty.0),
|
|
Self::create_method(PrimDef::FunOptionIsNone, self.is_some_ty.0),
|
|
Self::create_method(PrimDef::FunOptionUnwrap, self.unwrap_ty.0),
|
|
],
|
|
ancestors: vec![TypeAnnotation::CustomClass {
|
|
id: prim.id(),
|
|
params: Vec::default(),
|
|
}],
|
|
constructor: None,
|
|
resolver: None,
|
|
loc: None,
|
|
},
|
|
|
|
PrimDef::FunOptionUnwrap => TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unwrap_ty.0,
|
|
var_id: vec![self.option_tvar.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::create_dummy(String::from(
|
|
"handled in gen_expr",
|
|
)))),
|
|
loc: None,
|
|
},
|
|
|
|
PrimDef::FunOptionIsNone | PrimDef::FunOptionIsSome => TopLevelDef::Function {
|
|
name: prim.name().to_string(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.is_some_ty.0,
|
|
var_id: vec![self.option_tvar.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
move |ctx, obj, _, _, generator| {
|
|
let expect_ty = obj.clone().unwrap().0;
|
|
let obj_val = obj
|
|
.unwrap()
|
|
.1
|
|
.clone()
|
|
.to_basic_value_enum(ctx, generator, expect_ty)?;
|
|
let BasicValueEnum::PointerValue(ptr) = obj_val else {
|
|
unreachable!("option must be ptr")
|
|
};
|
|
|
|
let returned_int = match prim {
|
|
PrimDef::FunOptionIsNone => {
|
|
ctx.builder.build_is_null(ptr, prim.simple_name())
|
|
}
|
|
PrimDef::FunOptionIsSome => {
|
|
ctx.builder.build_is_not_null(ptr, prim.simple_name())
|
|
}
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(returned_int.map(Into::into).unwrap()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
},
|
|
|
|
PrimDef::FunSome => TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![FuncArg {
|
|
name: "n".into(),
|
|
ty: self.option_tvar.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
}],
|
|
ret: self.primitives.option,
|
|
vars: into_var_map([self.option_tvar]),
|
|
})),
|
|
var_id: vec![self.option_tvar.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg_val =
|
|
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
let alloca = generator
|
|
.gen_var_alloc(ctx, arg_val.get_type(), Some("alloca_some"))
|
|
.unwrap();
|
|
ctx.builder.build_store(alloca, arg_val).unwrap();
|
|
Ok(Some(alloca.into()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
},
|
|
|
|
_ => {
|
|
unreachable!()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn build_list_class_related(&self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::List]);
|
|
|
|
match prim {
|
|
PrimDef::List => TopLevelDef::Class {
|
|
name: prim.name().into(),
|
|
object_id: prim.id(),
|
|
type_vars: vec![self.list_tvar.ty],
|
|
fields: Vec::default(),
|
|
attributes: Vec::default(),
|
|
methods: Vec::default(),
|
|
ancestors: Vec::default(),
|
|
constructor: None,
|
|
resolver: None,
|
|
loc: None,
|
|
},
|
|
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Build the class `ndarray` and its associated methods.
|
|
fn build_ndarray_class_related(&self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[PrimDef::NDArray, PrimDef::FunNDArrayCopy, PrimDef::FunNDArrayFill],
|
|
);
|
|
|
|
match prim {
|
|
PrimDef::NDArray => TopLevelDef::Class {
|
|
name: prim.name().into(),
|
|
object_id: prim.id(),
|
|
type_vars: vec![self.ndarray_dtype_tvar.ty, self.ndarray_ndims_tvar.ty],
|
|
fields: Vec::default(),
|
|
attributes: Vec::default(),
|
|
methods: vec![
|
|
Self::create_method(PrimDef::FunNDArrayCopy, self.ndarray_copy_ty.0),
|
|
Self::create_method(PrimDef::FunNDArrayFill, self.ndarray_fill_ty.0),
|
|
],
|
|
ancestors: Vec::default(),
|
|
constructor: None,
|
|
resolver: None,
|
|
loc: None,
|
|
},
|
|
|
|
PrimDef::FunNDArrayCopy => TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.ndarray_copy_ty.0,
|
|
var_id: vec![self.ndarray_dtype_tvar.id, self.ndarray_ndims_tvar.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, obj, fun, args, generator| {
|
|
gen_ndarray_copy(ctx, &obj, fun, &args, generator)
|
|
.map(|val| Some(val.as_basic_value_enum()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
},
|
|
|
|
PrimDef::FunNDArrayFill => TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.ndarray_fill_ty.0,
|
|
var_id: vec![self.ndarray_dtype_tvar.id, self.ndarray_ndims_tvar.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, obj, fun, args, generator| {
|
|
gen_ndarray_fill(ctx, &obj, fun, &args, generator)?;
|
|
Ok(None)
|
|
},
|
|
)))),
|
|
loc: None,
|
|
},
|
|
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Build functions that cast a numeric primitive to another numeric primitive, including booleans.
