use std::iter::once; use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails}; use indexmap::IndexMap; use inkwell::{ attributes::{Attribute, AttributeLoc}, types::{BasicMetadataTypeEnum, BasicType}, values::{BasicMetadataValueEnum, BasicValue, CallSiteValue}, IntPredicate, }; use itertools::Either; use strum::IntoEnumIterator; use crate::{ codegen::{ builtin_fns, classes::{ArrayLikeValue, NDArrayValue, ProxyValue, RangeValue, TypedArrayLikeAccessor}, expr::destructure_range, irrt::*, numpy::*, stmt::exn_constructor, }, symbol_resolver::SymbolValue, toplevel::{helper::PrimDef, numpy::make_ndarray_ty}, typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap}, }; use super::*; type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>; pub fn get_exn_constructor( name: &str, class_id: usize, cons_id: usize, unifier: &mut Unifier, primitives: &PrimitiveStore, ) -> (TopLevelDef, TopLevelDef, Type, Type) { let int32 = primitives.int32; let int64 = primitives.int64; let string = primitives.str; let exception_fields = make_exception_fields(int32, int64, string); let exn_cons_args = vec![ FuncArg { name: "msg".into(), ty: string, default_value: Some(SymbolValue::Str(String::new())), is_vararg: false, }, FuncArg { name: "param0".into(), ty: int64, default_value: Some(SymbolValue::I64(0)), is_vararg: false, }, FuncArg { name: "param1".into(), ty: int64, default_value: Some(SymbolValue::I64(0)), is_vararg: false, }, FuncArg { name: "param2".into(), ty: int64, default_value: Some(SymbolValue::I64(0)), is_vararg: false, }, ]; let exn_type = unifier.add_ty(TypeEnum::TObj { obj_id: DefinitionId(class_id), fields: exception_fields .clone() .into_iter() .map(|(name, ty, mutable)| (name, (ty, mutable))) .collect(), params: VarMap::default(), }); let signature = unifier.add_ty(TypeEnum::TFunc(FunSignature { args: exn_cons_args, ret: exn_type, vars: VarMap::default(), })); let fun_def = TopLevelDef::Function { name: format!("{name}.__init__"), simple_name: "__init__".into(), signature, var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new(exn_constructor)))), loc: None, }; let class_def = TopLevelDef::Class { name: name.into(), object_id: DefinitionId(class_id), type_vars: Vec::default(), fields: exception_fields, attributes: Vec::default(), methods: vec![("__init__".into(), signature, DefinitionId(cons_id))], ancestors: vec![ TypeAnnotation::CustomClass { id: DefinitionId(class_id), params: Vec::default() }, TypeAnnotation::CustomClass { id: PrimDef::Exception.id(), params: Vec::default() }, ], constructor: Some(signature), resolver: None, loc: None, }; (fun_def, class_def, signature, exn_type) } /// Creates a NumPy [`TopLevelDef`] function by code generation. /// /// * `name`: The name of the implemented NumPy function. /// * `ret_ty`: The return type of this function. /// * `param_ty`: The parameters accepted by this function, represented by a tuple of the /// [parameter type][Type] and the parameter symbol name. /// * `codegen_callback`: A lambda generating LLVM IR for the implementation of this function. fn create_fn_by_codegen( unifier: &mut Unifier, var_map: &VarMap, name: &'static str, ret_ty: Type, param_ty: &[(Type, &'static str)], codegen_callback: Box<GenCallCallback>, ) -> TopLevelDef { TopLevelDef::Function { name: name.into(), simple_name: name.into(), signature: unifier.add_ty(TypeEnum::TFunc(FunSignature { args: param_ty .iter() .map(|p| FuncArg { name: p.1.into(), ty: p.0, default_value: None, is_vararg: false, }) .collect(), ret: ret_ty, vars: var_map.clone(), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(codegen_callback))), loc: None, } } /// Creates a NumPy [`TopLevelDef`] function using an LLVM intrinsic. /// /// * `name`: The name of the implemented NumPy function. /// * `ret_ty`: The return type of this function. /// * `param_ty`: The parameters accepted by this function, represented by a tuple of the /// [parameter type][Type] and the parameter symbol name. /// * `intrinsic_fn`: The fully-qualified name of the LLVM intrinsic function. fn create_fn_by_intrinsic( unifier: &mut Unifier, var_map: &VarMap, name: &'static str, ret_ty: Type, params: &[(Type, &'static str)], intrinsic_fn: &'static str, ) -> TopLevelDef { let param_tys = params.iter().map(|p| p.0).collect_vec(); create_fn_by_codegen( unifier, var_map, name, ret_ty, params, Box::new(move |ctx, _, fun, args, generator| { let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec(); assert!(param_tys .iter() .zip(&args_ty) .all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual))); let args_val = args_ty .iter() .zip_eq(args.iter()) .map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap()) .map_into::<BasicMetadataValueEnum>() .collect_vec(); let intrinsic_fn = ctx.module.get_function(intrinsic_fn).unwrap_or_else(|| { let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty); let param_llvm_ty = param_tys .iter() .map(|p| ctx.get_llvm_abi_type(generator, *p)) .map_into::<BasicMetadataTypeEnum>() .collect_vec(); let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false); ctx.module.add_function(intrinsic_fn, fn_type, None) }); let val = ctx .builder .build_call(intrinsic_fn, args_val.as_slice(), name) .map(CallSiteValue::try_as_basic_value) .map(Either::unwrap_left) .unwrap(); Ok(val.into()) }), ) } /// Creates a unary NumPy [`TopLevelDef`] function using an extern function (e.g. from `libc` or /// `libm`). /// /// * `name`: The name of the implemented NumPy function. /// * `ret_ty`: The return type of this function. /// * `param_ty`: The parameters accepted by this function, represented by a tuple of the /// [parameter type][Type] and the parameter symbol name. /// * `extern_fn`: The fully-qualified name of the extern function used as the implementation. /// * `attrs`: The list of attributes to apply to this function declaration. Note that `nounwind` is /// already implied by the C ABI. fn create_fn_by_extern( unifier: &mut Unifier, var_map: &VarMap, name: &'static str, ret_ty: Type, params: &[(Type, &'static str)], extern_fn: &'static str, attrs: &'static [&str], ) -> TopLevelDef { let param_tys = params.iter().map(|p| p.0).collect_vec(); create_fn_by_codegen( unifier, var_map, name, ret_ty, params, Box::new(move |ctx, _, fun, args, generator| { let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec(); assert!