forked from M-Labs/nac3
882 lines
29 KiB
Rust
882 lines
29 KiB
Rust
use inkwell::{IntPredicate, types::BasicType, values::{BasicValueEnum, PointerValue}};
|
|
use inkwell::values::{AggregateValueEnum, ArrayValue, IntValue};
|
|
use itertools::Itertools;
|
|
use nac3parser::ast::StrRef;
|
|
use crate::{
|
|
codegen::{
|
|
classes::{ListValue, NDArrayValue},
|
|
CodeGenContext,
|
|
CodeGenerator,
|
|
irrt::{
|
|
call_ndarray_calc_nd_indices,
|
|
call_ndarray_calc_size,
|
|
},
|
|
llvm_intrinsics::call_memcpy_generic,
|
|
stmt::gen_for_callback
|
|
},
|
|
symbol_resolver::ValueEnum,
|
|
toplevel::{DefinitionId, helper::PRIMITIVE_DEF_IDS},
|
|
typecheck::{
|
|
type_inferencer::PrimitiveStore,
|
|
typedef::{FunSignature, Type, TypeEnum, Unifier, VarMap},
|
|
},
|
|
};
|
|
|
|
/// Creates a `ndarray` [`Type`] with the given type arguments.
|
|
///
|
|
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
|
|
/// specialized.
|
|
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
|
|
/// specialized.
|
|
pub fn make_ndarray_ty(
|
|
unifier: &mut Unifier,
|
|
primitives: &PrimitiveStore,
|
|
dtype: Option<Type>,
|
|
ndims: Option<Type>,
|
|
) -> Type {
|
|
let ndarray = primitives.ndarray;
|
|
|
|
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
|
|
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
|
|
};
|
|
debug_assert_eq!(*obj_id, PRIMITIVE_DEF_IDS.ndarray);
|
|
|
|
let tvar_ids = params.iter()
|
|
.map(|(obj_id, _)| *obj_id)
|
|
.sorted()
|
|
.collect_vec();
|
|
debug_assert_eq!(tvar_ids.len(), 2);
|
|
|
|
let mut tvar_subst = VarMap::new();
|
|
if let Some(dtype) = dtype {
|
|
tvar_subst.insert(tvar_ids[0], dtype);
|
|
}
|
|
if let Some(ndims) = ndims {
|
|
tvar_subst.insert(tvar_ids[1], ndims);
|
|
}
|
|
|
|
unifier.subst(ndarray, &tvar_subst).unwrap_or(ndarray)
|
|
}
|
|
|
|
/// Unpacks the type variables of `ndarray` into a tuple. The elements of the tuple corresponds to
|
|
/// `dtype` (the element type) and `ndims` (the number of dimensions) of the `ndarray` respectively.
|
|
pub fn unpack_ndarray_tvars(
|
|
unifier: &mut Unifier,
|
|
ndarray: Type,
|
|
) -> (Type, Type) {
|
|
let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(ndarray) else {
|
|
panic!("Expected `ndarray` to be TObj, but got {}", unifier.stringify(ndarray))
|
|
};
|
|
debug_assert_eq!(*obj_id, PRIMITIVE_DEF_IDS.ndarray);
|
|
debug_assert_eq!(params.len(), 2);
|
|
|
|
params.iter()
|
|
.sorted_by_key(|(obj_id, _)| *obj_id)
|
|
.map(|(_, ty)| *ty)
|
|
.collect_tuple()
|
|
.unwrap()
|
|
}
|
|
|
|
/// Creates an `NDArray` instance from a dynamic shape.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
/// * `shape` - The shape of the `NDArray`.
|
|
/// * `shape_len_fn` - A function that retrieves the number of dimensions from `shape`.
|
|
/// * `shape_data_fn` - A function that retrieves the size of a dimension from `shape`.
