use inkwell::{ attributes::{Attribute, AttributeLoc}, basic_block::BasicBlock, types::{BasicType, BasicTypeEnum}, values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue}, IntPredicate, }; use itertools::{izip, Itertools}; use nac3parser::ast::{ Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef, }; use super::{ classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue}, expr::{destructure_range, gen_binop_expr}, gen_in_range_check, irrt::{handle_slice_indices, list_slice_assignment}, macros::codegen_unreachable, CodeGenContext, CodeGenerator, }; use crate::{ symbol_resolver::ValueEnum, toplevel::{DefinitionId, TopLevelDef}, typecheck::{ magic_methods::Binop, typedef::{iter_type_vars, FunSignature, Type, TypeEnum}, }, }; /// See [`CodeGenerator::gen_var_alloc`]. pub fn gen_var<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, ty: BasicTypeEnum<'ctx>, name: Option<&str>, ) -> Result<PointerValue<'ctx>, String> { // Restore debug location let di_loc = ctx.debug_info.0.create_debug_location( ctx.ctx, ctx.current_loc.row as u32, ctx.current_loc.column as u32, ctx.debug_info.2, None, ); // put the alloca in init block let current = ctx.builder.get_insert_block().unwrap(); // position before the last branching instruction... ctx.builder.position_before(&ctx.init_bb.get_last_instruction().unwrap()); ctx.builder.set_current_debug_location(di_loc); let ptr = ctx.builder.build_alloca(ty, name.unwrap_or("")).unwrap(); ctx.builder.position_at_end(current); ctx.builder.set_current_debug_location(di_loc); Ok(ptr) } /// See [`CodeGenerator::gen_array_var_alloc`]. pub fn gen_array_var<'ctx, 'a, T: BasicType<'ctx>>( ctx: &mut CodeGenContext<'ctx, 'a>, ty: T, size: IntValue<'ctx>, name: Option<&'ctx str>, ) -> Result<ArraySliceValue<'ctx>, String> { // Restore debug location let di_loc = ctx.debug_info.0.create_debug_location( ctx.ctx, ctx.current_loc.row as u32, ctx.current_loc.column as u32, ctx.debug_info.2, None, ); // put the alloca in init block let current = ctx.builder.get_insert_block().unwrap(); // position before the last branching instruction... ctx.builder.position_before(&ctx.init_bb.get_last_instruction().unwrap()); ctx.builder.set_current_debug_location(di_loc); let ptr = ctx.builder.build_array_alloca(ty, size, name.unwrap_or("")).unwrap(); let ptr = ArraySliceValue::from_ptr_val(ptr, size, name); ctx.builder.position_at_end(current); ctx.builder.set_current_debug_location(di_loc); Ok(ptr) } /// See [`CodeGenerator::gen_store_target`]. pub fn gen_store_target<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, pattern: &Expr<Option<Type>>, name: Option<&str>, ) -> Result<Option<PointerValue<'ctx>>, String> { // very similar to gen_expr, but we don't do an extra load at the end // and we flatten nested tuples Ok(Some(match &pattern.node { ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) { None => { let ptr_ty = ctx.get_llvm_type(generator, pattern.custom.unwrap()); let ptr = generator.gen_var_alloc(ctx, ptr_ty, name)?; ctx.var_assignment.insert(*id, (ptr, None, 0)); ptr } Some(v) => { let (ptr, counter) = (v.0, v.2); ctx.var_assignment.insert(*id, (ptr, None, counter)); ptr } }, ExprKind::Attribute { value, attr, .. } => { let (index, _) = ctx.get_attr_index(value.custom.unwrap(), *attr); let val = if let Some(v) = generator.gen_expr(ctx, value)? { v.to_basic_value_enum(ctx, generator, value.custom.unwrap())? } else { return Ok(None); }; let BasicValueEnum::PointerValue(ptr) = val else { codegen_unreachable!(ctx); }; unsafe { ctx.builder.build_in_bounds_gep( ptr, &[ ctx.ctx.i32_type().const_zero(), ctx.ctx.i32_type().const_int(index as u64, false), ], name.unwrap_or(""), ) } .unwrap() } _ => codegen_unreachable!(ctx), })) } /// See [`CodeGenerator::gen_assign`]. pub fn gen_assign<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, target: &Expr<Option<Type>>, value: ValueEnum<'ctx>, value_ty: Type, ) -> Result<(), String> { // See https://docs.python.org/3/reference/simple_stmts.html#assignment-statements. match &target.node { ExprKind::Subscript { value: target, slice: key, .. } => { // Handle "slicing" or "subscription" generator.gen_setitem(ctx, target, key, value, value_ty)?; } ExprKind::Tuple { elts, .. } | ExprKind::List { elts, .. } => { // Fold on `"[" [target_list] "]"` and `"(" [target_list] ")"` generator.gen_assign_target_list(ctx, elts, value, value_ty)?; } _ => { // Handle attribute and direct variable assignments. let name = if let ExprKind::Name { id, .. } = &target.node { format!("{id}.addr") } else { String::from("target.addr") }; let Some(ptr) = generator.gen_store_target(ctx, target, Some(name.as_str()))? else { return Ok(()); }; if let ExprKind::Name { id, .. } = &target.node { let (_, static_value, counter) = ctx.var_assignment.get_mut(id).unwrap(); *counter += 1; if let ValueEnum::Static(s) = &value { *static_value = Some(s.clone()); } } let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?; // Perform i1 <-> i8 conversion as needed let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) { generator.bool_to_i8(ctx, val.into_int_value()).into() } else { val }; ctx.builder.build_store(ptr, val).unwrap(); } }; Ok(()) } /// See [`CodeGenerator::gen_assign_target_list`]. pub fn gen_assign_target_list<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, targets: &Vec<Expr<Option<Type>>>, value: ValueEnum<'ctx>, value_ty: Type, ) -> Result<(), String> { // Deconstruct the tuple `value` let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)? else { codegen_unreachable!(ctx) }; // NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer. let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else { codegen_unreachable!(ctx); }; assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len()); let tuple = (0..tuple.get_type().count_fields()) .map(|i| ctx.builder.build_extract_value(tuple, i, "item").unwrap()) .collect_vec(); // Find the starred target if it exists. let mut starred_target_index: Option<usize> = None; // Index of the "starred" target. If it exists, there may only be one. for (i, target) in targets.iter().enumerate() { if matches!(target.node, ExprKind::Starred { .. }) { assert!(starred_target_index.is_none()); // The typechecker ensures this starred_target_index = Some(i); } } if let Some(starred_target_index) = starred_target_index { assert!(tuple_tys.len() >= targets.len() - 1); // The typechecker ensures this let a = starred_target_index; // Number of RHS values before the starred target let b = tuple_tys.len() - (targets.len() - 1 - starred_target_index); // Number of RHS values after the starred target // Thus `tuple[a..b]` is assigned to the starred target. // Handle assignment before the starred target for (target, val, val_ty) in izip!