(param_tys .iter() .zip(&args_ty) .all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual))); let args_val = args_ty .iter() .zip_eq(args.iter()) .map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap()) .map_into::<BasicMetadataValueEnum>() .collect_vec(); let intrinsic_fn = ctx.module.get_function(extern_fn).unwrap_or_else(|| { let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty); let param_llvm_ty = param_tys .iter() .map(|p| ctx.get_llvm_abi_type(generator, *p)) .map_into::<BasicMetadataTypeEnum>() .collect_vec(); let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false); let func = ctx.module.add_function(extern_fn, fn_type, None); func.add_attribute( AttributeLoc::Function, ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0), ); for attr in attrs { func.add_attribute( AttributeLoc::Function, ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0), ); } func }); let val = ctx .builder .build_call(intrinsic_fn, &args_val, name) .map(CallSiteValue::try_as_basic_value) .map(Either::unwrap_left) .unwrap(); Ok(val.into()) }), ) } pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> BuiltinInfo { BuiltinBuilder::new(unifier, primitives) .build_all_builtins() .into_iter() .map(|tld| { let tld = Arc::new(RwLock::new(tld)); let ast = None; (tld, ast) }) .collect() } /// A helper enum used by [`BuiltinBuilder`] #[derive(Clone, Copy)] enum SizeVariant { Bits32, Bits64, } impl SizeVariant { fn of_int(self, primitives: &PrimitiveStore) -> Type { match self { SizeVariant::Bits32 => primitives.int32, SizeVariant::Bits64 => primitives.int64, } } } struct BuiltinBuilder<'a> { unifier: &'a mut Unifier, primitives: &'a PrimitiveStore, is_some_ty: (Type, bool), unwrap_ty: (Type, bool), option_tvar: TypeVar, list_tvar: TypeVar, ndarray_dtype_tvar: TypeVar, ndarray_ndims_tvar: TypeVar, ndarray_copy_ty: (Type, bool), ndarray_fill_ty: (Type, bool), list_int32: Type, num_ty: TypeVar, num_var_map: VarMap, ndarray_float: Type, ndarray_float_2d: Type, ndarray_num_ty: Type, float_or_ndarray_ty: TypeVar, float_or_ndarray_var_map: VarMap, num_or_ndarray_ty: TypeVar, num_or_ndarray_var_map: VarMap, /// See [`BuiltinBuilder::build_ndarray_from_shape_factory_function`] ndarray_factory_fn_shape_arg_tvar: TypeVar, } impl<'a> BuiltinBuilder<'a> { fn new(unifier: &'a mut Unifier, primitives: &'a PrimitiveStore) -> BuiltinBuilder<'a> { let PrimitiveStore { int32, int64, uint32, uint64, float, bool: boolean, ndarray, option, .. } = *primitives; // Option-related let (is_some_ty, unwrap_ty, option_tvar) = if let TypeEnum::TObj { fields, params, .. } = unifier.get_ty(option).as_ref() { ( *fields.get(&PrimDef::FunOptionIsSome.simple_name().into()).unwrap(), *fields.get(&PrimDef::FunOptionUnwrap.simple_name().into()).unwrap(), iter_type_vars(params).next().unwrap(), ) } else { unreachable!() }; let TypeEnum::TObj { fields: ndarray_fields, params: ndarray_params, .. } = &*unifier.get_ty(ndarray) else { unreachable!() }; let ndarray_dtype_tvar = iter_type_vars(ndarray_params).next().unwrap(); let ndarray_ndims_tvar = iter_type_vars(ndarray_params).nth(1).unwrap(); let ndarray_copy_ty = *ndarray_fields.get(&PrimDef::FunNDArrayCopy.simple_name().into()).unwrap(); let ndarray_fill_ty = *ndarray_fields.get(&PrimDef::FunNDArrayFill.simple_name().into()).unwrap(); let num_ty = unifier.get_fresh_var_with_range( &[int32, int64, float, boolean, uint32, uint64], Some("N".into()), None, ); let num_var_map = into_var_map([num_ty]); let ndarray_float = make_ndarray_ty(unifier, primitives, Some(float), None); let ndarray_float_2d = { let value = match primitives.size_t { 64 => SymbolValue::U64(2u64), 32 => SymbolValue::U32(2u32), _ => unreachable!(), }; let ndims = unifier.add_ty(TypeEnum::TLiteral { values: vec![value], loc: None }); make_ndarray_ty(unifier, primitives, Some(float), Some(ndims)) }; let ndarray_num_ty = make_ndarray_ty(unifier, primitives, Some(num_ty.ty), None); let float_or_ndarray_ty = unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None); let float_or_ndarray_var_map = into_var_map([float_or_ndarray_ty]); let num_or_ndarray_ty = unifier.get_fresh_var_with_range(&[num_ty.ty, ndarray_num_ty], Some("T".into()), None); let num_or_ndarray_var_map = into_var_map([num_ty, num_or_ndarray_ty]); let list_tvar = if let TypeEnum::TObj { obj_id, params, .. } = &*unifier.get_ty_immutable(primitives.list) { assert_eq!(*obj_id, PrimDef::List.id()); iter_type_vars(params).nth(0).unwrap() } else { unreachable!() }; let list_int32 = unifier .subst(primitives.list, &into_var_map([TypeVar { id: list_tvar.id, ty: int32 }])) .unwrap(); let ndarray_factory_fn_shape_arg_tvar = unifier.get_fresh_var(Some("Shape".into()), None); BuiltinBuilder { unifier, primitives, is_some_ty, unwrap_ty, option_tvar, list_tvar, ndarray_dtype_tvar, ndarray_ndims_tvar, ndarray_copy_ty, ndarray_fill_ty, list_int32, num_ty, num_var_map, ndarray_float, ndarray_float_2d, ndarray_num_ty, float_or_ndarray_ty, float_or_ndarray_var_map, num_or_ndarray_ty, num_or_ndarray_var_map, ndarray_factory_fn_shape_arg_tvar, } } /// Construct every function from every [`PrimDef`], in the order of [`PrimDef`]'s definition. fn build_all_builtins(&mut self) -> Vec<TopLevelDef> { PrimDef::iter().map(|prim| self.build_builtin_of_prim(prim)).collect_vec() } /// Build the [`TopLevelDef`] associated of a [`PrimDef`]. fn build_builtin_of_prim(&mut self, prim: PrimDef) -> TopLevelDef { let tld = match prim { PrimDef::Int32 | PrimDef::Int64 | PrimDef::UInt32 | PrimDef::UInt64 | PrimDef::Float | PrimDef::Bool | PrimDef::Str | PrimDef::None => Self::build_simple_primitive_class(prim), PrimDef::Range | PrimDef::FunRangeInit => self.build_range_class_related(prim), PrimDef::Exception => self.build_exception_class_related(prim), PrimDef::Option | PrimDef::FunOptionIsSome | PrimDef::FunOptionIsNone | PrimDef::FunOptionUnwrap | PrimDef::FunSome => self.build_option_class_related(prim), PrimDef::List => self.build_list_class_related(prim), PrimDef::NDArray | PrimDef::FunNDArrayCopy | PrimDef::FunNDArrayFill => { self.build_ndarray_class_related(prim) } PrimDef::FunInt32 | PrimDef::FunInt64 | PrimDef::FunUInt32 | PrimDef::FunUInt64 | PrimDef::FunFloat | PrimDef::FunBool => self.build_cast_function(prim), PrimDef::FunNpNDArray | PrimDef::FunNpEmpty | PrimDef::FunNpZeros | PrimDef::FunNpOnes => self.build_ndarray_from_shape_factory_function(prim), PrimDef::FunNpArray | PrimDef::FunNpFull | PrimDef::FunNpEye | PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim), PrimDef::FunStr => self.build_str_function(), PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => { self.build_ceil_floor_function(prim) } PrimDef::FunAbs => self.build_abs_function(), PrimDef::FunRound | PrimDef::FunRound64 => self.build_round_function(prim), PrimDef::FunNpFloor | PrimDef::FunNpCeil => self.build_np_ceil_floor_function(prim), PrimDef::FunNpRound => self.build_np_round_function(), PrimDef::FunLen => self.build_len_function(), PrimDef::FunMin | PrimDef::FunMax => self.build_min_max_function(prim), PrimDef::FunNpArgmin | PrimDef::FunNpArgmax | PrimDef::FunNpMin | PrimDef::FunNpMax => { self.build_np_max_min_function(prim) } PrimDef::FunNpMinimum | PrimDef::FunNpMaximum => { self.build_np_minimum_maximum_function(prim) } PrimDef::FunNpIsNan | PrimDef::FunNpIsInf => self.build_np_float_to_bool_function(prim), PrimDef::FunNpSin | PrimDef::FunNpCos | PrimDef::FunNpTan | PrimDef::FunNpArcsin | PrimDef::FunNpArccos | PrimDef::FunNpArctan | PrimDef::FunNpSinh | PrimDef::FunNpCosh | PrimDef::FunNpTanh | PrimDef::FunNpArcsinh | PrimDef::FunNpArccosh | PrimDef::FunNpArctanh | PrimDef::FunNpExp | PrimDef::FunNpExp2 | PrimDef::FunNpExpm1 | PrimDef::FunNpLog | PrimDef::FunNpLog2 | PrimDef::FunNpLog10 | PrimDef::FunNpSqrt | PrimDef::FunNpCbrt | PrimDef::FunNpFabs | PrimDef::FunNpRint | PrimDef::FunSpSpecErf | PrimDef::FunSpSpecErfc | PrimDef::FunSpSpecGamma | PrimDef::FunSpSpecGammaln | PrimDef::FunSpSpecJ0 | PrimDef::FunSpSpecJ1 => self.build_np_sp_float_or_ndarray_1ary_function(prim), PrimDef::FunNpArctan2 | PrimDef::FunNpCopysign | PrimDef::FunNpFmax | PrimDef::FunNpFmin | PrimDef::FunNpLdExp | PrimDef::FunNpHypot | PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim), PrimDef::FunNpTranspose | PrimDef::FunNpReshape => { self.build_np_sp_ndarray_function(prim) } PrimDef::FunNpDot | PrimDef::FunNpLinalgCholesky | PrimDef::FunNpLinalgQr | PrimDef::FunNpLinalgSvd | PrimDef::FunNpLinalgInv | PrimDef::FunNpLinalgPinv | PrimDef::FunNpLinalgMatrixPower | PrimDef::FunNpLinalgDet | PrimDef::FunSpLinalgLu | PrimDef::FunSpLinalgSchur | PrimDef::FunSpLinalgHessenberg => self.build_linalg_methods(prim), }; if cfg!(debug_assertions) { // Sanity checks on the constructed [`TopLevelDef`] match (&tld, prim.details()) { ( TopLevelDef::Class { name, object_id, .. }, PrimDefDetails::PrimClass { name: exp_name, .. }, ) => { let exp_object_id = prim.id(); assert_eq!(name, &exp_name.into()); assert_eq!(object_id, &exp_object_id); } ( TopLevelDef::Function { name, simple_name, .. }, PrimDefDetails::PrimFunction { name: exp_name, simple_name: exp_simple_name }, ) => { assert_eq!(name, exp_name); assert_eq!(simple_name, &exp_simple_name.into()); } _ => { panic!("Class/function variant of the constructed TopLevelDef of PrimDef {prim:?} is different than what is defined by {prim:?}") } } } tld } /// Build "simple" primitive classes. fn build_simple_primitive_class(prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[ PrimDef::Int32, PrimDef::Int64, PrimDef::UInt32, PrimDef::UInt64, PrimDef::Float, PrimDef::Bool, PrimDef::Str, PrimDef::None, ], ); TopLevelComposer::make_top_level_class_def(prim.id(), None, prim.name().into(), None, None) } fn build_range_class_related(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::Range, PrimDef::FunRangeInit]); let PrimitiveStore { int32, range, .. } = *self.primitives; let make_ctor_signature = |unifier: &mut Unifier| { unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![ FuncArg { name: "start".into(), ty: int32, default_value: None, is_vararg: false, }, FuncArg { name: "stop".into(), ty: int32, // placeholder default_value: Some(SymbolValue::I32(0)), is_vararg: false, }, FuncArg { name: "step".into(), ty: int32, default_value: Some(SymbolValue::I32(1)), is_vararg: false, }, ], ret: range, vars: VarMap::default(), })) }; match prim { PrimDef::Range => { let fields = vec![ ("start".into(), int32, true), ("stop".into(), int32, true), ("step".into(), int32, true), ]; let ctor_signature = make_ctor_signature(self.unifier); TopLevelDef::Class { name: prim.name().into(), object_id: prim.id(), type_vars: Vec::default(), fields, attributes: Vec::default(), methods: vec![("__init__".into(), ctor_signature, PrimDef::FunRangeInit.id())], ancestors: Vec::default(), constructor: Some(ctor_signature), resolver: None, loc: None, } } PrimDef::FunRangeInit => TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: make_ctor_signature(self.unifier), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, obj, _, args, generator| { let (zelf_ty, zelf) = obj.unwrap(); let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value(); let zelf = RangeValue::from_ptr_val(zelf, Some("range")); let mut start = None; let mut stop = None; let mut step = None; let int32 = ctx.ctx.i32_type(); let ty_i32 = ctx.primitives.int32; for (i, arg) in args.iter().enumerate() { if arg.0 == Some("start".into()) { start = Some( arg.1 .clone() .to_basic_value_enum(ctx, generator, ty_i32)? .into_int_value(), ); } else if arg.0 == Some("stop".into()) { stop = Some( arg.1 .clone() .to_basic_value_enum(ctx, generator, ty_i32)? .into_int_value(), ); } else if arg.0 == Some("step".into()) { step = Some( arg.1 .clone() .to_basic_value_enum(ctx, generator, ty_i32)? .into_int_value(), ); } else if i == 0 { start = Some( arg.1 .clone() .to_basic_value_enum(ctx, generator, ty_i32)? .into_int_value(), ); } else if i == 1 { stop = Some( arg.1 .clone() .to_basic_value_enum(ctx, generator, ty_i32)? .into_int_value(), ); } else if i == 2 { step = Some( arg.1 .clone() .to_basic_value_enum(ctx, generator, ty_i32)? .into_int_value(), ); } } let step = match step { Some(step) => { // assert step != 0, throw exception if not let not_zero = ctx .builder .build_int_compare( IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne", ) .unwrap(); ctx.make_assert( generator, not_zero, "0:ValueError", "range() step must not be zero", [None, None, None], ctx.current_loc, ); step } None => int32.const_int(1, false), }; let stop = stop.unwrap_or_else(|| { let v = start.unwrap(); start = None; v }); let start = start.unwrap_or_else(|| int32.const_zero()); zelf.store_start(ctx, start); zelf.store_end(ctx, stop); zelf.store_step(ctx, step); Ok(Some(zelf.as_base_value().into())) }, )))), loc: None, }, _ => unreachable!