use inkwell::{AddressSpace, IntPredicate, types::BasicType, values::{BasicValueEnum, PointerValue}}; use inkwell::values::{AggregateValueEnum, ArrayValue, IntValue}; use nac3parser::ast::StrRef; use crate::{ codegen::{ classes::{ListValue, NDArrayValue}, CodeGenContext, CodeGenerator, irrt::{ call_ndarray_calc_nd_indices, call_ndarray_calc_size, call_ndarray_init_dims, }, stmt::gen_for_callback }, symbol_resolver::ValueEnum, toplevel::DefinitionId, typecheck::typedef::{FunSignature, Type, TypeEnum}, }; /// Creates an `NDArray` instance from a constant shape. /// /// * `elem_ty` - The element type of the `NDArray`. /// * `shape` - The shape of the `NDArray`, represented as an LLVM [ArrayValue]. fn create_ndarray_const_shape<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, shape: ArrayValue<'ctx> ) -> Result, String> { let ndarray_ty_enum = TypeEnum::ndarray(&mut ctx.unifier, Some(elem_ty), None, &ctx.primitives); let ndarray_ty = ctx.unifier.add_ty(ndarray_ty_enum); let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type(); let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type(); let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum(); assert!(llvm_ndarray_data_t.is_sized()); for i in 0..shape.get_type().len() { let shape_dim = ctx.builder .build_extract_value(shape, i, "") .map(BasicValueEnum::into_int_value) .unwrap(); let shape_dim_gez = ctx.builder .build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "") .unwrap(); ctx.make_assert( generator, shape_dim_gez, "0:ValueError", "negative dimensions not supported", [None, None, None], ctx.current_loc, ); } let ndarray = generator.gen_var_alloc( ctx, llvm_ndarray_t.into(), None, )?; let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None); let num_dims = llvm_usize.const_int(shape.get_type().len() as u64, false); ndarray.store_ndims(ctx, generator, num_dims); let ndarray_num_dims = ndarray.load_ndims(ctx); ndarray.create_dims(ctx, llvm_usize, ndarray_num_dims); for i in 0..shape.get_type().len() { let ndarray_dim = ndarray .get_dims() .ptr_offset(ctx, generator, llvm_usize.const_int(i as u64, true), None); let shape_dim = ctx.builder.build_extract_value(shape, i, "") .map(BasicValueEnum::into_int_value) .unwrap(); ctx.builder.build_store(ndarray_dim, shape_dim).unwrap(); } let ndarray_dims = ndarray.get_dims().get_ptr(ctx); let ndarray_num_elems = call_ndarray_calc_size( generator, ctx, ndarray.load_ndims(ctx), ndarray_dims, ); ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems); Ok(ndarray) } fn ndarray_zero_value<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, ) -> BasicValueEnum<'ctx> { if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { ctx.ctx.i32_type().const_zero().into() } else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { ctx.ctx.i64_type().const_zero().into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) { ctx.ctx.f64_type().const_zero().into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) { ctx.ctx.bool_type().const_zero().into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) { ctx.gen_string(generator, "").into() } else { unreachable!() } } fn ndarray_one_value<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, ) -> BasicValueEnum<'ctx> { if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32); ctx.ctx.i32_type().const_int(1, is_signed).into() } else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) { let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64); ctx.ctx.i64_type().const_int(1, is_signed).into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) { ctx.ctx.f64_type().const_float(1.0).into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) { ctx.ctx.bool_type().const_int(1, false).into() } else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) { ctx.gen_string(generator, "1").into() } else { unreachable!() } } /// LLVM-typed implementation for generating the implementation for constructing an `NDArray`. /// /// * `elem_ty` - The element type of the NDArray. /// * `shape` - The `shape` parameter used to construct the NDArray. fn call_ndarray_empty_impl<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, shape: ListValue<'ctx>, ) -> Result, String> { let ndarray_ty_enum = TypeEnum::ndarray(&mut ctx.unifier, Some(elem_ty), None, &ctx.primitives); let ndarray_ty = ctx.unifier.add_ty(ndarray_ty_enum); let llvm_i32 = ctx.ctx.i32_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type(); let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type(); let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum(); assert!