(&targets[..starred_target_index], &tuple[..a], &tuple_tys[..a]) { generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?; } // Handle assignment to the starred target if let ExprKind::Starred { value: target, .. } = &targets[starred_target_index].node { let vals = &tuple[a..b]; let val_tys = &tuple_tys[a..b]; // Create a sub-tuple from `value` for the starred target. let sub_tuple_ty = ctx .ctx .struct_type(&vals.iter().map(BasicValueEnum::get_type).collect_vec(), false); let psub_tuple_val = ctx.builder.build_alloca(sub_tuple_ty, "starred_target_value_ptr").unwrap(); for (i, val) in vals.iter().enumerate() { let pitem = ctx .builder .build_struct_gep(psub_tuple_val, i as u32, "starred_target_value_item") .unwrap(); ctx.builder.build_store(pitem, *val).unwrap(); } let sub_tuple_val = ctx.builder.build_load(psub_tuple_val, "starred_target_value").unwrap(); // Create the typechecker type of the sub-tuple let sub_tuple_ty = ctx.unifier.add_ty(TypeEnum::TTuple { ty: val_tys.to_vec(), is_vararg_ctx: false }); // Now assign with that sub-tuple to the starred target. generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?; } else { codegen_unreachable!(ctx) // The typechecker ensures this } // Handle assignment after the starred target for (target, val, val_ty) in izip!(&targets[starred_target_index + 1..], &tuple[b..], &tuple_tys[b..]) { generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?; } } else { assert_eq!(tuple_tys.len(), targets.len()); // The typechecker ensures this for (target, val, val_ty) in izip!(targets, tuple, tuple_tys) { generator.gen_assign(ctx, target, ValueEnum::Dynamic(val), *val_ty)?; } } Ok(()) } /// See [`CodeGenerator::gen_setitem`]. pub fn gen_setitem<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, target: &Expr<Option<Type>>, key: &Expr<Option<Type>>, value: ValueEnum<'ctx>, value_ty: Type, ) -> Result<(), String> { let target_ty = target.custom.unwrap(); let key_ty = key.custom.unwrap(); match &*ctx.unifier.get_ty(target_ty) { TypeEnum::TObj { obj_id, params: list_params, .. } if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() => { // Handle list item assignment let llvm_usize = generator.get_size_type(ctx.ctx); let target_item_ty = iter_type_vars(list_params).next().unwrap().ty; let target = generator .gen_expr(ctx, target)? .unwrap() .to_basic_value_enum(ctx, generator, target_ty)? .into_pointer_value(); let target = ListValue::from_ptr_val(target, llvm_usize, None); if let ExprKind::Slice { .. } = &key.node { // Handle assigning to a slice let ExprKind::Slice { lower, upper, step } = &key.node else { codegen_unreachable!(ctx) }; let Some((start, end, step)) = handle_slice_indices( lower, upper, step, ctx, generator, target.load_size(ctx, None), )? else { return Ok(()); }; let value = value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value(); let value = ListValue::from_ptr_val(value, llvm_usize, None); let target_item_ty = ctx.get_llvm_type(generator, target_item_ty); let Some(src_ind) = handle_slice_indices( &None, &None, &None, ctx, generator, value.load_size(ctx, None), )? else { return Ok(()); }; list_slice_assignment( generator, ctx, target_item_ty, target, (start, end, step), value, src_ind, ); } else { // Handle assigning to an index let len = target.load_size(ctx, Some("len")); let index = generator .gen_expr(ctx, key)? .unwrap() .to_basic_value_enum(ctx, generator, key_ty)? .into_int_value(); let index = ctx .builder .build_int_s_extend(index, generator.get_size_type(ctx.ctx), "sext") .unwrap(); // handle negative index let is_negative = ctx .builder .build_int_compare( IntPredicate::SLT, index, generator.get_size_type(ctx.ctx).const_zero(), "is_neg", ) .unwrap(); let adjusted = ctx.builder.build_int_add(index, len, "adjusted").unwrap(); let index = ctx .builder .build_select(is_negative, adjusted, index, "index") .map(BasicValueEnum::into_int_value) .unwrap(); // unsigned less than is enough, because negative index after adjustment is // bigger than the length (for unsigned cmp) let bound_check = ctx .builder .build_int_compare(IntPredicate::ULT, index, len, "inbound") .unwrap(); ctx.make_assert( generator, bound_check, "0:IndexError", "index {0} out of bounds 0:{1}", [Some(index), Some(len), None], key.location, ); // Write value to index on list let item_ptr = target.data().ptr_offset(ctx, generator, &index, Some("list_item_ptr")); let value = value.to_basic_value_enum(ctx, generator, value_ty)?; ctx.builder.build_store(item_ptr, value).unwrap(); } } TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() => { // Handle NDArray item assignment todo!("ndarray subscript assignment is not yet implemented"); } _ => { panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty)); } } Ok(()) } /// See [`CodeGenerator::gen_for`]. pub fn gen_for<G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'_, '_>, stmt: &Stmt<Option<Type>>, ) -> Result<(), String> { let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) }; // var_assignment static values may be changed in another branch // if so, remove the static value as it may not be correct in this branch let var_assignment = ctx.var_assignment.clone(); let int32 = ctx.ctx.i32_type(); let size_t = generator.get_size_type(ctx.ctx); let zero = int32.const_zero(); let current = ctx.builder.get_insert_block().and_then(BasicBlock::get_parent).unwrap(); let body_bb = ctx.ctx.append_basic_block(current, "for.body"); let cont_bb = ctx.ctx.append_basic_block(current, "for.end"); // if there is no orelse, we just go to cont_bb let orelse_bb = if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") }; // The BB containing the increment expression let incr_bb = ctx.ctx.append_basic_block(current, "for.incr"); // The BB containing the loop condition check let cond_bb = ctx.ctx.append_basic_block(current, "for.cond"); // store loop bb information and restore it later let loop_bb = ctx.loop_target.replace((incr_bb, cont_bb)); let iter_ty = iter.custom.unwrap(); let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? { v.to_basic_value_enum(ctx, generator, iter_ty)? } else { return Ok(()); }; match &*ctx.unifier.get_ty(iter_ty) { TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() => { let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range")); // Internal variable for loop; Cannot be assigned let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?; // Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed let Some(target_i) = generator.gen_store_target(ctx, target, Some("for.target.addr"))? else { codegen_unreachable!