(), } } /// Build the class `Exception` and its associated methods. fn build_exception_class_related(&self, prim: PrimDef) -> TopLevelDef { // NOTE: currently only contains the class `Exception` debug_assert_prim_is_allowed(prim, &[PrimDef::Exception]); let PrimitiveStore { int32, int64, str, .. } = *self.primitives; match prim { PrimDef::Exception => TopLevelDef::Class { name: prim.name().into(), object_id: prim.id(), type_vars: Vec::default(), fields: make_exception_fields(int32, int64, str), attributes: Vec::default(), methods: Vec::default(), ancestors: vec![], constructor: None, resolver: None, loc: None, }, _ => unreachable!(), } } /// Build the class `Option`, its associated methods and the function `Some()`. fn build_option_class_related(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[ PrimDef::Option, PrimDef::FunOptionIsSome, PrimDef::FunOptionIsNone, PrimDef::FunOptionUnwrap, PrimDef::FunSome, ], ); match prim { PrimDef::Option => TopLevelDef::Class { name: prim.name().into(), object_id: prim.id(), type_vars: vec![self.option_tvar.ty], fields: Vec::default(), attributes: Vec::default(), methods: vec![ Self::create_method(PrimDef::FunOptionIsSome, self.is_some_ty.0), Self::create_method(PrimDef::FunOptionIsNone, self.is_some_ty.0), Self::create_method(PrimDef::FunOptionUnwrap, self.unwrap_ty.0), ], ancestors: vec![TypeAnnotation::CustomClass { id: prim.id(), params: Vec::default(), }], constructor: None, resolver: None, loc: None, }, PrimDef::FunOptionUnwrap => TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unwrap_ty.0, var_id: vec![self.option_tvar.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::create_dummy(String::from( "handled in gen_expr", )))), loc: None, }, PrimDef::FunOptionIsNone | PrimDef::FunOptionIsSome => TopLevelDef::Function { name: prim.name().to_string(), simple_name: prim.simple_name().into(), signature: self.is_some_ty.0, var_id: vec![self.option_tvar.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( move |ctx, obj, _, _, generator| { let expect_ty = obj.clone().unwrap().0; let obj_val = obj .unwrap() .1 .clone() .to_basic_value_enum(ctx, generator, expect_ty)?; let BasicValueEnum::PointerValue(ptr) = obj_val else { unreachable!("option must be ptr") }; let returned_int = match prim { PrimDef::FunOptionIsNone => { ctx.builder.build_is_null(ptr, prim.simple_name()) } PrimDef::FunOptionIsSome => { ctx.builder.build_is_not_null(ptr, prim.simple_name()) } _ => unreachable!(), }; Ok(Some(returned_int.map(Into::into).unwrap())) }, )))), loc: None, }, PrimDef::FunSome => TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![FuncArg { name: "n".into(), ty: self.option_tvar.ty, default_value: None, is_vararg: false, }], ret: self.primitives.option, vars: into_var_map([self.option_tvar]), })), var_id: vec![self.option_tvar.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; let alloca = generator .gen_var_alloc(ctx, arg_val.get_type(), Some("alloca_some")) .unwrap(); ctx.builder.build_store(alloca, arg_val).unwrap(); Ok(Some(alloca.into())) }, )))), loc: None, }, _ => { unreachable!() } } } fn build_list_class_related(&self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::List]); match prim { PrimDef::List => TopLevelDef::Class { name: prim.name().into(), object_id: prim.id(), type_vars: vec![self.list_tvar.ty], fields: Vec::default(), attributes: Vec::default(), methods: Vec::default(), ancestors: Vec::default(), constructor: None, resolver: None, loc: None, }, _ => unreachable!(), } } /// Build the class `ndarray` and its associated methods. fn build_ndarray_class_related(&self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[PrimDef::NDArray, PrimDef::FunNDArrayCopy, PrimDef::FunNDArrayFill], ); match prim { PrimDef::NDArray => TopLevelDef::Class { name: prim.name().into(), object_id: prim.id(), type_vars: vec![self.ndarray_dtype_tvar.ty, self.ndarray_ndims_tvar.ty], fields: Vec::default(), attributes: Vec::default(), methods: vec![ Self::create_method(PrimDef::FunNDArrayCopy, self.ndarray_copy_ty.0), Self::create_method(PrimDef::FunNDArrayFill, self.ndarray_fill_ty.0), ], ancestors: Vec::default(), constructor: None, resolver: None, loc: None, }, PrimDef::FunNDArrayCopy => TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.ndarray_copy_ty.0, var_id: vec![self.ndarray_dtype_tvar.id, self.ndarray_ndims_tvar.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, obj, fun, args, generator| { gen_ndarray_copy(ctx, &obj, fun, &args, generator) .map(|val| Some(val.as_basic_value_enum())) }, )))), loc: None, }, PrimDef::FunNDArrayFill => TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.ndarray_fill_ty.0, var_id: vec![self.ndarray_dtype_tvar.id, self.ndarray_ndims_tvar.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, obj, fun, args, generator| { gen_ndarray_fill(ctx, &obj, fun, &args, generator)?; Ok(None) }, )))), loc: None, }, _ => unreachable!(), } } /// Build functions that cast a numeric primitive to another numeric primitive, including booleans. fn build_cast_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[ PrimDef::FunInt32, PrimDef::FunInt64, PrimDef::FunUInt32, PrimDef::FunUInt64, PrimDef::FunFloat, PrimDef::FunBool, ], ); TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![FuncArg { name: "n".into(), ty: self.num_or_ndarray_ty.ty, default_value: None, is_vararg: false, }], ret: self.num_or_ndarray_ty.ty, vars: self.num_or_ndarray_var_map.clone(), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; let func = match prim { PrimDef::FunInt32 => builtin_fns::call_int32, PrimDef::FunInt64 => builtin_fns::call_int64, PrimDef::FunUInt32 => builtin_fns::call_uint32, PrimDef::FunUInt64 => builtin_fns::call_uint64, PrimDef::FunFloat => builtin_fns::call_float, PrimDef::FunBool => builtin_fns::call_bool, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (arg_ty, arg))?)) }, )))), loc: None, } } /// Build the functions `round()` and `round64()`. fn build_round_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunRound, PrimDef::FunRound64]); let float = self.primitives.float; let size_variant = match prim { PrimDef::FunRound => SizeVariant::Bits32, PrimDef::FunRound64 => SizeVariant::Bits64, _ => unreachable!