(llvm_ndarray_data_t.is_sized()); // Assert that all dimensions are non-negative gen_for_callback( generator, ctx, |generator, ctx| { let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap(); Ok(i) }, |_, ctx, i_addr| { let i = ctx.builder .build_load(i_addr, "") .map(BasicValueEnum::into_int_value) .unwrap(); let shape_len = shape.load_size(ctx, None); Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap()) }, |generator, ctx, i_addr| { let i = ctx.builder .build_load(i_addr, "") .map(BasicValueEnum::into_int_value) .unwrap(); let shape_dim = shape.get_data().get(ctx, generator, i, None).into_int_value(); let shape_dim_gez = ctx.builder .build_int_compare(IntPredicate::SGE, shape_dim, llvm_i32.const_zero(), "") .unwrap(); ctx.make_assert( generator, shape_dim_gez, "0:ValueError", "negative dimensions not supported", [None, None, None], ctx.current_loc, ); Ok(()) }, |_, ctx, i_addr| { let i = ctx.builder .build_load(i_addr, "") .map(BasicValueEnum::into_int_value) .unwrap(); let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap(); ctx.builder.build_store(i_addr, i).unwrap(); Ok(()) }, )?; let ndarray = generator.gen_var_alloc( ctx, llvm_ndarray_t.into(), None, )?; let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None); let num_dims = shape.load_size(ctx, None); ndarray.store_ndims(ctx, generator, num_dims); let ndarray_num_dims = ndarray.load_ndims(ctx); ndarray.create_dims(ctx, llvm_usize, ndarray_num_dims); call_ndarray_init_dims(generator, ctx, ndarray, shape); let ndarray_num_elems = call_ndarray_calc_size( generator, ctx, ndarray.load_ndims(ctx), ndarray.get_dims().get_ptr(ctx), ); ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems); Ok(ndarray) } /// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as /// its input. /// /// Note that this differs from `ndarray.fill`, which instead replaces all first-dimension elements /// with the given value (as opposed to all elements within the array). fn ndarray_fill_flattened<'ctx, 'a, ValueFn>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, ndarray: NDArrayValue<'ctx>, value_fn: ValueFn, ) -> Result<(), String> where ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result, String>, { let llvm_usize = generator.get_size_type(ctx.ctx); let ndarray_num_elems = call_ndarray_calc_size( generator, ctx, ndarray.load_ndims(ctx), ndarray.get_dims().get_ptr(ctx), ); gen_for_callback( generator, ctx, |generator, ctx| { let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?; ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap(); Ok(i) }, |_, ctx, i_addr| { let i = ctx.builder .build_load(i_addr, "") .map(BasicValueEnum::into_int_value) .unwrap(); Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, ndarray_num_elems, "").unwrap()) }, |generator, ctx, i_addr| { let i = ctx.builder .build_load(i_addr, "") .map(BasicValueEnum::into_int_value) .unwrap(); let elem = unsafe { ndarray.get_data().ptr_to_data_flattened_unchecked(ctx, i, None) }; let value = value_fn(generator, ctx, i)?; ctx.builder.build_store(elem, value).unwrap(); Ok(()) }, |_, ctx, i_addr| { let i = ctx.builder .build_load(i_addr, "") .map(BasicValueEnum::into_int_value) .unwrap(); let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap(); ctx.builder.build_store(i_addr, i).unwrap(); Ok(()) }, ) } /// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices /// as its input /// /// Note that this differs from `ndarray.fill`, which instead replaces all first-dimension elements /// with the given value (as opposed to all elements within the array). fn ndarray_fill_indexed<'ctx, 'a, ValueFn>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, ndarray: NDArrayValue<'ctx>, value_fn: ValueFn, ) -> Result<(), String> where ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, PointerValue<'ctx>) -> Result, String>, { ndarray_fill_flattened( generator, ctx, ndarray, |generator, ctx, idx| { let indices = call_ndarray_calc_nd_indices( generator, ctx, idx, ndarray, )?; value_fn(generator, ctx, indices) } ) } /// LLVM-typed implementation for generating the implementation for `ndarray.zeros`. /// /// * `elem_ty` - The element type of the NDArray. /// * `shape` - The `shape` parameter used to construct the NDArray. fn call_ndarray_zeros_impl<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, shape: ListValue<'ctx>, ) -> Result, String> { let supported_types = [ ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64, ctx.primitives.float, ctx.primitives.bool, ctx.primitives.str, ]; assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty))); let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?; ndarray_fill_flattened( generator, ctx, ndarray, |generator, ctx, _| { let value = ndarray_zero_value(generator, ctx, elem_ty); Ok(value) } )?