(ctx) }; let (start, stop, step) = destructure_range(ctx, iter_val); ctx.builder.build_store(i, start).unwrap(); // Check "If step is zero, ValueError is raised." let rangenez = ctx .builder .build_int_compare(IntPredicate::NE, step, int32.const_zero(), "") .unwrap(); ctx.make_assert( generator, rangenez, "ValueError", "range() arg 3 must not be zero", [None, None, None], ctx.current_loc, ); ctx.builder.build_unconditional_branch(cond_bb).unwrap(); { ctx.builder.position_at_end(cond_bb); ctx.builder .build_conditional_branch( gen_in_range_check( ctx, ctx.builder .build_load(i, "") .map(BasicValueEnum::into_int_value) .unwrap(), stop, step, ), body_bb, orelse_bb, ) .unwrap(); } ctx.builder.position_at_end(incr_bb); let next_i = ctx .builder .build_int_add( ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(), step, "inc", ) .unwrap(); ctx.builder.build_store(i, next_i).unwrap(); ctx.builder.build_unconditional_branch(cond_bb).unwrap(); ctx.builder.position_at_end(body_bb); ctx.builder .build_store( target_i, ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(), ) .unwrap(); generator.gen_block(ctx, body.iter())?; } TypeEnum::TObj { obj_id, params: list_params, .. } if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() => { let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?; ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap(); let len = ctx .build_gep_and_load( iter_val.into_pointer_value(), &[zero, int32.const_int(1, false)], Some("len"), ) .into_int_value(); ctx.builder.build_unconditional_branch(cond_bb).unwrap(); ctx.builder.position_at_end(cond_bb); let index = ctx .builder .build_load(index_addr, "for.index") .map(BasicValueEnum::into_int_value) .unwrap(); let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, index, len, "cond").unwrap(); ctx.builder.build_conditional_branch(cmp, body_bb, orelse_bb).unwrap(); ctx.builder.position_at_end(incr_bb); let index = ctx.builder.build_load(index_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let inc = ctx.builder.build_int_add(index, size_t.const_int(1, true), "inc").unwrap(); ctx.builder.build_store(index_addr, inc).unwrap(); ctx.builder.build_unconditional_branch(cond_bb).unwrap(); ctx.builder.position_at_end(body_bb); let arr_ptr = ctx .build_gep_and_load(iter_val.into_pointer_value(), &[zero, zero], Some("arr.addr")) .into_pointer_value(); let index = ctx .builder .build_load(index_addr, "for.index") .map(BasicValueEnum::into_int_value) .unwrap(); let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val")); let val_ty = iter_type_vars(list_params).next().unwrap().ty; generator.gen_assign(ctx, target, val.into(), val_ty)?; generator.gen_block(ctx, body.iter())?; } _ => { panic!("unsupported for loop iterator type: {}", ctx.unifier.stringify(iter_ty)); } } for (k, (_, _, counter)) in &var_assignment { let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap(); if counter != counter2 { *static_val = None; } } if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(incr_bb).unwrap(); } if !orelse.is_empty() { ctx.builder.position_at_end(orelse_bb); generator.gen_block(ctx, orelse.iter())?; if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(cont_bb).unwrap(); } } for (k, (_, _, counter)) in &var_assignment { let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap(); if counter != counter2 { *static_val = None; } } ctx.builder.position_at_end(cont_bb); ctx.loop_target = loop_bb; Ok(()) } #[derive(PartialEq, Eq, Debug, Clone, Copy, Hash)] pub struct BreakContinueHooks<'ctx> { /// The [exit block][`BasicBlock`] to branch to when `break`-ing out of a loop. pub exit_bb: BasicBlock<'ctx>, /// The [latch basic block][`BasicBlock`] to branch to for `continue`-ing to the next iteration /// of the loop. pub latch_bb: BasicBlock<'ctx>, } /// Generates a C-style `for` construct using lambdas, similar to the following C code: /// /// ```c /// for (x... = init(); cond(x...); update(x...)) { /// body(x...); /// } /// ``` /// /// * `init` - A lambda containing IR statements declaring and initializing loop variables. The /// return value is a [Clone] value which will be passed to the other lambdas. /// * `cond` - A lambda containing IR statements checking whether the loop should continue /// executing. The result value must be an `i1` indicating if the loop should continue. /// * `body` - A lambda containing IR statements within the loop body. /// * `update` - A lambda containing IR statements updating loop variables. pub fn gen_for_callback<'ctx, 'a, G, I, InitFn, CondFn, BodyFn, UpdateFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, label: Option<&str>, init: InitFn, cond: CondFn, body: BodyFn, update: UpdateFn, ) -> Result<(), String> where G: CodeGenerator + ?Sized, I: Clone, InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>, CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>, BodyFn: FnOnce( &mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks<'ctx>, I, ) -> Result<(), String>, UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>, { let label = label.unwrap_or("for"); let current_bb = ctx.builder.get_insert_block().unwrap(); let init_bb = ctx.ctx.insert_basic_block_after(current_bb, &format!("{label}.init")); // The BB containing the loop condition check let cond_bb = ctx.ctx.insert_basic_block_after(init_bb, &format!("{label}.cond")); let body_bb = ctx.ctx.insert_basic_block_after(cond_bb, &format!("{label}.body")); // The BB containing the increment expression let update_bb = ctx.ctx.insert_basic_block_after(body_bb, &format!("{label}.update")); let cont_bb = ctx.ctx.insert_basic_block_after(update_bb, &format!("{label}.end")); // store loop bb information and restore it later let loop_bb = ctx.loop_target.replace((update_bb, cont_bb)); ctx.builder.build_unconditional_branch(init_bb).unwrap(); ctx.builder.position_at_end(init_bb); let loop_var = init(generator, ctx)?; if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(cond_bb).unwrap(); } ctx.builder.position_at_end(cond_bb); let cond = cond(generator, ctx, loop_var.clone())?; assert_eq!(cond.get_type().get_bit_width(), ctx.ctx.bool_type().get_bit_width()); if !ctx.is_terminated() { ctx.builder.build_conditional_branch(cond, body_bb, cont_bb).unwrap(); } ctx.builder.position_at_end(body_bb); let hooks = BreakContinueHooks { exit_bb: cont_bb, latch_bb: update_bb }; body(generator, ctx, hooks, loop_var.clone())?; if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(update_bb).unwrap(); } ctx.builder.position_at_end(update_bb); update(generator, ctx, loop_var)?; if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(cond_bb).unwrap(); } ctx.builder.position_at_end(cont_bb); ctx.loop_target = loop_bb; Ok(()) } /// Generates a C-style monotonically-increasing `for` construct using lambdas, similar to the /// following C code: /// /// ```c /// for (int x = init_val; x /* < or <= ; see `max_val` */ max_val; x += incr_val) { /// body(x); /// } /// ``` /// /// * `init_val` - The initial value of the loop variable. The type of this value will also be used /// as the type of the loop variable. /// * `max_val` - A tuple containing the maximum value of the loop variable, and whether the maximum /// value should be treated as inclusive (as opposed to exclusive). /// * `body` - A lambda containing IR statements within the loop body. /// * `incr_val` - The value to increment the loop variable on each iteration. pub fn gen_for_callback_incrementing<'ctx, 'a, G, BodyFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, label: Option<&str>, init_val: IntValue<'ctx>, max_val: (IntValue<'ctx>, bool), body: BodyFn, incr_val: IntValue<'ctx>, ) -> Result<(), String> where G: CodeGenerator + ?Sized, BodyFn: FnOnce( &mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks<'ctx>, IntValue<'ctx>, ) -> Result<(), String>, { let init_val_t = init_val.get_type(); gen_for_callback( generator, ctx, label, |generator, ctx| { let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?; ctx.builder.build_store(i_addr, init_val).unwrap(); Ok(i_addr) }, |_, ctx, i_addr| { let