(), }; let common_ndim = self.unifier.get_fresh_const_generic_var( self.primitives.usize(), Some("N".into()), None, ); // The size variant of the function determines the size of the returned int. let int_sized = size_variant.of_int(self.primitives); let ndarray_int_sized = make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty)); let ndarray_float = make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty)); let p0_ty = self.unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None); let ret_ty = self.unifier.get_fresh_var_with_range( &[int_sized, ndarray_int_sized], Some("R".into()), None, ); create_fn_by_codegen( self.unifier, &into_var_map([common_ndim, p0_ty, ret_ty]), prim.name(), ret_ty.ty, &[(p0_ty.ty, "n")], Box::new(move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; let ret_elem_ty = size_variant.of_int(&ctx.primitives); Ok(Some(builtin_fns::call_round(generator, ctx, (arg_ty, arg), ret_elem_ty)?)) }), ) } /// Build the functions `ceil()` and `floor()` and their 64 bit variants. fn build_ceil_floor_function(&mut self, prim: PrimDef) -> TopLevelDef { #[derive(Clone, Copy)] enum Kind { Floor, Ceil, } debug_assert_prim_is_allowed( prim, &[PrimDef::FunFloor, PrimDef::FunFloor64, PrimDef::FunCeil, PrimDef::FunCeil64], ); let (size_variant, kind) = { match prim { PrimDef::FunFloor => (SizeVariant::Bits32, Kind::Floor), PrimDef::FunFloor64 => (SizeVariant::Bits64, Kind::Floor), PrimDef::FunCeil => (SizeVariant::Bits32, Kind::Ceil), PrimDef::FunCeil64 => (SizeVariant::Bits64, Kind::Ceil), _ => unreachable!(), } }; let float = self.primitives.float; let common_ndim = self.unifier.get_fresh_const_generic_var( self.primitives.usize(), Some("N".into()), None, ); let ndarray_float = make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty)); // The size variant of the function determines the type of int returned let int_sized = size_variant.of_int(self.primitives); let ndarray_int_sized = make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty)); let p0_ty = self.unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None); let ret_ty = self.unifier.get_fresh_var_with_range( &[int_sized, ndarray_int_sized], Some("R".into()), None, ); create_fn_by_codegen( self.unifier, &into_var_map([common_ndim, p0_ty, ret_ty]), prim.name(), ret_ty.ty, &[(p0_ty.ty, "n")], Box::new(move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; let ret_elem_ty = size_variant.of_int(&ctx.primitives); let func = match kind { Kind::Ceil => builtin_fns::call_ceil, Kind::Floor => builtin_fns::call_floor, }; Ok(Some(func(generator, ctx, (arg_ty, arg), ret_elem_ty)?)) }), ) } /// Build ndarray factory functions that only take in an argument `shape`. /// /// `shape` can be a tuple of int32s, a list of int32s, or a scalar int32. fn build_ndarray_from_shape_factory_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[PrimDef::FunNpNDArray, PrimDef::FunNpEmpty, PrimDef::FunNpZeros, PrimDef::FunNpOnes], ); // NOTE: on `ndarray_factory_fn_shape_arg_tvar` and // the `param_ty` for `create_fn_by_codegen`. // // Ideally, we should have created a [`TypeVar`] to define all possible input // types for the parameter "shape" like so: // ```rust // self.unifier.get_fresh_var_with_range( // &[int32, list_int32, /* and more... */], // Some("T".into()), None) // ) // ``` // // However, there is (currently) no way to type a tuple of arbitrary length in `nac3core`. // // And this is the best we could do: // ```rust // &[ int32, list_int32, tuple_1_int32, tuple_2_int32, tuple_3_int32, ... ], // ``` // // But this is not ideal. // // Instead, we delegate the responsibility of typechecking // to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`], // and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`. create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), self.ndarray_float, &[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")], Box::new(move |ctx, obj, fun, args, generator| { let func = match prim { PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty, PrimDef::FunNpZeros => gen_ndarray_zeros, PrimDef::FunNpOnes => gen_ndarray_ones, _ => unreachable!(), }; func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum())) }), ) } /// Build ndarray factory functions that do not fit in any other `build_ndarray_*_factory_function` categories in [`BuiltinBuilder`]. /// /// See also [`BuiltinBuilder::build_ndarray_from_shape_factory_function`]. fn build_ndarray_other_factory_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[PrimDef::FunNpArray, PrimDef::FunNpFull, PrimDef::FunNpEye, PrimDef::FunNpIdentity], ); let PrimitiveStore { int32, bool, ndarray, .. } = *self.primitives; match prim { PrimDef::FunNpArray => { let tv = self.unifier.get_fresh_var(Some("T".into()), None); TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![ FuncArg { name: "object".into(), ty: tv.ty, default_value: None, is_vararg: false, }, FuncArg { name: "copy".into(), ty: bool, default_value: Some(SymbolValue::Bool(true)), is_vararg: false, }, FuncArg { name: "ndmin".into(), ty: int32, default_value: Some(SymbolValue::U32(0)), is_vararg: false, }, ], ret: ndarray, vars: into_var_map([tv]), })), var_id: vec![tv.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, obj, fun, args, generator| { gen_ndarray_array(ctx, &obj, fun, &args, generator) .map(|val| Some(val.as_basic_value_enum())) }, )))), loc: None, } } PrimDef::FunNpFull => { let tv = self.unifier.get_fresh_var(Some("T".into()), None); create_fn_by_codegen( self.unifier, &into_var_map([tv]), prim.name(), self.primitives.ndarray, // We are using List[int32] here, as I don't know a way to specify an n-tuple bound on a // type variable &[(self.list_int32, "shape"), (tv.ty, "fill_value")], Box::new(move |ctx, obj, fun, args, generator| { gen_ndarray_full(ctx, &obj, fun, &args, generator) .map(|val| Some(val.as_basic_value_enum())) }), ) } PrimDef::FunNpEye => { TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![ FuncArg { name: "N".into(), ty: int32, default_value: None, is_vararg: false, }, // TODO(Derppening): Default values current do not work? FuncArg { name: "M".into(), ty: int32, default_value: Some(SymbolValue::OptionNone), is_vararg: false, }, FuncArg { name: "k".into(), ty: int32, default_value: Some(SymbolValue::I32(0)), is_vararg: false, }, ], ret: self.ndarray_float_2d, vars: VarMap::default(), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, obj, fun, args, generator| { gen_ndarray_eye(ctx, &obj, fun, &args, generator) .map(|val| Some(val.as_basic_value_enum())) }, )))), loc: None, } } PrimDef::FunNpIdentity => create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), self.ndarray_float_2d, &[(int32, "n")], Box::new(|ctx, obj, fun, args, generator| { gen_ndarray_identity(ctx, &obj, fun, &args, generator) .map(|val| Some(val.as_basic_value_enum())) }), ), _ => unreachable!