|
|
fn build_cast_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[
|
|
PrimDef::FunInt32,
|
|
PrimDef::FunInt64,
|
|
PrimDef::FunUInt32,
|
|
PrimDef::FunUInt64,
|
|
PrimDef::FunFloat,
|
|
PrimDef::FunBool,
|
|
],
|
|
);
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![FuncArg {
|
|
name: "n".into(),
|
|
ty: self.num_or_ndarray_ty.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
}],
|
|
ret: self.num_or_ndarray_ty.ty,
|
|
vars: self.num_or_ndarray_var_map.clone(),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunInt32 => builtin_fns::call_int32,
|
|
PrimDef::FunInt64 => builtin_fns::call_int64,
|
|
PrimDef::FunUInt32 => builtin_fns::call_uint32,
|
|
PrimDef::FunUInt64 => builtin_fns::call_uint64,
|
|
PrimDef::FunFloat => builtin_fns::call_float,
|
|
PrimDef::FunBool => builtin_fns::call_bool,
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(func(generator, ctx, (arg_ty, arg))?))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build the functions `round()` and `round64()`.
|
|
fn build_round_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunRound, PrimDef::FunRound64]);
|
|
|
|
let float = self.primitives.float;
|
|
|
|
let size_variant = match prim {
|
|
PrimDef::FunRound => SizeVariant::Bits32,
|
|
PrimDef::FunRound64 => SizeVariant::Bits64,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let common_ndim = self.unifier.get_fresh_const_generic_var(
|
|
self.primitives.usize(),
|
|
Some("N".into()),
|
|
None,
|
|
);
|
|
|
|
// The size variant of the function determines the size of the returned int.
|
|
let int_sized = size_variant.of_int(self.primitives);
|
|
|
|
let ndarray_int_sized =
|
|
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
|
|
let ndarray_float =
|
|
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
|
|
|
|
let p0_ty =
|
|
self.unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None);
|
|
let ret_ty = self.unifier.get_fresh_var_with_range(
|
|
&[int_sized, ndarray_int_sized],
|
|
Some("R".into()),
|
|
None,
|
|
);
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&into_var_map([common_ndim, p0_ty, ret_ty]),
|
|
prim.name(),
|
|
ret_ty.ty,
|
|
&[(p0_ty.ty, "n")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
|
|
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
|
|
Ok(Some(builtin_fns::call_round(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build the functions `ceil()` and `floor()` and their 64 bit variants.
|
|
fn build_ceil_floor_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
#[derive(Clone, Copy)]
|
|
enum Kind {
|
|
Floor,
|
|
Ceil,
|
|
}
|
|
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[PrimDef::FunFloor, PrimDef::FunFloor64, PrimDef::FunCeil, PrimDef::FunCeil64],
|
|
);
|
|
|
|
let (size_variant, kind) = {
|
|
match prim {
|
|
PrimDef::FunFloor => (SizeVariant::Bits32, Kind::Floor),
|
|
PrimDef::FunFloor64 => (SizeVariant::Bits64, Kind::Floor),
|
|
PrimDef::FunCeil => (SizeVariant::Bits32, Kind::Ceil),
|
|
PrimDef::FunCeil64 => (SizeVariant::Bits64, Kind::Ceil),
|
|
_ => unreachable!(),
|
|
}
|
|
};
|
|
|
|
let float = self.primitives.float;
|
|
|
|
let common_ndim = self.unifier.get_fresh_const_generic_var(
|
|
self.primitives.usize(),
|
|
Some("N".into()),
|
|
None,
|
|
);
|
|
|
|
let ndarray_float =
|
|
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
|
|
|
|
// The size variant of the function determines the type of int returned
|
|
let int_sized = size_variant.of_int(self.primitives);
|
|
let ndarray_int_sized =
|
|
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
|
|
|
|
let p0_ty =
|
|
self.unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None);
|
|
|
|
let ret_ty = self.unifier.get_fresh_var_with_range(
|
|
&[int_sized, ndarray_int_sized],
|
|
Some("R".into()),
|
|
None,
|
|
);
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&into_var_map([common_ndim, p0_ty, ret_ty]),
|
|
prim.name(),
|
|
ret_ty.ty,
|
|
&[(p0_ty.ty, "n")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
|
|
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
|
|
let func = match kind {
|
|
Kind::Ceil => builtin_fns::call_ceil,
|
|
Kind::Floor => builtin_fns::call_floor,
|
|
};
|
|
Ok(Some(func(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build ndarray factory functions that only take in an argument `shape`.