cmp_op = if max_val.1 { IntPredicate::ULE } else { IntPredicate::ULT }; let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let max_val = ctx.builder.build_int_z_extend_or_bit_cast(max_val.0, init_val_t, "").unwrap(); Ok(ctx.builder.build_int_compare(cmp_op, i, max_val, "").unwrap()) }, |generator, ctx, hooks, i_addr| { let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); body(generator, ctx, hooks, i) }, |_, ctx, i_addr| { let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let incr_val = ctx.builder.build_int_z_extend_or_bit_cast(incr_val, init_val_t, "").unwrap(); let i = ctx.builder.build_int_add(i, incr_val, "").unwrap(); ctx.builder.build_store(i_addr, i).unwrap(); Ok(()) }, ) } /// Generates a `for` construct over a `range`-like iterable using lambdas, similar to the following /// C code: /// /// ```c /// bool incr = start_fn() <= end_fn(); /// for (int i = start_fn(); i /* < or > */ end_fn(); i += step_fn()) { /// body_fn(i); /// } /// ``` /// /// - `is_unsigned`: Whether to treat the values of the `range` as unsigned. /// - `start_fn`: A lambda of IR statements that retrieves the `start` value of the `range`-like /// iterable. /// - `stop_fn`: A lambda of IR statements that retrieves the `stop` value of the `range`-like /// iterable. This value will be extended to the size of `start`. /// - `stop_inclusive`: Whether the stop value should be treated as inclusive. /// - `step_fn`: A lambda of IR statements that retrieves the `step` value of the `range`-like /// iterable. This value will be extended to the size of `start`. /// - `body_fn`: A lambda of IR statements within the loop body. #[allow(clippy::too_many_arguments)] pub fn gen_for_range_callback<'ctx, 'a, G, StartFn, StopFn, StepFn, BodyFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, label: Option<&str>, is_unsigned: bool, start_fn: StartFn, (stop_fn, stop_inclusive): (StopFn, bool), step_fn: StepFn, body_fn: BodyFn, ) -> Result<(), String> where G: CodeGenerator + ?Sized, StartFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>, StopFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>, StepFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>, BodyFn: FnOnce( &mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks<'ctx>, IntValue<'ctx>, ) -> Result<(), String>, { let init_val_t = start_fn(generator, ctx).map(IntValue::get_type).unwrap(); gen_for_callback( generator, ctx, label, |generator, ctx| { let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?; let start = start_fn(generator, ctx)?; ctx.builder.build_store(i_addr, start).unwrap(); let start = start_fn(generator, ctx)?; let stop = stop_fn(generator, ctx)?; let stop = if stop.get_type().get_bit_width() == start.get_type().get_bit_width() { stop } else if is_unsigned { ctx.builder.build_int_z_extend(stop, start.get_type(), "").unwrap() } else { ctx.builder.build_int_s_extend(stop, start.get_type(), "").unwrap() }; let incr = ctx .builder .build_int_compare( if is_unsigned { IntPredicate::ULE } else { IntPredicate::SLE }, start, stop, "", ) .unwrap(); Ok((i_addr, incr)) }, |generator, ctx, (i_addr, incr)| { let (lt_cmp_op, gt_cmp_op) = match (is_unsigned, stop_inclusive) { (true, true) => (IntPredicate::ULE, IntPredicate::UGE), (true, false) => (IntPredicate::ULT, IntPredicate::UGT), (false, true) => (IntPredicate::SLE, IntPredicate::SGE), (false, false) => (IntPredicate::SLT, IntPredicate::SGT), }; let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let stop = stop_fn(generator, ctx)?; let stop = if stop.get_type().get_bit_width() == i.get_type().get_bit_width() { stop } else if is_unsigned { ctx.builder.build_int_z_extend(stop, i.get_type(), "").unwrap() } else { ctx.builder.build_int_s_extend(stop, i.get_type(), "").unwrap() }; let i_lt_end = ctx.builder.build_int_compare(lt_cmp_op, i, stop, "").unwrap(); let i_gt_end = ctx.builder.build_int_compare(gt_cmp_op, i, stop, "").unwrap(); let cond = ctx .builder .build_select(incr, i_lt_end, i_gt_end, "") .map(BasicValueEnum::into_int_value) .unwrap(); Ok(cond) }, |generator, ctx, hooks, (i_addr, _)| { let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); body_fn(generator, ctx, hooks, i) }, |generator, ctx, (i_addr, _)| { let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap(); let incr_val = step_fn(generator, ctx)?; let incr_val = if incr_val.get_type().get_bit_width() == i.get_type().get_bit_width() { incr_val } else if is_unsigned { ctx.builder.build_int_z_extend(incr_val, i.get_type(), "").unwrap() } else { ctx.builder.build_int_s_extend(incr_val, i.get_type(), "").unwrap() }; let i = ctx.builder.build_int_add(i, incr_val, "").unwrap(); ctx.builder.build_store(i_addr, i).unwrap(); Ok(()) }, ) } /// See [`CodeGenerator::gen_while`]. pub fn gen_while<G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'_, '_>, stmt: &Stmt<Option<Type>>, ) -> Result<(), String> { let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) }; // var_assignment static values may be changed in another branch // if so, remove the static value as it may not be correct in this branch let var_assignment = ctx.var_assignment.clone(); let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let test_bb = ctx.ctx.append_basic_block(current, "while.test"); let body_bb = ctx.ctx.append_basic_block(current, "while.body"); let cont_bb = ctx.ctx.append_basic_block(current, "while.cont"); // if there is no orelse, we just go to cont_bb let orelse_bb = if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "while.orelse") }; // store loop bb information and restore it later let loop_bb = ctx.loop_target.replace((test_bb, cont_bb)); ctx.builder.build_unconditional_branch(test_bb).unwrap(); ctx.builder.position_at_end(test_bb); let test = if let Some(v) = generator.gen_expr(ctx, test)? { v.to_basic_value_enum(ctx, generator, test.custom.unwrap())? } else { for bb in [body_bb, cont_bb] { ctx.builder.position_at_end(bb); ctx.builder.build_unreachable().unwrap(); } return Ok(()); }; let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) }; ctx.builder .build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb) .unwrap(); ctx.builder.position_at_end(body_bb); generator.gen_block(ctx, body.iter())?; for (k, (_, _, counter)) in &var_assignment { let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap(); if counter != counter2 { *static_val = None; } } if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(test_bb).unwrap(); } if !orelse.is_empty() { ctx.builder.position_at_end(orelse_bb); generator.gen_block(ctx, orelse.iter())?; if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(cont_bb).unwrap(); } } for (k, (_, _, counter)) in &var_assignment { let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap(); if counter != counter2 { *static_val = None; } } ctx.builder.position_at_end(cont_bb); ctx.loop_target = loop_bb; Ok(()) } /// Generates a C-style chained-`if` construct using lambdas, similar to the following C code: /// /// ```c /// T val; /// if (cond_fn()) { /// val = then_fn(); /// } else { /// val = else_fn(); /// } /// ``` pub fn gen_if_else_expr_callback<'ctx, 'a, G, CondFn, ThenFn, ElseFn, R>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, cond_fn: CondFn, then_fn: ThenFn, else_fn: ElseFn, ) -> Result<Option<BasicValueEnum<'ctx>>, String> where G: CodeGenerator + ?Sized, CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>, ThenFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<Option<R>, String>, ElseFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<Option<R>, String>, R: BasicValue<'ctx>, { let current_bb = ctx.builder.get_insert_block().unwrap(); let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "if.then"); let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "if.else"); let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "if.end"); let cond = cond_fn(generator, ctx)?; assert_eq!