|
|
fn create_ndarray_dyn_shape<'ctx, 'a, V, LenFn, DataFn>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
elem_ty: Type,
|
|
shape: &V,
|
|
shape_len_fn: LenFn,
|
|
shape_data_fn: DataFn,
|
|
) -> Result<NDArrayValue<'ctx>, String>
|
|
where
|
|
LenFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, &V) -> Result<IntValue<'ctx>, String>,
|
|
DataFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, &V, IntValue<'ctx>) -> Result<IntValue<'ctx>, String>,
|
|
{
|
|
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
|
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
|
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
|
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
|
assert!(llvm_ndarray_data_t.is_sized());
|
|
|
|
// Assert that all dimensions are non-negative
|
|
gen_for_callback(
|
|
generator,
|
|
ctx,
|
|
|generator, ctx| {
|
|
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
|
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
|
|
|
Ok(i)
|
|
},
|
|
|generator, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
|
debug_assert!(shape_len.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
|
|
|
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap())
|
|
},
|
|
|generator, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
|
|
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
|
|
|
let shape_dim_gez = ctx.builder
|
|
.build_int_compare(IntPredicate::SGE, shape_dim, shape_dim.get_type().const_zero(), "")
|
|
.unwrap();
|
|
|
|
ctx.make_assert(
|
|
generator,
|
|
shape_dim_gez,
|
|
"0:ValueError",
|
|
"negative dimensions not supported",
|
|
[None, None, None],
|
|
ctx.current_loc,
|
|
);
|
|
|
|
Ok(())
|
|
},
|
|
|_, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
|
ctx.builder.build_store(i_addr, i).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
)?;
|
|
|
|
let ndarray = generator.gen_var_alloc(
|
|
ctx,
|
|
llvm_ndarray_t.into(),
|
|
None,
|
|
)?;
|
|
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
|
|
|
let num_dims = shape_len_fn(generator, ctx, shape)?;
|
|
ndarray.store_ndims(ctx, generator, num_dims);
|
|
|
|
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
ndarray.create_dims(ctx, llvm_usize, ndarray_num_dims);
|
|
|
|
// Copy the dimension sizes from shape to ndarray.dims
|
|
gen_for_callback(
|
|
generator,
|
|
ctx,
|
|
|generator, ctx| {
|
|
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
|
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
|
|
|
Ok(i)
|
|
},
|
|
|generator, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
|
debug_assert!(shape_len.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
|
|
|
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap())
|
|
},
|
|
|generator, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
|
|
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
|
let shape_dim = ctx.builder
|
|
.build_int_z_extend(shape_dim, llvm_usize, "")
|
|
.unwrap();
|
|
|
|
let ndarray_pdim = ndarray.get_dims().ptr_offset(ctx, generator, i, None);
|
|
|
|
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
|_, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
|
ctx.builder.build_store(i_addr, i).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
)?;
|
|
|
|
let ndarray_num_elems = call_ndarray_calc_size(
|
|
generator,
|
|
ctx,
|
|
ndarray.load_ndims(ctx),
|
|
ndarray.get_dims().get_ptr(ctx),
|
|
);
|
|
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
|
|
|
Ok(ndarray)
|
|
}
|
|
|
|
/// Creates an `NDArray` instance from a constant shape.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
/// * `shape` - The shape of the `NDArray`, represented as an LLVM [`ArrayValue`].
|
|
fn create_ndarray_const_shape<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
shape: ArrayValue<'ctx>
|
|
) -> Result<NDArrayValue<'ctx>, String> {
|
|
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
|
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
|
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
|
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
|
assert!(llvm_ndarray_data_t.is_sized());
|
|
|
|
for i in 0..shape.get_type().len() {
|
|
let shape_dim = ctx.builder
|
|
.build_extract_value(shape, i, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
|
|
let shape_dim_gez = ctx.builder
|
|
.build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "")
|
|
.unwrap();
|
|
|
|
ctx.make_assert(
|
|
generator,
|
|
shape_dim_gez,
|
|
"0:ValueError",
|
|
"negative dimensions not supported",
|
|
[None, None, None],
|
|
ctx.current_loc,