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.ones`. /// /// * `elem_ty` - The element type of the NDArray. /// * `shape` - The `shape` parameter used to construct the NDArray. fn call_ndarray_ones_impl<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, shape: ListValue<'ctx>, ) -> Result, String> { let supported_types = [ ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64, ctx.primitives.float, ctx.primitives.bool, ctx.primitives.str, ]; assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty))); let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?; ndarray_fill_flattened( generator, ctx, ndarray, |generator, ctx, _| { let value = ndarray_one_value(generator, ctx, elem_ty); Ok(value) } )?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.ones`. /// /// * `elem_ty` - The element type of the NDArray. /// * `shape` - The `shape` parameter used to construct the NDArray. fn call_ndarray_full_impl<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, shape: ListValue<'ctx>, fill_value: BasicValueEnum<'ctx>, ) -> Result, String> { let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?; ndarray_fill_flattened( generator, ctx, ndarray, |generator, ctx, _| { let value = if fill_value.is_pointer_value() { let llvm_void = ctx.ctx.void_type(); let llvm_i1 = ctx.ctx.bool_type(); let llvm_i8 = ctx.ctx.i8_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default()); let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?; let memcpy_fn_name = format!( "llvm.memcpy.p0i8.p0i8.i{}", generator.get_size_type(ctx.ctx).get_bit_width(), ); let memcpy_fn = ctx.module.get_function(memcpy_fn_name.as_str()).unwrap_or_else(|| { let fn_type = llvm_void.fn_type( &[ llvm_pi8.into(), llvm_pi8.into(), llvm_usize.into(), llvm_i1.into(), ], false, ); ctx.module.add_function(memcpy_fn_name.as_str(), fn_type, None) }); ctx.builder .build_call( memcpy_fn, &[ copy.into(), fill_value.into(), fill_value.get_type().size_of().unwrap().into(), llvm_i1.const_zero().into(), ], "", ) .unwrap(); copy.into() } else if fill_value.is_int_value() || fill_value.is_float_value() { fill_value.into() } else { unreachable!() }; Ok(value) } )?; Ok(ndarray) } /// LLVM-typed implementation for generating the implementation for `ndarray.eye`. /// /// * `elem_ty` - The element type of the NDArray. fn call_ndarray_eye_impl<'ctx, 'a>( generator: &mut dyn CodeGenerator, ctx: &mut CodeGenContext<'ctx, 'a>, elem_ty: Type, nrows: IntValue<'ctx>, ncols: IntValue<'ctx>, offset: IntValue<'ctx>, ) -> Result, String> { let llvm_i32 = ctx.ctx.i32_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let llvm_usize_2 = llvm_usize.array_type(2); let shape_addr = generator.gen_var_alloc(ctx, llvm_usize_2.into(), None)?; let shape = ctx.builder.build_load(shape_addr, "") .map(BasicValueEnum::into_array_value) .unwrap(); let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap(); let shape = ctx.builder .build_insert_value(shape, nrows, 0, "") .map(AggregateValueEnum::into_array_value) .unwrap(); let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap(); let shape = ctx.builder .build_insert_value(shape, ncols, 1, "") .map(AggregateValueEnum::into_array_value) .unwrap(); let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, shape)?; ndarray_fill_indexed( generator, ctx, ndarray, |generator, ctx, indices| { let row = ctx.build_gep_and_load( indices, &[llvm_i32.const_zero()], None, ).into_int_value(); let col = ctx.build_gep_and_load( indices, &[llvm_i32.const_int(1, true)], None, ).into_int_value(); let col_with_offset = ctx.builder .build_int_add( col, ctx.builder.build_int_z_extend_or_bit_cast(offset, llvm_usize, "").unwrap(), "", ) .unwrap(); let is_on_diag = ctx.builder .build_int_compare(IntPredicate::EQ, row, col_with_offset, "") .unwrap(); let zero = ndarray_zero_value(generator, ctx, elem_ty); let