(), } } /// Build the `str()` function. fn build_str_function(&mut self) -> TopLevelDef { let prim = PrimDef::FunStr; let str = self.primitives.str; TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![FuncArg { name: "s".into(), ty: str, default_value: None, is_vararg: false, }], ret: str, vars: VarMap::default(), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; Ok(Some(args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?)) }, )))), loc: None, } } /// Build functions `np_ceil()` and `np_floor()`. fn build_np_ceil_floor_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpCeil, PrimDef::FunNpFloor]); create_fn_by_codegen( self.unifier, &self.float_or_ndarray_var_map, prim.name(), self.float_or_ndarray_ty.ty, &[(self.float_or_ndarray_ty.ty, "n")], Box::new(move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; let func = match prim { PrimDef::FunNpCeil => builtin_fns::call_ceil, PrimDef::FunNpFloor => builtin_fns::call_floor, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (arg_ty, arg), ctx.primitives.float)?)) }), ) } /// Build the `np_round()` function. fn build_np_round_function(&mut self) -> TopLevelDef { let prim = PrimDef::FunNpRound; create_fn_by_codegen( self.unifier, &self.float_or_ndarray_var_map, prim.name(), self.float_or_ndarray_ty.ty, &[(self.float_or_ndarray_ty.ty, "n")], Box::new(|ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; Ok(Some(builtin_fns::call_numpy_round(generator, ctx, (arg_ty, arg))?)) }), ) } /// Build the `len()` function. fn build_len_function(&mut self) -> TopLevelDef { let prim = PrimDef::FunLen; let PrimitiveStore { uint64, int32, .. } = *self.primitives; let tvar = self.unifier.get_fresh_var(Some("L".into()), None); let list = self .unifier .subst( self.primitives.list, &into_var_map([TypeVar { id: self.list_tvar.id, ty: tvar.ty }]), ) .unwrap(); let ndims = self.unifier.get_fresh_const_generic_var(uint64, Some("N".into()), None); let ndarray = make_ndarray_ty(self.unifier, self.primitives, Some(tvar.ty), Some(ndims.ty)); let arg_ty = self.unifier.get_fresh_var_with_range( &[list, ndarray, self.primitives.range], Some("I".into()), None, ); TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![FuncArg { name: "ls".into(), ty: arg_ty.ty, default_value: None, is_vararg: false, }], ret: int32, vars: into_var_map([tvar, arg_ty]), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( move |ctx, _, fun, args, generator| { let range_ty = ctx.primitives.range; let arg_ty = fun.0.args[0].ty; let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; Ok(if ctx.unifier.unioned(arg_ty, range_ty) { let arg = RangeValue::from_ptr_val(arg.into_pointer_value(), Some("range")); let (start, end, step) = destructure_range(ctx, arg); Some(calculate_len_for_slice_range(generator, ctx, start, end, step).into()) } else { match &*ctx.unifier.get_ty_immutable(arg_ty) { TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => { let int32 = ctx.ctx.i32_type(); let zero = int32.const_zero(); let len = ctx .build_gep_and_load( arg.into_pointer_value(), &[zero, int32.const_int(1, false)], None, ) .into_int_value(); if len.get_type().get_bit_width() == 32 { Some(len.into()) } else { Some( ctx.builder .build_int_truncate(len, int32, "len2i32") .map(Into::into) .unwrap(), ) } } TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { let llvm_i32 = ctx.ctx.i32_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let arg = NDArrayValue::from_ptr_val( arg.into_pointer_value(), llvm_usize, None, ); let ndims = arg.dim_sizes().size(ctx, generator); ctx.make_assert( generator, ctx.builder .build_int_compare( IntPredicate::NE, ndims, llvm_usize.const_zero(), "", ) .unwrap(), "0:TypeError", &format!("{name}() of unsized object", name = prim.name()), [None, None, None], ctx.current_loc, ); let len = unsafe { arg.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_zero(), None, ) }; if len.get_type().get_bit_width() == 32 { Some(len.into()) } else { Some( ctx.builder .build_int_truncate(len, llvm_i32, "len") .map(Into::into) .unwrap(), ) } } _ => unreachable!(), } }) }, )))), loc: None, } } /// Build the functions `min()` and `max()`. fn build_min_max_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunMin, PrimDef::FunMax]); TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![ FuncArg { name: "m".into(), ty: self.num_ty.ty, default_value: None, is_vararg: false, }, FuncArg { name: "n".into(), ty: self.num_ty.ty, default_value: None, is_vararg: false, }, ], ret: self.num_ty.ty, vars: self.num_var_map.clone(), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( move |ctx, _, fun, args, generator| { let m_ty = fun.0.args[0].ty; let n_ty = fun.0.args[1].ty; let m_val = args[0].1.clone().to_basic_value_enum(ctx, generator, m_ty)?; let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?; let func = match prim { PrimDef::FunMin => builtin_fns::call_min, PrimDef::FunMax => builtin_fns::call_max, _ => unreachable!(), }; Ok(Some(func(ctx, (m_ty, m_val), (n_ty, n_val)))) }, )))), loc: None, } } /// Build the functions `np_max()`, `np_min()`, `np_argmax()` and `np_argmin()` /// Calls `call_numpy_max_min` with the function name fn build_np_max_min_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[PrimDef::FunNpArgmin, PrimDef::FunNpArgmax, PrimDef::FunNpMin, PrimDef::FunNpMax], ); let (var_map, ret_ty) = match prim { PrimDef::FunNpArgmax | PrimDef::FunNpArgmin => { (self.num_or_ndarray_var_map.clone(), self.primitives.int64) } PrimDef::FunNpMax | PrimDef::FunNpMin => { let ret_ty = self.unifier.get_fresh_var(Some("R".into()), None); let var_map = self .num_or_ndarray_var_map .clone() .into_iter() .chain(once((ret_ty.id, ret_ty.ty))) .collect::<IndexMap<_, _>>(); (var_map, ret_ty.ty) } _ => unreachable!