(cond.get_type().get_bit_width(), ctx.ctx.bool_type().get_bit_width()); ctx.builder.build_conditional_branch(cond, then_bb, else_bb).unwrap(); ctx.builder.position_at_end(then_bb); let then_val = then_fn(generator, ctx)?; let then_end_bb = ctx.builder.get_insert_block().unwrap(); if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(end_bb).unwrap(); } ctx.builder.position_at_end(else_bb); let else_val = else_fn(generator, ctx)?; let else_end_bb = ctx.builder.get_insert_block().unwrap(); if !ctx.is_terminated() { ctx.builder.build_unconditional_branch(end_bb).unwrap(); } ctx.builder.position_at_end(end_bb); let phi = match (then_val, else_val) { (Some(tv), Some(ev)) => { let tv_ty = tv.as_basic_value_enum().get_type(); assert_eq!(tv_ty, ev.as_basic_value_enum().get_type()); let phi = ctx.builder.build_phi(tv_ty, "").unwrap(); phi.add_incoming(&[(&tv, then_end_bb), (&ev, else_end_bb)]); Some(phi.as_basic_value()) } (Some(tv), None) => Some(tv.as_basic_value_enum()), (None, Some(ev)) => Some(ev.as_basic_value_enum()), (None, None) => None, }; Ok(phi) } /// Generates a C-style chained-`if` construct using lambdas, similar to the following C code: /// /// ```c /// if (cond_fn()) { /// then_fn(); /// } else { /// else_fn(); /// } /// ``` pub fn gen_if_callback<'ctx, 'a, G, CondFn, ThenFn, ElseFn>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, cond_fn: CondFn, then_fn: ThenFn, else_fn: ElseFn, ) -> Result<(), String> where G: CodeGenerator + ?Sized, CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>, ThenFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<(), String>, ElseFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<(), String>, { gen_if_else_expr_callback( generator, ctx, cond_fn, |generator, ctx| { then_fn(generator, ctx)?; Ok(None::<BasicValueEnum<'ctx>>) }, |generator, ctx| { else_fn(generator, ctx)?; Ok(None) }, )?; Ok(()) } /// See [`CodeGenerator::gen_if`]. pub fn gen_if<G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'_, '_>, stmt: &Stmt<Option<Type>>, ) -> Result<(), String> { let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) }; // var_assignment static values may be changed in another branch // if so, remove the static value as it may not be correct in this branch let var_assignment = ctx.var_assignment.clone(); let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let test_bb = ctx.ctx.append_basic_block(current, "if.test"); let body_bb = ctx.ctx.append_basic_block(current, "if.body"); let mut cont_bb = None; // if there is no orelse, we just go to cont_bb let orelse_bb = if orelse.is_empty() { cont_bb = Some(ctx.ctx.append_basic_block(current, "if.cont")); cont_bb.unwrap() } else { ctx.ctx.append_basic_block(current, "if.orelse") }; ctx.builder.build_unconditional_branch(test_bb).unwrap(); ctx.builder.position_at_end(test_bb); let test = generator.gen_expr(ctx, test).and_then(|v| { v.map(|v| v.to_basic_value_enum(ctx, generator, test.custom.unwrap())).transpose() })?; if let Some(BasicValueEnum::IntValue(test)) = test { ctx.builder .build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb) .unwrap(); }; ctx.builder.position_at_end(body_bb); generator.gen_block(ctx, body.iter())?; for (k, (_, _, counter)) in &var_assignment { let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap(); if counter != counter2 { *static_val = None; } } if !ctx.is_terminated() { if cont_bb.is_none() { cont_bb = Some(ctx.ctx.append_basic_block(current, "cont")); } ctx.builder.build_unconditional_branch(cont_bb.unwrap()).unwrap(); } if !orelse.is_empty() { ctx.builder.position_at_end(orelse_bb); generator.gen_block(ctx, orelse.iter())?; if !ctx.is_terminated() { if cont_bb.is_none() { cont_bb = Some(ctx.ctx.append_basic_block(current, "cont")); } ctx.builder.build_unconditional_branch(cont_bb.unwrap()).unwrap(); } } if let Some(cont_bb) = cont_bb { ctx.builder.position_at_end(cont_bb); } for (k, (_, _, counter)) in &var_assignment { let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap(); if counter != counter2 { *static_val = None; } } Ok(()) } pub fn final_proxy<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, target: BasicBlock<'ctx>, block: BasicBlock<'ctx>, final_data: &mut (PointerValue, Vec<BasicBlock<'ctx>>, Vec<BasicBlock<'ctx>>), ) { let (final_state, final_targets, final_paths) = final_data; let prev = ctx.builder.get_insert_block().unwrap(); ctx.builder.position_at_end(block); unsafe { ctx.builder.build_store(*final_state, target.get_address().unwrap()).unwrap(); } ctx.builder.position_at_end(prev); final_targets.push(target); final_paths.push(block); } /// Inserts the declaration of the builtin function with the specified `symbol` name, and returns /// the function. pub fn get_builtins<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, symbol: &str, ) -> FunctionValue<'ctx> { ctx.module.get_function(symbol).unwrap_or_else(|| { let ty = match symbol { "__nac3_raise" => ctx .ctx .void_type() .fn_type(&[ctx.get_llvm_type(generator, ctx.primitives.exception).into()], false), "__nac3_resume" | "__nac3_end_catch" => ctx.ctx.void_type().fn_type(&[], false), _ => unimplemented!(), }; let fun = ctx.module.add_function(symbol, ty, None); if symbol == "__nac3_raise" || symbol == "__nac3_resume" { fun.add_attribute( AttributeLoc::Function, ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("noreturn"), 0), ); } fun }) } pub fn exn_constructor<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, obj: Option<(Type, ValueEnum<'ctx>)>, _fun: (&FunSignature, DefinitionId), mut args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, generator: &mut dyn CodeGenerator, ) -> Result<Option<BasicValueEnum<'ctx>>, String> { let (zelf_ty, zelf) = obj.unwrap(); let zelf = zelf.to_basic_value_enum(ctx, generator, zelf_ty)?.into_pointer_value(); let int32 = ctx.ctx.i32_type(); let zero = int32.const_zero(); let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) { obj_id.0 } else { codegen_unreachable!(ctx) }; let defs = ctx.top_level.definitions.read(); let def = defs[zelf_id].read(); let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) }; let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name); unsafe { let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap(); let id = ctx.resolver.get_string_id(&exception_name); ctx.