|
|
);
|
|
}
|
|
|
|
let ndarray = generator.gen_var_alloc(
|
|
ctx,
|
|
llvm_ndarray_t.into(),
|
|
None,
|
|
)?;
|
|
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
|
|
|
let num_dims = llvm_usize.const_int(shape.get_type().len() as u64, false);
|
|
ndarray.store_ndims(ctx, generator, num_dims);
|
|
|
|
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
|
ndarray.create_dims(ctx, llvm_usize, ndarray_num_dims);
|
|
|
|
for i in 0..shape.get_type().len() {
|
|
let ndarray_dim = ndarray
|
|
.get_dims()
|
|
.ptr_offset(ctx, generator, llvm_usize.const_int(i as u64, true), None);
|
|
let shape_dim = ctx.builder.build_extract_value(shape, i, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
|
|
ctx.builder.build_store(ndarray_dim, shape_dim).unwrap();
|
|
}
|
|
|
|
let ndarray_dims = ndarray.get_dims().get_ptr(ctx);
|
|
let ndarray_num_elems = call_ndarray_calc_size(
|
|
generator,
|
|
ctx,
|
|
ndarray.load_ndims(ctx),
|
|
ndarray_dims,
|
|
);
|
|
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
|
|
|
Ok(ndarray)
|
|
}
|
|
|
|
fn ndarray_zero_value<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
) -> BasicValueEnum<'ctx> {
|
|
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
|
ctx.ctx.i32_type().const_zero().into()
|
|
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
|
ctx.ctx.i64_type().const_zero().into()
|
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
|
|
ctx.ctx.f64_type().const_zero().into()
|
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
|
ctx.ctx.bool_type().const_zero().into()
|
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
|
ctx.gen_string(generator, "")
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
fn ndarray_one_value<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
) -> BasicValueEnum<'ctx> {
|
|
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
|
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32);
|
|
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
|
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
|
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64);
|
|
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
|
|
ctx.ctx.f64_type().const_float(1.0).into()
|
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
|
ctx.ctx.bool_type().const_int(1, false).into()
|
|
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
|
ctx.gen_string(generator, "1")
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
|
|
/// LLVM-typed implementation for generating the implementation for constructing an `NDArray`.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
|
fn call_ndarray_empty_impl<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
shape: ListValue<'ctx>,
|
|
) -> Result<NDArrayValue<'ctx>, String> {
|
|
create_ndarray_dyn_shape(
|
|
generator,
|
|
ctx,
|
|
elem_ty,
|
|
&shape,
|
|
|_, ctx, shape| {
|
|
Ok(shape.load_size(ctx, None))
|
|
},
|
|
|generator, ctx, shape, idx| {
|
|
Ok(shape.get_data().get(ctx, generator, idx, None).into_int_value())
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as
|
|
/// its input.
|
|
fn ndarray_fill_flattened<'ctx, 'a, ValueFn>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, 'a>,
|
|
ndarray: NDArrayValue<'ctx>,
|
|
value_fn: ValueFn,
|
|
) -> Result<(), String>
|
|
where
|
|
ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
|
|
{
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
|
|
let ndarray_num_elems = call_ndarray_calc_size(
|
|
generator,
|
|
ctx,
|
|
ndarray.load_ndims(ctx),
|
|
ndarray.get_dims().get_ptr(ctx),
|
|
);
|
|
|
|
gen_for_callback(
|
|
generator,
|
|
ctx,
|
|
|generator, ctx| {
|
|
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
|
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
|
|
|
Ok(i)
|
|
},
|
|
|_, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
|
|
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, ndarray_num_elems, "").unwrap())
|
|
},
|
|
|generator, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let elem = unsafe {
|
|
ndarray.get_data().ptr_to_data_flattened_unchecked(ctx, i, None)
|
|
};
|
|
|
|
let value = value_fn(generator, ctx, i)?;
|
|
ctx.builder.build_store(elem, value).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
|_, ctx, i_addr| {
|
|
let i = ctx.builder
|
|
.build_load(i_addr, "")
|
|
.map(BasicValueEnum::into_int_value)
|
|
.unwrap();
|
|
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
|
ctx.builder.build_store(i_addr, i).unwrap();
|
|
|
|
Ok(())
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices
|
|
/// as its input.