(), }; create_fn_by_codegen( self.unifier, &var_map, prim.name(), ret_ty, &[(self.num_or_ndarray_ty.ty, "a")], Box::new(move |ctx, _, fun, args, generator| { let a_ty = fun.0.args[0].ty; let a = args[0].1.clone().to_basic_value_enum(ctx, generator, a_ty)?; Ok(Some(builtin_fns::call_numpy_max_min(generator, ctx, (a_ty, a), prim.name())?)) }), ) } /// Build the functions `np_minimum()` and `np_maximum()`. fn build_np_minimum_maximum_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpMinimum, PrimDef::FunNpMaximum]); let x1_ty = self.new_type_or_ndarray_ty(self.num_ty.ty); let x2_ty = self.new_type_or_ndarray_ty(self.num_ty.ty); let param_ty = &[(x1_ty.ty, "x1"), (x2_ty.ty, "x2")]; let ret_ty = self.unifier.get_fresh_var(None, None); TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: param_ty .iter() .map(|p| FuncArg { name: p.1.into(), ty: p.0, default_value: None, is_vararg: false, }) .collect(), ret: ret_ty.ty, vars: into_var_map([x1_ty, x2_ty, ret_ty]), })), var_id: vec![x1_ty.id, x2_ty.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x2_ty = fun.0.args[1].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; let func = match prim { PrimDef::FunNpMinimum => builtin_fns::call_numpy_minimum, PrimDef::FunNpMaximum => builtin_fns::call_numpy_maximum, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?)) }, )))), loc: None, } } /// Build the `abs()` function. fn build_abs_function(&mut self) -> TopLevelDef { let prim = PrimDef::FunAbs; TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: vec![FuncArg { name: "n".into(), ty: self.num_or_ndarray_ty.ty, default_value: None, is_vararg: false, }], ret: self.num_or_ndarray_ty.ty, vars: self.num_or_ndarray_var_map.clone(), })), var_id: Vec::default(), instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( |ctx, _, fun, args, generator| { let n_ty = fun.0.args[0].ty; let n_val = args[0].1.clone().to_basic_value_enum(ctx, generator, n_ty)?; Ok(Some(builtin_fns::call_abs(generator, ctx, (n_ty, n_val))?)) }, )))), loc: None, } } /// Build numpy functions that take in a float and return a boolean. fn build_np_float_to_bool_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpIsInf, PrimDef::FunNpIsNan]); let PrimitiveStore { bool, float, .. } = *self.primitives; create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), bool, &[(float, "x")], Box::new(move |ctx, _, fun, args, generator| { let x_ty = fun.0.args[0].ty; let x_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x_ty)?; let func = match prim { PrimDef::FunNpIsInf => builtin_fns::call_numpy_isinf, PrimDef::FunNpIsNan => builtin_fns::call_numpy_isnan, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (x_ty, x_val))?)) }), ) } /// Build 1-ary numpy/scipy functions that take in a float or an ndarray and return a value of the same type as the input. fn build_np_sp_float_or_ndarray_1ary_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[ PrimDef::FunNpSin, PrimDef::FunNpCos, PrimDef::FunNpTan, PrimDef::FunNpArcsin, PrimDef::FunNpArccos, PrimDef::FunNpArctan, PrimDef::FunNpSinh, PrimDef::FunNpCosh, PrimDef::FunNpTanh, PrimDef::FunNpArcsinh, PrimDef::FunNpArccosh, PrimDef::FunNpArctanh, PrimDef::FunNpExp, PrimDef::FunNpExp2, PrimDef::FunNpExpm1, PrimDef::FunNpLog, PrimDef::FunNpLog2, PrimDef::FunNpLog10, PrimDef::FunNpSqrt, PrimDef::FunNpCbrt, PrimDef::FunNpFabs, PrimDef::FunNpRint, PrimDef::FunSpSpecErf, PrimDef::FunSpSpecErfc, PrimDef::FunSpSpecGamma, PrimDef::FunSpSpecGammaln, PrimDef::FunSpSpecJ0, PrimDef::FunSpSpecJ1, ], ); // The parameter name of the sole input of this function. // Usually this is just "x", but some functions have a different parameter name. let arg_name = match prim { PrimDef::FunSpSpecErf => "z", _ => "x", }; create_fn_by_codegen( self.unifier, &self.float_or_ndarray_var_map, prim.name(), self.float_or_ndarray_ty.ty, &[(self.float_or_ndarray_ty.ty, arg_name)], Box::new(move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; let func = match prim { PrimDef::FunNpSin => builtin_fns::call_numpy_sin, PrimDef::FunNpCos => builtin_fns::call_numpy_cos, PrimDef::FunNpTan => builtin_fns::call_numpy_tan, PrimDef::FunNpArcsin => builtin_fns::call_numpy_arcsin, PrimDef::FunNpArccos => builtin_fns::call_numpy_arccos, PrimDef::FunNpArctan => builtin_fns::call_numpy_arctan, PrimDef::FunNpSinh => builtin_fns::call_numpy_sinh, PrimDef::FunNpCosh => builtin_fns::call_numpy_cosh, PrimDef::FunNpTanh => builtin_fns::call_numpy_tanh, PrimDef::FunNpArcsinh => builtin_fns::call_numpy_arcsinh, PrimDef::FunNpArccosh => builtin_fns::call_numpy_arccosh, PrimDef::FunNpArctanh => builtin_fns::call_numpy_arctanh, PrimDef::FunNpExp => builtin_fns::call_numpy_exp, PrimDef::FunNpExp2 => builtin_fns::call_numpy_exp2, PrimDef::FunNpExpm1 => builtin_fns::call_numpy_expm1, PrimDef::FunNpLog => builtin_fns::call_numpy_log, PrimDef::FunNpLog2 => builtin_fns::call_numpy_log2, PrimDef::FunNpLog10 => builtin_fns::call_numpy_log10, PrimDef::FunNpSqrt => builtin_fns::call_numpy_sqrt, PrimDef::FunNpCbrt => builtin_fns::call_numpy_cbrt, PrimDef::FunNpFabs => builtin_fns::call_numpy_fabs, PrimDef::FunNpRint => builtin_fns::call_numpy_rint, PrimDef::FunSpSpecErf => builtin_fns::call_scipy_special_erf, PrimDef::FunSpSpecErfc => builtin_fns::call_scipy_special_erfc, PrimDef::FunSpSpecGamma => builtin_fns::call_scipy_special_gamma, PrimDef::FunSpSpecGammaln => builtin_fns::call_scipy_special_gammaln, PrimDef::FunSpSpecJ0 => builtin_fns::call_scipy_special_j0, PrimDef::FunSpSpecJ1 => builtin_fns::call_scipy_special_j1, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (arg_ty, arg_val))?)) }), ) } /// Build 2-ary numpy functions. The exact argument types of the two input arguments can be controlled. fn build_np_2ary_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[ PrimDef::FunNpArctan2, PrimDef::FunNpCopysign, PrimDef::FunNpFmax, PrimDef::FunNpFmin, PrimDef::FunNpLdExp, PrimDef::FunNpHypot, PrimDef::FunNpNextAfter, ], ); let PrimitiveStore { float, int32, .. } = *self.primitives; // The argument types of the two input arguments are controlled here. let (x1_ty, x2_ty) = match prim { PrimDef::FunNpArctan2 | PrimDef::FunNpCopysign | PrimDef::FunNpFmax | PrimDef::FunNpFmin | PrimDef::FunNpHypot | PrimDef::FunNpNextAfter => (float, float), PrimDef::FunNpLdExp => (float, int32), _ => unreachable!