|
|
///
|
|
/// `shape` can be a tuple of int32s, a list of int32s, or a scalar int32.
|
|
fn build_ndarray_from_shape_factory_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[PrimDef::FunNpNDArray, PrimDef::FunNpEmpty, PrimDef::FunNpZeros, PrimDef::FunNpOnes],
|
|
);
|
|
|
|
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
|
// the `param_ty` for `create_fn_by_codegen`.
|
|
//
|
|
// Ideally, we should have created a [`TypeVar`] to define all possible input
|
|
// types for the parameter "shape" like so:
|
|
// ```rust
|
|
// self.unifier.get_fresh_var_with_range(
|
|
// &[int32, list_int32, /* and more... */],
|
|
// Some("T".into()), None)
|
|
// )
|
|
// ```
|
|
//
|
|
// However, there is (currently) no way to type a tuple of arbitrary length in `nac3core`.
|
|
//
|
|
// And this is the best we could do:
|
|
// ```rust
|
|
// &[ int32, list_int32, tuple_1_int32, tuple_2_int32, tuple_3_int32, ... ],
|
|
// ```
|
|
//
|
|
// But this is not ideal.
|
|
//
|
|
// Instead, we delegate the responsibility of typechecking
|
|
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
|
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
self.ndarray_float,
|
|
&[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
|
Box::new(move |ctx, obj, fun, args, generator| {
|
|
let func = match prim {
|
|
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
|
PrimDef::FunNpZeros => gen_ndarray_zeros,
|
|
PrimDef::FunNpOnes => gen_ndarray_ones,
|
|
_ => unreachable!(),
|
|
};
|
|
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build ndarray factory functions that do not fit in any other `build_ndarray_*_factory_function` categories in [`BuiltinBuilder`].
|
|
///
|
|
/// See also [`BuiltinBuilder::build_ndarray_from_shape_factory_function`].
|
|
fn build_ndarray_other_factory_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[PrimDef::FunNpArray, PrimDef::FunNpFull, PrimDef::FunNpEye, PrimDef::FunNpIdentity],
|
|
);
|
|
|
|
let PrimitiveStore { int32, bool, ndarray, .. } = *self.primitives;
|
|
|
|
match prim {
|
|
PrimDef::FunNpArray => {
|
|
let tv = self.unifier.get_fresh_var(Some("T".into()), None);
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![
|
|
FuncArg {
|
|
name: "object".into(),
|
|
ty: tv.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "copy".into(),
|
|
ty: bool,
|
|
default_value: Some(SymbolValue::Bool(true)),
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "ndmin".into(),
|
|
ty: int32,
|
|
default_value: Some(SymbolValue::U32(0)),
|
|
is_vararg: false,
|
|
},
|
|
],
|
|
ret: ndarray,
|
|
vars: into_var_map([tv]),
|
|
})),
|
|
var_id: vec![tv.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, obj, fun, args, generator| {
|
|
gen_ndarray_array(ctx, &obj, fun, &args, generator)
|
|
.map(|val| Some(val.as_basic_value_enum()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
PrimDef::FunNpFull => {
|
|
let tv = self.unifier.get_fresh_var(Some("T".into()), None);
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&into_var_map([tv]),
|
|
prim.name(),
|
|
self.primitives.ndarray,
|
|
// We are using List[int32] here, as I don't know a way to specify an n-tuple bound on a
|
|
// type variable
|
|
&[(self.list_int32, "shape"), (tv.ty, "fill_value")],
|
|
Box::new(move |ctx, obj, fun, args, generator| {
|
|
gen_ndarray_full(ctx, &obj, fun, &args, generator)
|
|
.map(|val| Some(val.as_basic_value_enum()))
|
|
}),
|
|
)
|
|
}
|
|
PrimDef::FunNpEye => {
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![
|
|
FuncArg {
|
|
name: "N".into(),
|
|
ty: int32,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
// TODO(Derppening): Default values current do not work?