|
|
fn ndarray_fill_indexed<'ctx, ValueFn>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
ndarray: NDArrayValue<'ctx>,
|
|
value_fn: ValueFn,
|
|
) -> Result<(), String>
|
|
where
|
|
ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, '_>, PointerValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
|
|
{
|
|
ndarray_fill_flattened(
|
|
generator,
|
|
ctx,
|
|
ndarray,
|
|
|generator, ctx, idx| {
|
|
let indices = call_ndarray_calc_nd_indices(
|
|
generator,
|
|
ctx,
|
|
idx,
|
|
ndarray,
|
|
);
|
|
|
|
value_fn(generator, ctx, indices)
|
|
}
|
|
)
|
|
}
|
|
|
|
/// LLVM-typed implementation for generating the implementation for `ndarray.zeros`.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
|
fn call_ndarray_zeros_impl<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
shape: ListValue<'ctx>,
|
|
) -> Result<NDArrayValue<'ctx>, String> {
|
|
let supported_types = [
|
|
ctx.primitives.int32,
|
|
ctx.primitives.int64,
|
|
ctx.primitives.uint32,
|
|
ctx.primitives.uint64,
|
|
ctx.primitives.float,
|
|
ctx.primitives.bool,
|
|
ctx.primitives.str,
|
|
];
|
|
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
|
|
|
|
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
|
ndarray_fill_flattened(
|
|
generator,
|
|
ctx,
|
|
ndarray,
|
|
|generator, ctx, _| {
|
|
let value = ndarray_zero_value(generator, ctx, elem_ty);
|
|
|
|
Ok(value)
|
|
}
|
|
)?;
|
|
|
|
Ok(ndarray)
|
|
}
|
|
|
|
/// LLVM-typed implementation for generating the implementation for `ndarray.ones`.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
|
fn call_ndarray_ones_impl<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
shape: ListValue<'ctx>,
|
|
) -> Result<NDArrayValue<'ctx>, String> {
|
|
let supported_types = [
|
|
ctx.primitives.int32,
|
|
ctx.primitives.int64,
|
|
ctx.primitives.uint32,
|
|
ctx.primitives.uint64,
|
|
ctx.primitives.float,
|
|
ctx.primitives.bool,
|
|
ctx.primitives.str,
|
|
];
|
|
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
|
|
|
|
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
|
ndarray_fill_flattened(
|
|
generator,
|
|
ctx,
|
|
ndarray,
|
|
|generator, ctx, _| {
|
|
let value = ndarray_one_value(generator, ctx, elem_ty);
|
|
|
|
Ok(value)
|
|
}
|
|
)?;
|
|
|
|
Ok(ndarray)
|
|
}
|
|
|
|
/// LLVM-typed implementation for generating the implementation for `ndarray.full`.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
|
fn call_ndarray_full_impl<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
shape: ListValue<'ctx>,
|
|
fill_value: BasicValueEnum<'ctx>,
|
|
) -> Result<NDArrayValue<'ctx>, String> {
|
|
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
|
ndarray_fill_flattened(
|
|
generator,
|
|
ctx,
|
|
ndarray,
|
|
|generator, ctx, _| {
|
|
let value = if fill_value.is_pointer_value() {
|
|
let llvm_i1 = ctx.ctx.bool_type();
|
|
|
|
let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?;
|
|
|
|
call_memcpy_generic(
|
|
ctx,
|
|
copy,
|
|
fill_value.into_pointer_value(),
|
|
fill_value.get_type().size_of().map(Into::into).unwrap(),
|
|
llvm_i1.const_zero(),
|
|
);
|
|
|
|
copy.into()
|
|
} else if fill_value.is_int_value() || fill_value.is_float_value() {
|
|
fill_value
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
|
|
Ok(value)
|
|
}
|
|
)?;
|
|
|
|
Ok(ndarray)
|
|
}
|
|
|
|
/// LLVM-typed implementation for generating the implementation for `ndarray.eye`.
|
|
///
|
|
/// * `elem_ty` - The element type of the `NDArray`.