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap(); let empty_string = ctx.gen_const(generator, &Constant::Str(String::new()), ctx.primitives.str); let ptr = ctx .builder .build_in_bounds_gep(zelf, &[zero, int32.const_int(5, false)], "exn.msg") .unwrap(); let msg = if args.is_empty() { empty_string.unwrap() } else { args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.str)? }; ctx.builder.build_store(ptr, msg).unwrap(); for i in &[6, 7, 8] { let value = if args.is_empty() { ctx.ctx.i64_type().const_zero().into() } else { args.remove(0).1.to_basic_value_enum(ctx, generator, ctx.primitives.int64)? }; let ptr = ctx .builder .build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.param") .unwrap(); ctx.builder.build_store(ptr, value).unwrap(); } // set file, func to empty string for i in &[1, 4] { let ptr = ctx .builder .build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.str") .unwrap(); ctx.builder.build_store(ptr, empty_string.unwrap()).unwrap(); } // set ints to zero for i in &[2, 3] { let ptr = ctx .builder .build_in_bounds_gep(zelf, &[zero, int32.const_int(*i, false)], "exn.ints") .unwrap(); ctx.builder.build_store(ptr, zero).unwrap(); } } Ok(Some(zelf.into())) } /// Generates IR for a `raise` statement. /// /// * `exception` - The exception thrown by the `raise` statement. /// * `loc` - The location where the exception is raised from. pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, exception: Option<&BasicValueEnum<'ctx>>, loc: Location, ) { if let Some(exception) = exception { unsafe { let int32 = ctx.ctx.i32_type(); let zero = int32.const_zero(); let exception = exception.into_pointer_value(); let file_ptr = ctx .builder .build_in_bounds_gep(exception, &[zero, int32.const_int(1, false)], "file_ptr") .unwrap(); let filename = ctx.gen_string(generator, loc.file.0); ctx.builder.build_store(file_ptr, filename).unwrap(); let row_ptr = ctx .builder .build_in_bounds_gep(exception, &[zero, int32.const_int(2, false)], "row_ptr") .unwrap(); ctx.builder.build_store(row_ptr, int32.const_int(loc.row as u64, false)).unwrap(); let col_ptr = ctx .builder .build_in_bounds_gep(exception, &[zero, int32.const_int(3, false)], "col_ptr") .unwrap(); ctx.builder.build_store(col_ptr, int32.const_int(loc.column as u64, false)).unwrap(); let current_fun = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let fun_name = ctx.gen_string(generator, current_fun.get_name().to_str().unwrap()); let name_ptr = ctx .builder .build_in_bounds_gep(exception, &[zero, int32.const_int(4, false)], "name_ptr") .unwrap(); ctx.builder.build_store(name_ptr, fun_name).unwrap(); } let raise = get_builtins(generator, ctx, "__nac3_raise"); let exception = *exception; ctx.build_call_or_invoke(raise, &[exception], "raise"); } else { let resume = get_builtins(generator, ctx, "__nac3_resume"); ctx.build_call_or_invoke(resume, &[], "resume"); } ctx.builder.build_unreachable().unwrap(); } /// Generates IR for a `try` statement. pub fn gen_try<'ctx, 'a, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, target: &Stmt<Option<Type>>, ) -> Result<(), String> { let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else { codegen_unreachable!(ctx) }; // if we need to generate anything related to exception, we must have personality defined let personality_symbol = ctx.top_level.personality_symbol.as_ref().unwrap(); let personality = ctx.module.get_function(personality_symbol).unwrap_or_else(|| { let ty = ctx.ctx.i32_type().fn_type(&[], true); ctx.module.add_function(personality_symbol, ty, None) }); let exception_type = ctx.get_llvm_type(generator, ctx.primitives.exception); let ptr_type = ctx.ctx.i8_type().ptr_type(inkwell::AddressSpace::default()); let current_block = ctx.builder.get_insert_block().unwrap(); let current_fun = current_block.get_parent().unwrap(); let landingpad = ctx.ctx.append_basic_block(current_fun, "try.landingpad"); let dispatcher = ctx.ctx.append_basic_block(current_fun, "try.dispatch"); let mut dispatcher_end = dispatcher; ctx.builder.position_at_end(dispatcher); let exn = ctx.builder.build_phi(exception_type, "exn").unwrap(); ctx.builder.position_at_end(current_block); let mut cleanup = None; let mut old_loop_target = None; let mut old_return = None; let mut final_data = None; let has_cleanup = !finalbody.is_empty(); if has_cleanup { let final_state = generator.gen_var_alloc(ctx, ptr_type.into(), Some("try.final_state.addr"))?; final_data = Some((final_state, Vec::new(), Vec::new())); if let Some((continue_target, break_target)) = ctx.loop_target { let break_proxy = ctx.ctx.append_basic_block(current_fun, "try.break"); let continue_proxy = ctx.ctx.append_basic_block(current_fun, "try.continue"); final_proxy(ctx, break_target, break_proxy, final_data.as_mut().unwrap()); final_proxy(ctx, continue_target, continue_proxy, final_data.as_mut().unwrap()); old_loop_target = ctx.loop_target.replace((continue_proxy, break_proxy)); } let return_proxy = ctx.ctx.append_basic_block(current_fun, "try.return"); if let Some(return_target) = ctx.return_target { final_proxy(ctx, return_target, return_proxy, final_data.as_mut().unwrap()); } else { let return_target = ctx.ctx.append_basic_block(current_fun, "try.return_target"); ctx.builder.position_at_end(return_target); let return_value = ctx.return_buffer.map(|v| ctx.builder.build_load(v, "$ret").unwrap()); ctx.builder.build_return(return_value.as_ref().map(|v| v as &dyn BasicValue)).unwrap(); ctx.builder.position_at_end(current_block); final_proxy(ctx, return_target, return_proxy, final_data.as_mut().unwrap()); } old_return = ctx.return_target.replace(return_proxy); cleanup = Some(ctx.ctx.append_basic_block(current_fun, "try.cleanup")); } let mut clauses = Vec::new(); let mut found_catch_all = false; for handler_node in handlers { let ExcepthandlerKind::ExceptHandler { type_, .. } = &handler_node.node; // none or Exception if type_.is_none() || ctx .unifier .unioned(type_.as_ref().unwrap().custom.unwrap(), ctx.primitives.exception) { clauses.push(None); found_catch_all = true; break; } let type_ = type_.as_ref().unwrap(); let exn_name = ctx.resolver.get_type_name( &ctx.top_level.definitions.read(), &mut ctx.unifier, type_.custom.unwrap(), ); let obj_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) { *obj_id } else { codegen_unreachable!(ctx) }; let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name); let exn_id = ctx.resolver.get_string_id(&exception_name); let exn_id_global = ctx.module.add_global(ctx.ctx.i32_type(), None, &format!("exn.