|
|
FuncArg {
|
|
name: "M".into(),
|
|
ty: int32,
|
|
default_value: Some(SymbolValue::OptionNone),
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "k".into(),
|
|
ty: int32,
|
|
default_value: Some(SymbolValue::I32(0)),
|
|
is_vararg: false,
|
|
},
|
|
],
|
|
ret: self.ndarray_float_2d,
|
|
vars: VarMap::default(),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, obj, fun, args, generator| {
|
|
gen_ndarray_eye(ctx, &obj, fun, &args, generator)
|
|
.map(|val| Some(val.as_basic_value_enum()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
PrimDef::FunNpIdentity => create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
self.ndarray_float_2d,
|
|
&[(int32, "n")],
|
|
Box::new(|ctx, obj, fun, args, generator| {
|
|
gen_ndarray_identity(ctx, &obj, fun, &args, generator)
|
|
.map(|val| Some(val.as_basic_value_enum()))
|
|
}),
|
|
),
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Build the `str()` function.
|
|
fn build_str_function(&mut self) -> TopLevelDef {
|
|
let prim = PrimDef::FunStr;
|
|
|
|
let str = self.primitives.str;
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![FuncArg {
|
|
name: "s".into(),
|
|
ty: str,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
}],
|
|
ret: str,
|
|
vars: VarMap::default(),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
Ok(Some(args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build functions `np_ceil()` and `np_floor()`.
|
|
fn build_np_ceil_floor_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpCeil, PrimDef::FunNpFloor]);
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&self.float_or_ndarray_var_map,
|
|
prim.name(),
|
|
self.float_or_ndarray_ty.ty,
|
|
&[(self.float_or_ndarray_ty.ty, "n")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpCeil => builtin_fns::call_ceil,
|
|
PrimDef::FunNpFloor => builtin_fns::call_floor,
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(func(generator, ctx, (arg_ty, arg), ctx.primitives.float)?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build the `np_round()` function.
|
|
fn build_np_round_function(&mut self) -> TopLevelDef {
|
|
let prim = PrimDef::FunNpRound;
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&self.float_or_ndarray_var_map,
|
|
prim.name(),
|
|
self.float_or_ndarray_ty.ty,
|
|
&[(self.float_or_ndarray_ty.ty, "n")],
|
|
Box::new(|ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
Ok(Some(builtin_fns::call_numpy_round(generator, ctx, (arg_ty, arg))?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build the `len()` function.
|
|
fn build_len_function(&mut self) -> TopLevelDef {
|
|
let prim = PrimDef::FunLen;
|
|
|
|
// Type handled in [`Inferencer::try_fold_special_call`]
|
|
let arg_tvar = self.unifier.get_dummy_var();
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![FuncArg {
|
|
name: "obj".into(),
|
|
ty: arg_tvar.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
}],
|
|
ret: self.primitives.int32,
|
|
vars: into_var_map([arg_tvar]),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
|
|
builtin_fns::call_len(generator, ctx, (arg_ty, arg)).map(|ret| Some(ret.into()))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build the functions `min()` and `max()`.
|
|
fn build_min_max_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunMin, PrimDef::FunMax]);
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![
|
|
FuncArg {
|
|
name: "m".into(),
|
|
ty: self.num_ty.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
FuncArg {
|
|
name: "n".into(),
|
|
ty: self.num_ty.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
},
|
|
],
|
|
ret: self.num_ty.ty,
|
|
vars: self.num_var_map.clone(),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
move |ctx, _, fun, args, generator| {
|
|
let m_ty = fun.0.args[0].ty;
|
|
let n_ty = fun.0.args[1].ty;
|
|
let m_val = args[0].1.clone().to_basic_value_enum(ctx, generator, m_ty)?;
|
|
let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunMin => builtin_fns::call_min,
|
|
PrimDef::FunMax => builtin_fns::call_max,
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(func(ctx, (m_ty, m_val), (n_ty, n_val))))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build the functions `np_max()`, `np_min()`, `np_argmax()` and `np_argmin()`
|
|
/// Calls `call_numpy_max_min` with the function name
|
|
fn build_np_max_min_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[PrimDef::FunNpArgmin, PrimDef::FunNpArgmax, PrimDef::FunNpMin, PrimDef::FunNpMax],
|
|
);
|
|
|
|
let (var_map, ret_ty) = match prim {
|
|
PrimDef::FunNpArgmax | PrimDef::FunNpArgmin => {
|
|
(self.num_or_ndarray_var_map.clone(), self.primitives.int64)
|
|
}
|
|
PrimDef::FunNpMax | PrimDef::FunNpMin => {
|
|
let ret_ty = self.unifier.get_fresh_var(Some("R".into()), None);
|
|
let var_map = self
|
|
.num_or_ndarray_var_map
|
|
.clone()
|
|
.into_iter()
|
|
.chain(once((ret_ty.id, ret_ty.ty)))
|
|
.collect::<IndexMap<_, _>>();
|
|
(var_map, ret_ty.ty)
|
|
}
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&var_map,
|
|
prim.name(),
|
|
ret_ty,
|
|
&[(self.num_or_ndarray_ty.ty, "a")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let a_ty = fun.0.args[0].ty;
|
|
let a = args[0].1.clone().to_basic_value_enum(ctx, generator, a_ty)?;
|
|
|
|
Ok(Some(builtin_fns::call_numpy_max_min(generator, ctx, (a_ty, a), prim.name())?))