one = ndarray_one_value(generator, ctx, elem_ty); let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap(); Ok(value) }, )?; Ok(ndarray) } /// Generates LLVM IR for `ndarray.empty`. pub fn gen_ndarray_empty<'ctx, 'a>( context: &mut CodeGenContext<'ctx, 'a>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: Vec<(Option, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let llvm_usize = generator.get_size_type(context.ctx); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone() .to_basic_value_enum(context, generator, shape_ty)?; call_ndarray_empty_impl( generator, context, context.primitives.float, ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None), ).map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.zeros`. pub fn gen_ndarray_zeros<'ctx, 'a>( context: &mut CodeGenContext<'ctx, 'a>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: Vec<(Option, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let llvm_usize = generator.get_size_type(context.ctx); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone() .to_basic_value_enum(context, generator, shape_ty)?; call_ndarray_zeros_impl( generator, context, context.primitives.float, ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None), ).map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.ones`. pub fn gen_ndarray_ones<'ctx, 'a>( context: &mut CodeGenContext<'ctx, 'a>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: Vec<(Option, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let llvm_usize = generator.get_size_type(context.ctx); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone() .to_basic_value_enum(context, generator, shape_ty)?; call_ndarray_ones_impl( generator, context, context.primitives.float, ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None), ).map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.full`. pub fn gen_ndarray_full<'ctx, 'a>( context: &mut CodeGenContext<'ctx, 'a>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: Vec<(Option, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 2); let llvm_usize = generator.get_size_type(context.ctx); let shape_ty = fun.0.args[0].ty; let shape_arg = args[0].1.clone() .to_basic_value_enum(context, generator, shape_ty)?; let fill_value_ty = fun.0.args[1].ty; let fill_value_arg = args[1].1.clone() .to_basic_value_enum(context, generator, fill_value_ty)?; call_ndarray_full_impl( generator, context, fill_value_ty, ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None), fill_value_arg, ).map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.eye`. pub fn gen_ndarray_eye<'ctx, 'a>( context: &mut CodeGenContext<'ctx, 'a>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: Vec<(Option, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert!(matches!(args.len(), 1..=3)); let nrows_ty = fun.0.args[0].ty; let nrows_arg = args[0].1.clone() .to_basic_value_enum(context, generator, nrows_ty)?; let ncols_ty = fun.0.args[1].ty; let ncols_arg = args.iter() .find(|arg| arg.0.map(|name| name == fun.0.args[1].name).unwrap_or(false)) .map(|arg| arg.1.clone().to_basic_value_enum(context, generator, ncols_ty)) .unwrap_or_else(|| { args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty) })?; let offset_ty = fun.0.args[2].ty; let offset_arg = args.iter() .find(|arg| arg.0.map(|name| name == fun.0.args[2].name).unwrap_or(false)) .map(|arg| arg.1.clone().to_basic_value_enum(context, generator, offset_ty)) .unwrap_or_else(|| { Ok(context.gen_symbol_val( generator, fun.0.args[2].default_value.as_ref().unwrap(), offset_ty )) })?; call_ndarray_eye_impl( generator, context, context.primitives.float, nrows_arg.into_int_value(), ncols_arg.into_int_value(), offset_arg.into_int_value(), ).map(NDArrayValue::into) } /// Generates LLVM IR for `ndarray.identity`. pub fn gen_ndarray_identity<'ctx, 'a>( context: &mut CodeGenContext<'ctx, 'a>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), args: Vec<(Option, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result, String> { assert!(obj.is_none()); assert_eq!(args.len(), 1); let llvm_usize = generator.get_size_type(context.ctx); let n_ty = fun.0.args[0].ty; let n_arg = args[0].1.clone() .to_basic_value_enum(context, generator, n_ty)?; call_ndarray_eye_impl( generator, context, context.primitives.float, n_arg.into_int_value(), n_arg.into_int_value(), llvm_usize.const_zero(), ).map(NDArrayValue::into) }