{exn_id}")); exn_id_global.set_initializer(&ctx.ctx.i32_type().const_int(exn_id as u64, false)); clauses.push(Some(exn_id_global.as_pointer_value().as_basic_value_enum())); } let mut all_clauses = clauses.clone(); if let Some(old_clauses) = &ctx.outer_catch_clauses { if !found_catch_all { all_clauses.extend_from_slice(&old_clauses.0); } } let old_clauses = ctx.outer_catch_clauses.replace((all_clauses, dispatcher, exn)); let old_unwind = ctx.unwind_target.replace(landingpad); generator.gen_block(ctx, body.iter())?; if ctx.builder.get_insert_block().unwrap().get_terminator().is_none() { generator.gen_block(ctx, orelse.iter())?; } let body = ctx.builder.get_insert_block().unwrap(); // reset old_clauses and old_unwind let (all_clauses, _, _) = ctx.outer_catch_clauses.take().unwrap(); ctx.outer_catch_clauses = old_clauses; ctx.unwind_target = old_unwind; ctx.return_target = old_return; ctx.loop_target = old_loop_target.or(ctx.loop_target).take(); let old_unwind = if finalbody.is_empty() { None } else { let final_landingpad = ctx.ctx.append_basic_block(current_fun, "try.catch.final"); ctx.builder.position_at_end(final_landingpad); ctx.builder .build_landing_pad( ctx.ctx.struct_type(&[ptr_type.into(), exception_type], false), personality, &[], true, "try.catch.final", ) .unwrap(); ctx.builder.build_unconditional_branch(cleanup.unwrap()).unwrap(); ctx.builder.position_at_end(body); ctx.unwind_target.replace(final_landingpad) }; // run end_catch before continue/break/return let mut final_proxy_lambda = |ctx: &mut CodeGenContext<'ctx, 'a>, target: BasicBlock<'ctx>, block: BasicBlock<'ctx>| { final_proxy(ctx, target, block, final_data.as_mut().unwrap()); }; let mut redirect_lambda = |ctx: &mut CodeGenContext<'ctx, 'a>, target: BasicBlock<'ctx>, block: BasicBlock<'ctx>| { ctx.builder.position_at_end(block); ctx.builder.build_unconditional_branch(target).unwrap(); ctx.builder.position_at_end(body); }; let redirect = if has_cleanup { &mut final_proxy_lambda as &mut dyn FnMut(&mut CodeGenContext<'ctx, 'a>, BasicBlock<'ctx>, BasicBlock<'ctx>) } else { &mut redirect_lambda as &mut dyn FnMut(&mut CodeGenContext<'ctx, 'a>, BasicBlock<'ctx>, BasicBlock<'ctx>) }; let resume = get_builtins(generator, ctx, "__nac3_resume"); let end_catch = get_builtins(generator, ctx, "__nac3_end_catch"); if let Some((continue_target, break_target)) = ctx.loop_target.take() { let break_proxy = ctx.ctx.append_basic_block(current_fun, "try.break"); let continue_proxy = ctx.ctx.append_basic_block(current_fun, "try.continue"); ctx.builder.position_at_end(break_proxy); ctx.builder.build_call(end_catch, &[], "end_catch").unwrap(); ctx.builder.position_at_end(continue_proxy); ctx.builder.build_call(end_catch, &[], "end_catch").unwrap(); ctx.builder.position_at_end(body); redirect(ctx, break_target, break_proxy); redirect(ctx, continue_target, continue_proxy); ctx.loop_target = Some((continue_proxy, break_proxy)); old_loop_target = Some((continue_target, break_target)); } let return_proxy = ctx.ctx.append_basic_block(current_fun, "try.return"); ctx.builder.position_at_end(return_proxy); ctx.builder.build_call(end_catch, &[], "end_catch").unwrap(); let return_target = ctx.return_target.take().unwrap_or_else(|| { let doreturn = ctx.ctx.append_basic_block(current_fun, "try.doreturn"); ctx.builder.position_at_end(doreturn); let return_value = ctx.return_buffer.map(|v| ctx.builder.build_load(v, "$ret").unwrap()); ctx.builder.build_return(return_value.as_ref().map(|v| v as &dyn BasicValue)).unwrap(); doreturn }); redirect(ctx, return_target, return_proxy); ctx.return_target = Some(return_proxy); old_return = Some(return_target); let mut post_handlers = Vec::new(); let exnid = if handlers.is_empty() { None } else { ctx.builder.position_at_end(dispatcher); unsafe { let zero = ctx.ctx.i32_type().const_zero(); let exnid_ptr = ctx .builder .build_gep(exn.as_basic_value().into_pointer_value(), &[zero, zero], "exnidptr") .unwrap(); Some(ctx.builder.build_load(exnid_ptr, "exnid").unwrap()) } }; for (handler_node, exn_type) in handlers.iter().zip(clauses.iter()) { let ExcepthandlerKind::ExceptHandler { type_, name, body } = &handler_node.node; let handler_bb = ctx.ctx.append_basic_block(current_fun, "try.handler"); ctx.builder.position_at_end(handler_bb); if let Some(name) = name { let exn_ty = ctx.get_llvm_type(generator, type_.as_ref().unwrap().custom.unwrap()); let exn_store = generator.gen_var_alloc(ctx, exn_ty, Some("try.exn_store.addr"))?; ctx.var_assignment.insert(*name, (exn_store, None, 0)); ctx.builder.build_store(exn_store, exn.as_basic_value()).unwrap(); } generator.gen_block(ctx, body.iter())?; let current = ctx.builder.get_insert_block().unwrap(); // only need to call end catch if not terminated // otherwise, we already handled in return/break/continue/raise if current.get_terminator().is_none() { ctx.builder.build_call(end_catch, &[], "end_catch").unwrap(); } post_handlers.push(current); ctx.builder.position_at_end(dispatcher_end); if let Some(exn_type) = exn_type { let dispatcher_cont = ctx.ctx.append_basic_block(current_fun, "try.dispatcher_cont"); let actual_id = exnid.unwrap().into_int_value(); let expected_id = ctx .builder .build_load(exn_type.into_pointer_value(), "expected_id") .map(BasicValueEnum::into_int_value) .unwrap(); let result = ctx .builder .build_int_compare(IntPredicate::EQ, actual_id, expected_id, "exncheck") .unwrap(); ctx.builder.build_conditional_branch(result, handler_bb, dispatcher_cont).unwrap(); dispatcher_end = dispatcher_cont; } else { ctx.builder.build_unconditional_branch(handler_bb).unwrap(); break; } } ctx.unwind_target = old_unwind; ctx.loop_target = old_loop_target.or(ctx.loop_target).take(); ctx.return_target = old_return; ctx.builder.position_at_end(landingpad); let clauses: Vec<_> = if finalbody.is_empty() { &all_clauses } else { &clauses } .iter() .map(|v| v.unwrap_or(ptr_type.const_zero().into())) .collect(); let landingpad_value = ctx .builder .build_landing_pad( ctx.ctx.struct_type(&[ptr_type.into(), exception_type], false), personality, &clauses, has_cleanup, "try.landingpad", ) .map(BasicValueEnum::into_struct_value) .unwrap(); let exn_val = ctx.builder.build_extract_value(landingpad_value, 1, "exn").unwrap(); ctx.builder.build_unconditional_branch(dispatcher).unwrap(); exn.add_incoming(&[(&exn_val, landingpad)]); if dispatcher_end.get_terminator().is_none() { ctx.builder.position_at_end(dispatcher_end); if let Some(cleanup) = cleanup { ctx.builder.build_unconditional_branch(cleanup).unwrap(); } else if let Some((_, outer_dispatcher, phi)) = ctx.outer_catch_clauses { phi.add_incoming(&[(&exn_val, dispatcher_end)]); ctx.builder.build_unconditional_branch(outer_dispatcher).unwrap(); } else { ctx.build_call_or_invoke(resume, &[], "resume"); ctx.builder.build_unreachable().unwrap(); } } if finalbody.is_empty() { let tail = ctx.ctx.append_basic_block(current_fun, "try.tail"); if body.get_terminator().is_none() { ctx.builder.position_at_end(body); ctx.builder.build_unconditional_branch(tail).unwrap(); } if matches!