|
|
}),
|
|
)
|
|
}
|
|
/// Build the functions `np_minimum()` and `np_maximum()`.
|
|
fn build_np_minimum_maximum_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpMinimum, PrimDef::FunNpMaximum]);
|
|
|
|
let x1_ty = self.new_type_or_ndarray_ty(self.num_ty.ty);
|
|
let x2_ty = self.new_type_or_ndarray_ty(self.num_ty.ty);
|
|
let param_ty = &[(x1_ty.ty, "x1"), (x2_ty.ty, "x2")];
|
|
let ret_ty = self.unifier.get_fresh_var(None, None);
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: param_ty
|
|
.iter()
|
|
.map(|p| FuncArg {
|
|
name: p.1.into(),
|
|
ty: p.0,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
})
|
|
.collect(),
|
|
ret: ret_ty.ty,
|
|
vars: into_var_map([x1_ty, x2_ty, ret_ty]),
|
|
})),
|
|
var_id: vec![x1_ty.id, x2_ty.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x2_ty = fun.0.args[1].ty;
|
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpMinimum => builtin_fns::call_numpy_minimum,
|
|
PrimDef::FunNpMaximum => builtin_fns::call_numpy_maximum,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(Some(func(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build the `abs()` function.
|
|
fn build_abs_function(&mut self) -> TopLevelDef {
|
|
let prim = PrimDef::FunAbs;
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: vec![FuncArg {
|
|
name: "n".into(),
|
|
ty: self.num_or_ndarray_ty.ty,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
}],
|
|
ret: self.num_or_ndarray_ty.ty,
|
|
vars: self.num_or_ndarray_var_map.clone(),
|
|
})),
|
|
var_id: Vec::default(),
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
|ctx, _, fun, args, generator| {
|
|
let n_ty = fun.0.args[0].ty;
|
|
let n_val = args[0].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
|
|
|
|
Ok(Some(builtin_fns::call_abs(generator, ctx, (n_ty, n_val))?))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build numpy functions that take in a float and return a boolean.
|
|
fn build_np_float_to_bool_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpIsInf, PrimDef::FunNpIsNan]);
|
|
|
|
let PrimitiveStore { bool, float, .. } = *self.primitives;
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
bool,
|
|
&[(float, "x")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x_ty = fun.0.args[0].ty;
|
|
let x_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpIsInf => builtin_fns::call_numpy_isinf,
|
|
PrimDef::FunNpIsNan => builtin_fns::call_numpy_isnan,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(Some(func(generator, ctx, (x_ty, x_val))?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build 1-ary numpy/scipy functions that take in a float or an ndarray and return a value of the same type as the input.
|
|
fn build_np_sp_float_or_ndarray_1ary_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[
|
|
PrimDef::FunNpSin,
|
|
PrimDef::FunNpCos,
|
|
PrimDef::FunNpTan,
|
|
PrimDef::FunNpArcsin,
|
|
PrimDef::FunNpArccos,
|
|
PrimDef::FunNpArctan,
|
|
PrimDef::FunNpSinh,
|
|
PrimDef::FunNpCosh,
|
|
PrimDef::FunNpTanh,
|
|
PrimDef::FunNpArcsinh,
|
|
PrimDef::FunNpArccosh,
|
|
PrimDef::FunNpArctanh,
|
|
PrimDef::FunNpExp,
|
|
PrimDef::FunNpExp2,
|
|
PrimDef::FunNpExpm1,
|
|
PrimDef::FunNpLog,
|
|
PrimDef::FunNpLog2,
|
|
PrimDef::FunNpLog10,
|
|
PrimDef::FunNpSqrt,
|
|
PrimDef::FunNpCbrt,
|
|
PrimDef::FunNpFabs,
|
|
PrimDef::FunNpRint,
|
|
PrimDef::FunSpSpecErf,
|
|
PrimDef::FunSpSpecErfc,
|
|
PrimDef::FunSpSpecGamma,
|
|
PrimDef::FunSpSpecGammaln,
|
|
PrimDef::FunSpSpecJ0,
|
|
PrimDef::FunSpSpecJ1,
|
|
],
|
|
);
|
|
|
|
// The parameter name of the sole input of this function.