|
|
fn call_ndarray_eye_impl<'ctx>(
|
|
generator: &mut dyn CodeGenerator,
|
|
ctx: &mut CodeGenContext<'ctx, '_>,
|
|
elem_ty: Type,
|
|
nrows: IntValue<'ctx>,
|
|
ncols: IntValue<'ctx>,
|
|
offset: IntValue<'ctx>,
|
|
) -> Result<NDArrayValue<'ctx>, String> {
|
|
let llvm_i32 = ctx.ctx.i32_type();
|
|
let llvm_usize = generator.get_size_type(ctx.ctx);
|
|
let llvm_usize_2 = llvm_usize.array_type(2);
|
|
|
|
let shape_addr = generator.gen_var_alloc(ctx, llvm_usize_2.into(), None)?;
|
|
|
|
let shape = ctx.builder.build_load(shape_addr, "")
|
|
.map(BasicValueEnum::into_array_value)
|
|
.unwrap();
|
|
|
|
let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap();
|
|
let shape = ctx.builder
|
|
.build_insert_value(shape, nrows, 0, "")
|
|
.map(AggregateValueEnum::into_array_value)
|
|
.unwrap();
|
|
|
|
let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap();
|
|
let shape = ctx.builder
|
|
.build_insert_value(shape, ncols, 1, "")
|
|
.map(AggregateValueEnum::into_array_value)
|
|
.unwrap();
|
|
|
|
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, shape)?;
|
|
|
|
ndarray_fill_indexed(
|
|
generator,
|
|
ctx,
|
|
ndarray,
|
|
|generator, ctx, indices| {
|
|
let row = ctx.build_gep_and_load(
|
|
indices,
|
|
&[llvm_i32.const_zero()],
|
|
None,
|
|
).into_int_value();
|
|
let col = ctx.build_gep_and_load(
|
|
indices,
|
|
&[llvm_i32.const_int(1, true)],
|
|
None,
|
|
).into_int_value();
|
|
|
|
let col_with_offset = ctx.builder
|
|
.build_int_add(
|
|
col,
|
|
ctx.builder.build_int_z_extend_or_bit_cast(offset, llvm_usize, "").unwrap(),
|
|
"",
|
|
)
|
|
.unwrap();
|
|
let is_on_diag = ctx.builder
|
|
.build_int_compare(IntPredicate::EQ, row, col_with_offset, "")
|
|
.unwrap();
|
|
|
|
let zero = ndarray_zero_value(generator, ctx, elem_ty);
|
|
let one = ndarray_one_value(generator, ctx, elem_ty);
|
|
|
|
let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap();
|
|
|
|
Ok(value)
|
|
},
|
|
)?;
|
|
|
|
Ok(ndarray)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.empty`.
|
|
pub fn gen_ndarray_empty<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<PointerValue<'ctx>, String> {
|
|
assert!(obj.is_none());
|
|
assert_eq!(args.len(), 1);
|
|
|
|
let llvm_usize = generator.get_size_type(context.ctx);
|
|
let shape_ty = fun.0.args[0].ty;
|
|
let shape_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, shape_ty)?;
|
|
|
|
call_ndarray_empty_impl(
|
|
generator,
|
|
context,
|
|
context.primitives.float,
|
|
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
|
).map(NDArrayValue::into)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.zeros`.
|
|
pub fn gen_ndarray_zeros<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<PointerValue<'ctx>, String> {
|
|
assert!(obj.is_none());
|
|
assert_eq!(args.len(), 1);
|
|
|
|
let llvm_usize = generator.get_size_type(context.ctx);
|
|
let shape_ty = fun.0.args[0].ty;
|
|
let shape_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, shape_ty)?;
|
|
|
|
call_ndarray_zeros_impl(
|
|
generator,
|
|
context,
|
|
context.primitives.float,
|
|
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
|
).map(NDArrayValue::into)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.ones`.
|
|
pub fn gen_ndarray_ones<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<PointerValue<'ctx>, String> {
|
|
assert!(obj.is_none());
|
|
assert_eq!(args.len(), 1);
|
|
|
|
let llvm_usize = generator.get_size_type(context.ctx);
|
|
let shape_ty = fun.0.args[0].ty;
|
|
let shape_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, shape_ty)?;
|
|
|
|
call_ndarray_ones_impl(
|
|
generator,
|
|
context,
|
|
context.primitives.float,
|
|
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
|
).map(NDArrayValue::into)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.full`.
|
|
pub fn gen_ndarray_full<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<PointerValue<'ctx>, String> {
|
|
assert!(obj.is_none());
|
|
assert_eq!(args.len(), 2);
|
|
|
|
let llvm_usize = generator.get_size_type(context.ctx);
|
|
let shape_ty = fun.0.args[0].ty;
|
|
let shape_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, shape_ty)?;
|
|
let fill_value_ty = fun.0.args[1].ty;
|
|
let fill_value_arg = args[1].1.clone()
|
|
.to_basic_value_enum(context, generator, fill_value_ty)?;
|
|
|
|
call_ndarray_full_impl(
|
|
generator,
|
|
context,
|
|
fill_value_ty,
|
|
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
|
fill_value_arg,
|
|
).map(NDArrayValue::into)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.eye`.