(cleanup, Some(cleanup) if cleanup.get_terminator().is_none()) { ctx.builder.position_at_end(cleanup.unwrap()); ctx.builder.build_unconditional_branch(tail).unwrap(); } for post_handler in post_handlers { if post_handler.get_terminator().is_none() { ctx.builder.position_at_end(post_handler); ctx.builder.build_unconditional_branch(tail).unwrap(); } } ctx.builder.position_at_end(tail); } else { // exception path let cleanup = cleanup.unwrap(); ctx.builder.position_at_end(cleanup); generator.gen_block(ctx, finalbody.iter())?; if !ctx.is_terminated() { ctx.build_call_or_invoke(resume, &[], "resume"); ctx.builder.build_unreachable().unwrap(); } // normal path let (final_state, mut final_targets, final_paths) = final_data.unwrap(); let tail = ctx.ctx.append_basic_block(current_fun, "try.tail"); final_targets.push(tail); let finalizer = ctx.ctx.append_basic_block(current_fun, "try.finally"); ctx.builder.position_at_end(finalizer); generator.gen_block(ctx, finalbody.iter())?; if !ctx.is_terminated() { let dest = ctx.builder.build_load(final_state, "final_dest").unwrap(); ctx.builder.build_indirect_branch(dest, &final_targets).unwrap(); } for block in &final_paths { if block.get_terminator().is_none() { ctx.builder.position_at_end(*block); ctx.builder.build_unconditional_branch(finalizer).unwrap(); } } for block in [body].iter().chain(post_handlers.iter()) { if block.get_terminator().is_none() { ctx.builder.position_at_end(*block); unsafe { ctx.builder.build_store(final_state, tail.get_address().unwrap()).unwrap(); } ctx.builder.build_unconditional_branch(finalizer).unwrap(); } } ctx.builder.position_at_end(tail); } Ok(()) } /// See [`CodeGenerator::gen_with`]. pub fn gen_with<G: CodeGenerator>( _: &mut G, _: &mut CodeGenContext<'_, '_>, stmt: &Stmt<Option<Type>>, ) -> Result<(), String> { // TODO: Implement with statement after finishing exceptions Err(format!("With statement with custom types is not yet supported (at {})", stmt.location)) } /// Generates IR for a `return` statement. pub fn gen_return<G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'_, '_>, value: &Option<Box<Expr<Option<Type>>>>, ) -> Result<(), String> { let func = ctx.builder.get_insert_block().and_then(BasicBlock::get_parent).unwrap(); let value = if let Some(v_expr) = value.as_ref() { if let Some(v) = generator.gen_expr(ctx, v_expr).transpose() { Some(v.and_then(|v| v.to_basic_value_enum(ctx, generator, v_expr.custom.unwrap()))?) } else { return Ok(()); } } else { None }; // Remap boolean return type into i1 let value = value.map(|ret_val| { // The "return type" of a sret function is in the first parameter let expected_ty = if ctx.need_sret { func.get_type().get_param_types()[0] } else { func.get_type().get_return_type().unwrap() }; if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) { generator.bool_to_i1(ctx, ret_val.into_int_value()).into() } else { ret_val } }); if let Some(return_target) = ctx.return_target { if let Some(value) = value { ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap(); } ctx.builder.build_unconditional_branch(return_target).unwrap(); } else if ctx.need_sret { // sret ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap(); ctx.builder.build_return(None).unwrap(); } else { let value = value.as_ref().map(|v| v as &dyn BasicValue); ctx.builder.build_return(value).unwrap(); } Ok(()) } /// See [`CodeGenerator::gen_stmt`]. pub fn gen_stmt<G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'_, '_>, stmt: &Stmt<Option<Type>>, ) -> Result<(), String> { ctx.current_loc = stmt.location; let loc = ctx.debug_info.0.create_debug_location( ctx.ctx, ctx.current_loc.row as u32, ctx.current_loc.column as u32, ctx.debug_info.2, None, ); ctx.builder.set_current_debug_location(loc); match &stmt.node { StmtKind::Pass { .. } => {} StmtKind::Expr { value, .. } => { generator.gen_expr(ctx, value)?; } StmtKind::Return { value, .. } => { gen_return(generator, ctx, value)?; } StmtKind::AnnAssign { target, value, .. } => { if let Some(value) = value { let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) }; generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?; } } StmtKind::Assign { targets, value, .. } => { let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) }; for target in targets { generator.gen_assign(ctx, target, value_enum.clone(), value.custom.unwrap())?; } } StmtKind::Continue { .. } => { ctx.builder.build_unconditional_branch(ctx.loop_target.unwrap().0).unwrap(); } StmtKind::Break { .. } => { ctx.builder.build_unconditional_branch(ctx.loop_target.unwrap().1).unwrap(); } StmtKind::If { .. } => generator.gen_if(ctx, stmt)?, StmtKind::While { .. } => generator.gen_while(ctx, stmt)?, StmtKind::For { .. } => generator.gen_for(ctx, stmt)?, StmtKind::With { .. } => generator.gen_with(ctx, stmt)?, StmtKind::AugAssign { target, op, value, .. } => { let value_enum = gen_binop_expr( generator, ctx, target, Binop::aug_assign(*op), value, stmt.location, )? .unwrap(); generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?; } StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?, StmtKind::Raise { exc, .. } => { if let Some(exc) = exc { let exn = if let ExprKind::Name { id, .. } = &exc.node { // Handle "raise Exception" short form let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| { format!("{} (at {})", e.iter().next().unwrap(), exc.location) })?; let def = ctx.top_level.definitions.read(); let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else { return Err(format!("Failed to resolve symbol {id} (at {})", exc.location)); }; let TypeEnum::TFunc(signature) = ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone() else { return Err(format!("Failed to resolve symbol {id} (at {})", exc.location)); }; generator .gen_call(ctx, None, (&signature, def_id), Vec::default())? .map(Into::into) } else { generator.gen_expr(ctx, exc)? }; let exc = if let Some(v) = exn { v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())? } else { return Ok(()); }; gen_raise(generator, ctx, Some(&exc), stmt.location); } else { gen_raise(generator, ctx, None, stmt.location); } } StmtKind::Assert { test, msg, .. } => { let test = if let Some(v) = generator.gen_expr(ctx, test)? { v.to_basic_value_enum(ctx, generator, test.custom.unwrap())? } else { return Ok(()); }; let err_msg = match msg { Some(msg) => { if let Some(v) = generator.gen_expr(ctx, msg)? { v.to_basic_value_enum(ctx, generator, msg.custom.unwrap())? } else { return Ok(()); } } None => ctx.gen_string(generator, "").into(), }; ctx.make_assert_impl( generator, generator.bool_to_i1(ctx, test.into_int_value()), "0:AssertionError", err_msg, [None, None, None], stmt.location, ); } StmtKind::Global { names, .. } => { let registered_globals = ctx .top_level .definitions .read() .iter() .filter_map(|def| { if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() { Some((*simple_name, *ty)) } else { None } }) .collect_vec(); for id in names { let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else { return Err(format!("{id} is not a global at {}", stmt.location)); }; let resolver = ctx.resolver.clone(); let ptr = resolver .get_symbol_value(*id, ctx, generator) .map(|val| val.to_basic_value_enum(ctx, generator, *ty)) .transpose()? .map(BasicValueEnum::into_pointer_value) .unwrap(); ctx.var_assignment.insert(*id, (ptr, None, 0)); } } _ => unimplemented!(), }; Ok(()) } /// Generates IR for a block statement contains `stmts`. pub fn gen_block<'a, G: CodeGenerator, I: Iterator<Item = &'a Stmt<Option<Type>>>>( generator: &mut G, ctx: &mut CodeGenContext<'_, '_>, stmts: I, ) -> Result<(), String> { for stmt in stmts { generator.gen_stmt(ctx, stmt)?; if ctx.is_terminated() { break; } } Ok(()) }