|
|
// Usually this is just "x", but some functions have a different parameter name.
|
|
let arg_name = match prim {
|
|
PrimDef::FunSpSpecErf => "z",
|
|
_ => "x",
|
|
};
|
|
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&self.float_or_ndarray_var_map,
|
|
prim.name(),
|
|
self.float_or_ndarray_ty.ty,
|
|
&[(self.float_or_ndarray_ty.ty, arg_name)],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpSin => builtin_fns::call_numpy_sin,
|
|
PrimDef::FunNpCos => builtin_fns::call_numpy_cos,
|
|
PrimDef::FunNpTan => builtin_fns::call_numpy_tan,
|
|
|
|
PrimDef::FunNpArcsin => builtin_fns::call_numpy_arcsin,
|
|
PrimDef::FunNpArccos => builtin_fns::call_numpy_arccos,
|
|
PrimDef::FunNpArctan => builtin_fns::call_numpy_arctan,
|
|
|
|
PrimDef::FunNpSinh => builtin_fns::call_numpy_sinh,
|
|
PrimDef::FunNpCosh => builtin_fns::call_numpy_cosh,
|
|
PrimDef::FunNpTanh => builtin_fns::call_numpy_tanh,
|
|
|
|
PrimDef::FunNpArcsinh => builtin_fns::call_numpy_arcsinh,
|
|
PrimDef::FunNpArccosh => builtin_fns::call_numpy_arccosh,
|
|
PrimDef::FunNpArctanh => builtin_fns::call_numpy_arctanh,
|
|
|
|
PrimDef::FunNpExp => builtin_fns::call_numpy_exp,
|
|
PrimDef::FunNpExp2 => builtin_fns::call_numpy_exp2,
|
|
PrimDef::FunNpExpm1 => builtin_fns::call_numpy_expm1,
|
|
|
|
PrimDef::FunNpLog => builtin_fns::call_numpy_log,
|
|
PrimDef::FunNpLog2 => builtin_fns::call_numpy_log2,
|
|
PrimDef::FunNpLog10 => builtin_fns::call_numpy_log10,
|
|
|
|
PrimDef::FunNpSqrt => builtin_fns::call_numpy_sqrt,
|
|
PrimDef::FunNpCbrt => builtin_fns::call_numpy_cbrt,
|
|
|
|
PrimDef::FunNpFabs => builtin_fns::call_numpy_fabs,
|
|
PrimDef::FunNpRint => builtin_fns::call_numpy_rint,
|
|
|
|
PrimDef::FunSpSpecErf => builtin_fns::call_scipy_special_erf,
|
|
PrimDef::FunSpSpecErfc => builtin_fns::call_scipy_special_erfc,
|
|
|
|
PrimDef::FunSpSpecGamma => builtin_fns::call_scipy_special_gamma,
|
|
PrimDef::FunSpSpecGammaln => builtin_fns::call_scipy_special_gammaln,
|
|
|
|
PrimDef::FunSpSpecJ0 => builtin_fns::call_scipy_special_j0,
|
|
PrimDef::FunSpSpecJ1 => builtin_fns::call_scipy_special_j1,
|
|
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(func(generator, ctx, (arg_ty, arg_val))?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
/// Build 2-ary numpy functions. The exact argument types of the two input arguments can be controlled.
|
|
fn build_np_2ary_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[
|
|
PrimDef::FunNpArctan2,
|
|
PrimDef::FunNpCopysign,
|
|
PrimDef::FunNpFmax,
|
|
PrimDef::FunNpFmin,
|
|
PrimDef::FunNpLdExp,
|
|
PrimDef::FunNpHypot,
|
|
PrimDef::FunNpNextAfter,
|
|
],
|
|
);
|
|
|
|
let PrimitiveStore { float, int32, .. } = *self.primitives;
|
|
|
|
// The argument types of the two input arguments are controlled here.