|
|
pub fn gen_ndarray_eye<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<PointerValue<'ctx>, String> {
|
|
assert!(obj.is_none());
|
|
assert!(matches!(args.len(), 1..=3));
|
|
|
|
let nrows_ty = fun.0.args[0].ty;
|
|
let nrows_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, nrows_ty)?;
|
|
|
|
let ncols_ty = fun.0.args[1].ty;
|
|
let ncols_arg = args.iter()
|
|
.find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
|
|
.map(|arg| arg.1.clone().to_basic_value_enum(context, generator, ncols_ty))
|
|
.unwrap_or_else(|| {
|
|
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
|
|
})?;
|
|
|
|
let offset_ty = fun.0.args[2].ty;
|
|
let offset_arg = args.iter()
|
|
.find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
|
|
.map(|arg| arg.1.clone().to_basic_value_enum(context, generator, offset_ty))
|
|
.unwrap_or_else(|| {
|
|
Ok(context.gen_symbol_val(
|
|
generator,
|
|
fun.0.args[2].default_value.as_ref().unwrap(),
|
|
offset_ty
|
|
))
|
|
})?;
|
|
|
|
call_ndarray_eye_impl(
|
|
generator,
|
|
context,
|
|
context.primitives.float,
|
|
nrows_arg.into_int_value(),
|
|
ncols_arg.into_int_value(),
|
|
offset_arg.into_int_value(),
|
|
).map(NDArrayValue::into)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.identity`.
|
|
pub fn gen_ndarray_identity<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<PointerValue<'ctx>, String> {
|
|
assert!(obj.is_none());
|
|
assert_eq!(args.len(), 1);
|
|
|
|
let llvm_usize = generator.get_size_type(context.ctx);
|
|
|
|
let n_ty = fun.0.args[0].ty;
|
|
let n_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, n_ty)?;
|
|
|
|
call_ndarray_eye_impl(
|
|
generator,
|
|
context,
|
|
context.primitives.float,
|
|
n_arg.into_int_value(),
|
|
n_arg.into_int_value(),
|
|
llvm_usize.const_zero(),
|
|
).map(NDArrayValue::into)
|
|
}
|
|
|
|
/// Generates LLVM IR for `ndarray.fill`.
|
|
pub fn gen_ndarray_fill<'ctx>(
|
|
context: &mut CodeGenContext<'ctx, '_>,
|
|
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
|
fun: (&FunSignature, DefinitionId),
|
|
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
|
generator: &mut dyn CodeGenerator,
|
|
) -> Result<(), String> {
|
|
assert!(obj.is_some());
|
|
assert_eq!(args.len(), 1);
|
|
|
|
let llvm_usize = generator.get_size_type(context.ctx);
|
|
|
|
let this_ty = obj.as_ref().unwrap().0;
|
|
let this_arg = obj.as_ref().unwrap().1.clone()
|
|
.to_basic_value_enum(context, generator, this_ty)?
|
|
.into_pointer_value();
|
|
let value_ty = fun.0.args[0].ty;
|
|
let value_arg = args[0].1.clone()
|
|
.to_basic_value_enum(context, generator, value_ty)?;
|
|
|
|
ndarray_fill_flattened(
|
|
generator,
|
|
context,
|
|
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|
|
|generator, ctx, _| {
|
|
let value = if value_arg.is_pointer_value() {
|
|
let llvm_i1 = ctx.ctx.bool_type();
|
|
|
|
let copy = generator.gen_var_alloc(ctx, value_arg.get_type(), None)?;
|
|
|
|
call_memcpy_generic(
|
|
ctx,
|
|
copy,
|
|
value_arg.into_pointer_value(),
|
|
value_arg.get_type().size_of().map(Into::into).unwrap(),
|
|
llvm_i1.const_zero(),
|
|
);
|
|
|
|
copy.into()
|
|
} else if value_arg.is_int_value() || value_arg.is_float_value() {
|
|
value_arg
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
|
|
Ok(value)
|
|
}
|
|
)?;
|
|
|
|
Ok(())
|
|
}
|