(), }; let x1_ty = self.new_type_or_ndarray_ty(x1_ty); let x2_ty = self.new_type_or_ndarray_ty(x2_ty); let param_ty = &[(x1_ty.ty, "x1"), (x2_ty.ty, "x2")]; let ret_ty = self.unifier.get_fresh_var(None, None); TopLevelDef::Function { name: prim.name().into(), simple_name: prim.simple_name().into(), signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature { args: param_ty .iter() .map(|p| FuncArg { name: p.1.into(), ty: p.0, default_value: None, is_vararg: false, }) .collect(), ret: ret_ty.ty, vars: into_var_map([x1_ty, x2_ty, ret_ty]), })), var_id: vec![ret_ty.id], instance_to_symbol: HashMap::default(), instance_to_stmt: HashMap::default(), resolver: None, codegen_callback: Some(Arc::new(GenCall::new(Box::new( move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let x2_ty = fun.0.args[1].ty; let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; let func = match prim { PrimDef::FunNpArctan2 => builtin_fns::call_numpy_arctan2, PrimDef::FunNpCopysign => builtin_fns::call_numpy_copysign, PrimDef::FunNpFmax => builtin_fns::call_numpy_fmax, PrimDef::FunNpFmin => builtin_fns::call_numpy_fmin, PrimDef::FunNpLdExp => builtin_fns::call_numpy_ldexp, PrimDef::FunNpHypot => builtin_fns::call_numpy_hypot, PrimDef::FunNpNextAfter => builtin_fns::call_numpy_nextafter, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?)) }, )))), loc: None, } } /// Build np/sp functions that take as input `NDArray` only fn build_np_sp_ndarray_function(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpTranspose, PrimDef::FunNpReshape]); match prim { PrimDef::FunNpTranspose => { let ndarray_ty = self.unifier.get_fresh_var_with_range( &[self.ndarray_num_ty], Some("T".into()), None, ); create_fn_by_codegen( self.unifier, &into_var_map([ndarray_ty]), prim.name(), ndarray_ty.ty, &[(ndarray_ty.ty, "x")], Box::new(move |ctx, _, fun, args, generator| { let arg_ty = fun.0.args[0].ty; let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?; Ok(Some(ndarray_transpose(generator, ctx, (arg_ty, arg_val))?)) }), ) } // NOTE: on `ndarray_factory_fn_shape_arg_tvar` and // the `param_ty` for `create_fn_by_codegen`. // // Similar to `build_ndarray_from_shape_factory_function` we delegate the responsibility of typechecking // to [`typecheck::type_inferencer::Inferencer::fold_numpy_function_call_shape_argument`], // and use a dummy [`TypeVar`] `ndarray_factory_fn_shape_arg_tvar` as a placeholder for `param_ty`. PrimDef::FunNpReshape => create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), self.ndarray_num_ty, &[(self.ndarray_num_ty, "x"), (self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let x2_ty = fun.0.args[1].ty; let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; Ok(Some(ndarray_reshape(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?)) }), ), _ => unreachable!(), } } /// Build `np_linalg` and `sp_linalg` functions /// /// The input to these functions must be floating point `NDArray` fn build_linalg_methods(&mut self, prim: PrimDef) -> TopLevelDef { debug_assert_prim_is_allowed( prim, &[ PrimDef::FunNpDot, PrimDef::FunNpLinalgCholesky, PrimDef::FunNpLinalgQr, PrimDef::FunNpLinalgSvd, PrimDef::FunNpLinalgInv, PrimDef::FunNpLinalgPinv, PrimDef::FunNpLinalgMatrixPower, PrimDef::FunNpLinalgDet, PrimDef::FunSpLinalgLu, PrimDef::FunSpLinalgSchur, PrimDef::FunSpLinalgHessenberg, ], ); match prim { PrimDef::FunNpDot => create_fn_by_codegen( self.unifier, &self.num_or_ndarray_var_map, prim.name(), self.num_ty.ty, &[(self.num_or_ndarray_ty.ty, "x1"), (self.num_or_ndarray_ty.ty, "x2")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let x2_ty = fun.0.args[1].ty; let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; Ok(Some(ndarray_dot(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?)) }), ), PrimDef::FunNpLinalgCholesky | PrimDef::FunNpLinalgInv | PrimDef::FunNpLinalgPinv => { create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), self.ndarray_float_2d, &[(self.ndarray_float_2d, "x1")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let func = match prim { PrimDef::FunNpLinalgCholesky => builtin_fns::call_np_linalg_cholesky, PrimDef::FunNpLinalgInv => builtin_fns::call_np_linalg_inv, PrimDef::FunNpLinalgPinv => builtin_fns::call_np_linalg_pinv, _ => unreachable!(), }; Ok(Some(func(generator, ctx, (x1_ty, x1_val))?)) }), ) } PrimDef::FunNpLinalgQr | PrimDef::FunSpLinalgLu | PrimDef::FunSpLinalgSchur | PrimDef::FunSpLinalgHessenberg => { let ret_ty = self.unifier.add_ty(TypeEnum::TTuple { ty: vec![self.ndarray_float_2d, self.ndarray_float_2d], is_vararg_ctx: false, }); create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), ret_ty, &[(self.ndarray_float_2d, "x1")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let func = match prim { PrimDef::FunNpLinalgQr => builtin_fns::call_np_linalg_qr, PrimDef::FunSpLinalgLu => builtin_fns::call_sp_linalg_lu, PrimDef::FunSpLinalgSchur => builtin_fns::call_sp_linalg_schur, PrimDef::FunSpLinalgHessenberg => { builtin_fns::call_sp_linalg_hessenberg } _ => unreachable!(), }; Ok(Some(func(generator, ctx, (x1_ty, x1_val))?)) }), ) } PrimDef::FunNpLinalgSvd => { let ret_ty = self.unifier.add_ty(TypeEnum::TTuple { ty: vec![self.ndarray_float_2d, self.ndarray_float, self.ndarray_float_2d], is_vararg_ctx: false, }); create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), ret_ty, &[(self.ndarray_float_2d, "x1")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; Ok(Some(builtin_fns::call_np_linalg_svd(generator, ctx, (x1_ty, x1_val))?)) }), ) } PrimDef::FunNpLinalgMatrixPower => create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), self.ndarray_float_2d, &[(self.ndarray_float_2d, "x1"), (self.primitives.int32, "power")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; let x2_ty = fun.0.args[1].ty; let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?; Ok(Some(builtin_fns::call_np_linalg_matrix_power( generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val), )?)) }), ), PrimDef::FunNpLinalgDet => create_fn_by_codegen( self.unifier, &VarMap::new(), prim.name(), self.primitives.float, &[(self.ndarray_float_2d, "x1")], Box::new(move |ctx, _, fun, args, generator| { let x1_ty = fun.0.args[0].ty; let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?; Ok(Some(builtin_fns::call_np_linalg_det(generator, ctx, (x1_ty, x1_val))?)) }), ), _ => unreachable!(), } } fn create_method(prim: PrimDef, method_ty: Type) -> (StrRef, Type, DefinitionId) { (prim.simple_name().into(), method_ty, prim.id()) } fn new_type_or_ndarray_ty(&mut self, scalar_ty: Type) -> TypeVar { let ndarray = make_ndarray_ty(self.unifier, self.primitives, Some(scalar_ty), None); self.unifier.get_fresh_var_with_range(&[scalar_ty, ndarray], Some("T".into()), None) } }