|
|
let (x1_ty, x2_ty) = match prim {
|
|
PrimDef::FunNpArctan2
|
|
| PrimDef::FunNpCopysign
|
|
| PrimDef::FunNpFmax
|
|
| PrimDef::FunNpFmin
|
|
| PrimDef::FunNpHypot
|
|
| PrimDef::FunNpNextAfter => (float, float),
|
|
PrimDef::FunNpLdExp => (float, int32),
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
let x1_ty = self.new_type_or_ndarray_ty(x1_ty);
|
|
let x2_ty = self.new_type_or_ndarray_ty(x2_ty);
|
|
|
|
let param_ty = &[(x1_ty.ty, "x1"), (x2_ty.ty, "x2")];
|
|
let ret_ty = self.unifier.get_fresh_var(None, None);
|
|
|
|
TopLevelDef::Function {
|
|
name: prim.name().into(),
|
|
simple_name: prim.simple_name().into(),
|
|
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
|
args: param_ty
|
|
.iter()
|
|
.map(|p| FuncArg {
|
|
name: p.1.into(),
|
|
ty: p.0,
|
|
default_value: None,
|
|
is_vararg: false,
|
|
})
|
|
.collect(),
|
|
ret: ret_ty.ty,
|
|
vars: into_var_map([x1_ty, x2_ty, ret_ty]),
|
|
})),
|
|
var_id: vec![ret_ty.id],
|
|
instance_to_symbol: HashMap::default(),
|
|
instance_to_stmt: HashMap::default(),
|
|
resolver: None,
|
|
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
|
move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
let x2_ty = fun.0.args[1].ty;
|
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpArctan2 => builtin_fns::call_numpy_arctan2,
|
|
PrimDef::FunNpCopysign => builtin_fns::call_numpy_copysign,
|
|
PrimDef::FunNpFmax => builtin_fns::call_numpy_fmax,
|
|
PrimDef::FunNpFmin => builtin_fns::call_numpy_fmin,
|
|
PrimDef::FunNpLdExp => builtin_fns::call_numpy_ldexp,
|
|
PrimDef::FunNpHypot => builtin_fns::call_numpy_hypot,
|
|
PrimDef::FunNpNextAfter => builtin_fns::call_numpy_nextafter,
|
|
_ => unreachable!(),
|
|
};
|
|
|
|
Ok(Some(func(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
|
},
|
|
)))),
|
|
loc: None,
|
|
}
|
|
}
|
|
|
|
/// Build np/sp functions that take as input `NDArray` only
|
|
fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]);
|
|
|
|
match prim {
|
|
PrimDef::FunNpTranspose => {
|
|
let ndarray_ty = self.unifier.get_fresh_var_with_range(
|
|
&[self.ndarray_num_ty],
|
|
Some("T".into()),
|
|
None,
|
|
);
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&into_var_map([ndarray_ty]),
|
|
prim.name(),
|
|
ndarray_ty.ty,
|
|
&[(ndarray_ty.ty, "x")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let arg_ty = fun.0.args[0].ty;
|
|
let arg_val =
|
|
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
|
Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
// NOTE: on `ndarray_factory_fn_shape_arg_tvar` and
|
|
// the `param_ty` for `create_fn_by_codegen`.
|
|
//
|
|
// Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking
|
|
// to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`],
|
|
// and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`.
|
|
PrimDef::FunNpReshape => create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
self.ndarray_num_ty,
|
|
&[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
let x2_ty = fun.0.args[1].ty;
|
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
|
Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
|
}),
|
|
),
|
|
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Build `np_linalg` and `sp_linalg` functions
|
|
///
|
|
/// The input to these functions must be floating point `NDArray`
|
|
fn build_linalg_methods(&mut self, prim: PrimDef) -> TopLevelDef {
|
|
debug_assert_prim_is_allowed(
|
|
prim,
|
|
&[
|
|
PrimDef::FunNpDot,
|
|
PrimDef::FunNpLinalgCholesky,
|
|
PrimDef::FunNpLinalgQr,
|
|
PrimDef::FunNpLinalgSvd,
|
|
PrimDef::FunNpLinalgInv,
|
|
PrimDef::FunNpLinalgPinv,
|
|
PrimDef::FunNpLinalgMatrixPower,
|
|
PrimDef::FunNpLinalgDet,
|
|
PrimDef::FunSpLinalgLu,
|
|
PrimDef::FunSpLinalgSchur,
|
|
PrimDef::FunSpLinalgHessenberg,
|
|
],
|
|
);
|
|
|
|
match prim {
|
|
PrimDef::FunNpDot => create_fn_by_codegen(
|
|
self.unifier,
|
|
&self.num_or_ndarray_var_map,
|
|
prim.name(),
|
|
self.num_ty.ty,
|
|
&[(self.num_or_ndarray_ty.ty, "x1"), (self.num_or_ndarray_ty.ty, "x2")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
let x2_ty = fun.0.args[1].ty;
|
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
|
|
|
Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
|
|
}),
|
|
),
|
|
|
|
PrimDef::FunNpLinalgCholesky | PrimDef::FunNpLinalgInv | PrimDef::FunNpLinalgPinv => {
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
self.ndarray_float_2d,
|
|
&[(self.ndarray_float_2d, "x1")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val =
|
|
args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpLinalgCholesky => builtin_fns::call_np_linalg_cholesky,
|
|
PrimDef::FunNpLinalgInv => builtin_fns::call_np_linalg_inv,
|
|
PrimDef::FunNpLinalgPinv => builtin_fns::call_np_linalg_pinv,
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(func(generator, ctx, (x1_ty, x1_val))?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
PrimDef::FunNpLinalgQr
|
|
| PrimDef::FunSpLinalgLu
|
|
| PrimDef::FunSpLinalgSchur
|
|
| PrimDef::FunSpLinalgHessenberg => {
|
|
let ret_ty = self.unifier.add_ty(TypeEnum::TTuple {
|
|
ty: vec![self.ndarray_float_2d, self.ndarray_float_2d],
|
|
is_vararg_ctx: false,
|
|
});
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
ret_ty,
|
|
&[(self.ndarray_float_2d, "x1")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val =
|
|
args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
|
|
let func = match prim {
|
|
PrimDef::FunNpLinalgQr => builtin_fns::call_np_linalg_qr,
|
|
PrimDef::FunSpLinalgLu => builtin_fns::call_sp_linalg_lu,
|
|
PrimDef::FunSpLinalgSchur => builtin_fns::call_sp_linalg_schur,
|
|
PrimDef::FunSpLinalgHessenberg => {
|
|
builtin_fns::call_sp_linalg_hessenberg
|
|
}
|
|
_ => unreachable!(),
|
|
};
|
|
Ok(Some(func(generator, ctx, (x1_ty, x1_val))?))
|
|
}),
|
|
)
|
|
}
|
|
|
|
PrimDef::FunNpLinalgSvd => {
|
|
let ret_ty = self.unifier.add_ty(TypeEnum::TTuple {
|
|
ty: vec![self.ndarray_float_2d, self.ndarray_float, self.ndarray_float_2d],
|
|
is_vararg_ctx: false,
|
|
});
|
|
create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
ret_ty,
|
|
&[(self.ndarray_float_2d, "x1")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val =
|
|
args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
|
|
Ok(Some(builtin_fns::call_np_linalg_svd(generator, ctx, (x1_ty, x1_val))?))
|
|
}),
|
|
)
|
|
}
|
|
PrimDef::FunNpLinalgMatrixPower => create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
self.ndarray_float_2d,
|
|
&[(self.ndarray_float_2d, "x1"), (self.primitives.int32, "power")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
let x2_ty = fun.0.args[1].ty;
|
|
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
|
|
|
|
Ok(Some(builtin_fns::call_np_linalg_matrix_power(
|
|
generator,
|
|
ctx,
|
|
(x1_ty, x1_val),
|
|
(x2_ty, x2_val),
|
|
)?))
|
|
}),
|
|
),
|
|
PrimDef::FunNpLinalgDet => create_fn_by_codegen(
|
|
self.unifier,
|
|
&VarMap::new(),
|
|
prim.name(),
|
|
self.primitives.float,
|
|
&[(self.ndarray_float_2d, "x1")],
|
|
Box::new(move |ctx, _, fun, args, generator| {
|
|
let x1_ty = fun.0.args[0].ty;
|
|
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
|
|
Ok(Some(builtin_fns::call_np_linalg_det(generator, ctx, (x1_ty, x1_val))?))
|
|
}),
|
|
),
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
fn create_method(prim: PrimDef, method_ty: Type) -> (StrRef, Type, DefinitionId) {
|
|
(prim.simple_name().into(), method_ty, prim.id())
|
|
}
|
|
|
|
fn new_type_or_ndarray_ty(&mut self, scalar_ty: Type) -> TypeVar {
|
|
let ndarray = make_ndarray_ty(self.unifier, self.primitives, Some(scalar_ty), None);
|
|
|
|
self.unifier.get_fresh_var_with_range(&[scalar_ty, ndarray], Some("T".into()), None)
|
|
}
|
|
}
|