use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip}; use crate::{ codegen::{ classes::{ ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor, }, concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore}, gen_in_range_check, get_llvm_type, get_llvm_abi_type, irrt::*, llvm_intrinsics::{call_expect, call_float_floor, call_float_pow, call_float_powi}, numpy, stmt::{gen_if_else_expr_callback, gen_raise, gen_var}, CodeGenContext, CodeGenTask, }, symbol_resolver::{SymbolValue, ValueEnum}, toplevel::{ DefinitionId, helper::PRIMITIVE_DEF_IDS, numpy::{make_ndarray_ty, unpack_ndarray_var_tys}, TopLevelDef, }, typecheck::{ typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap}, magic_methods::{binop_name, binop_assign_name, unaryop_name}, }, }; use inkwell::{ AddressSpace, attributes::{Attribute, AttributeLoc}, IntPredicate, types::{AnyType, BasicType, BasicTypeEnum}, values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue} }; use itertools::{chain, izip, Itertools, Either}; use nac3parser::ast::{ self, Boolop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef, }; use super::{CodeGenerator, llvm_intrinsics::call_memcpy_generic, need_sret}; pub fn get_subst_key( unifier: &mut Unifier, obj: Option<Type>, fun_vars: &VarMap, filter: Option<&Vec<u32>>, ) -> String { let mut vars = obj .map(|ty| { let TypeEnum::TObj { params, .. } = &*unifier.get_ty(ty) else { unreachable!() }; params.clone() }) .unwrap_or_default(); vars.extend(fun_vars); let sorted = vars.keys().filter(|id| filter.map_or(true, |v| v.contains(id))).sorted(); sorted .map(|id| { unifier.internal_stringify( vars[id], &mut |id| id.to_string(), &mut |id| id.to_string(), &mut None, ) }) .join(", ") } impl<'ctx, 'a> CodeGenContext<'ctx, 'a> { /// Builds a sequence of `getelementptr` and `load` instructions which stores the value of a /// struct field into an LLVM value. pub fn build_gep_and_load( &mut self, ptr: PointerValue<'ctx>, index: &[IntValue<'ctx>], name: Option<&str>, ) -> BasicValueEnum<'ctx> { let gep = unsafe { self.builder.build_gep(ptr, index, "") }.unwrap(); self.builder.build_load(gep, name.unwrap_or_default()).unwrap() } fn get_subst_key( &mut self, obj: Option<Type>, fun: &FunSignature, filter: Option<&Vec<u32>>, ) -> String { get_subst_key(&mut self.unifier, obj, &fun.vars, filter) } pub fn get_attr_index(&mut self, ty: Type, attr: StrRef) -> usize { let obj_id = match &*self.unifier.get_ty(ty) { TypeEnum::TObj { obj_id, .. } => *obj_id, // we cannot have other types, virtual type should be handled by function calls _ => unreachable!(), }; let def = &self.top_level.definitions.read()[obj_id.0]; let index = if let TopLevelDef::Class { fields, .. } = &*def.read() { fields.iter().find_position(|x| x.0 == attr).unwrap().0 } else { unreachable!() }; index } pub fn gen_symbol_val<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, val: &SymbolValue, ty: Type, ) -> BasicValueEnum<'ctx> { match val { SymbolValue::I32(v) => self.ctx.i32_type().const_int(*v as u64, true).into(), SymbolValue::I64(v) => self.ctx.i64_type().const_int(*v as u64, true).into(), SymbolValue::U32(v) => self.ctx.i32_type().const_int(*v as u64, false).into(), SymbolValue::U64(v) => self.ctx.i64_type().const_int(*v, false).into(), SymbolValue::Bool(v) => self.ctx.i8_type().const_int(*v as u64, true).into(), SymbolValue::Double(v) => self.ctx.f64_type().const_float(*v).into(), SymbolValue::Str(v) => { let str_ptr = self.builder .build_global_string_ptr(v, "const") .map(|v| v.as_pointer_value().into()) .unwrap(); let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false); let ty = self.get_llvm_type(generator, self.primitives.str).into_struct_type(); ty.const_named_struct(&[str_ptr, size.into()]).into() } SymbolValue::Tuple(ls) => { let vals = ls.iter().map(|v| self.gen_symbol_val(generator, v, ty)).collect_vec(); let fields = vals.iter().map(BasicValueEnum::get_type).collect_vec(); let ty = self.ctx.struct_type(&fields, false); let ptr = gen_var(self, ty.into(), Some("tuple")).unwrap(); let zero = self.ctx.i32_type().const_zero(); unsafe { for (i, val) in vals.into_iter().enumerate() { let p = self.builder.build_in_bounds_gep( ptr, &[zero, self.ctx.i32_type().const_int(i as u64, false)], "elemptr", ).unwrap(); self.builder.build_store(p, val).unwrap(); } } self.builder.build_load(ptr, "tup_val").unwrap() } SymbolValue::OptionSome(v) => { let ty = match self.unifier.get_ty_immutable(ty).as_ref() { TypeEnum::TObj { obj_id, params, .. } if *obj_id == self.primitives.option.obj_id(&self.unifier).unwrap() => { *params.iter().next().unwrap().1 } _ => unreachable!("must be option type"), }; let val = self.gen_symbol_val(generator, v, ty); let ptr = generator.gen_var_alloc(self, val.get_type(), Some("default_opt_some")).unwrap(); self.builder.build_store(ptr, val).unwrap(); ptr.into() } SymbolValue::OptionNone => { let ty = match self.unifier.get_ty_immutable(ty).as_ref() { TypeEnum::TObj { obj_id, params, .. } if *obj_id == self.primitives.option.obj_id(&self.unifier).unwrap() => { *params.iter().next().unwrap().1 } _ => unreachable!("must be option type"), }; let actual_ptr_type = self.get_llvm_type(generator, ty).ptr_type(AddressSpace::default()); actual_ptr_type.const_null().into() } } } /// See [`get_llvm_type`]. pub fn get_llvm_type<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, ty: Type, ) -> BasicTypeEnum<'ctx> { get_llvm_type( self.ctx, &self.module, generator, &mut self.unifier, self.top_level, &mut self.type_cache, ty, ) } /// See [`get_llvm_abi_type`]. pub fn get_llvm_abi_type<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, ty: Type, ) -> BasicTypeEnum<'ctx> { get_llvm_abi_type( self.ctx, &self.module, generator, &mut self.unifier, self.top_level, &mut self.type_cache, &self.primitives, ty, ) } /// Generates an LLVM variable for a [constant value][value] with a given [type][ty]. pub fn gen_const<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, value: &Constant, ty: Type, ) -> Option<BasicValueEnum<'ctx>> { match value { Constant::Bool(v) => { assert!(self.unifier.unioned(ty, self.primitives.bool)); let ty = self.ctx.i8_type(); Some(ty.const_int(u64::from(*v), false).into()) } Constant::Int(val) => { let ty = if self.unifier.unioned(ty, self.primitives.int32) || self.unifier.unioned(ty, self.primitives.uint32) { self.ctx.i32_type() } else if self.unifier.unioned(ty, self.primitives.int64) || self.unifier.unioned(ty, self.primitives.uint64) { self.ctx.i64_type() } else { unreachable!() }; Some(ty.const_int(*val as u64, false).into()) } Constant::Float(v) => { assert!(self.unifier.unioned(ty, self.primitives.float)); let ty = self.ctx.f64_type(); Some(ty.const_float(*v).into()) } Constant::Tuple(v) => { let ty = self.unifier.get_ty(ty); let types = if let TypeEnum::TTuple { ty } = &*ty { ty.clone() } else { unreachable!() }; let values = zip(types, v.iter()) .map_while(|(ty, v)| self.gen_const(generator, v, ty)) .collect_vec(); if values.len() == v.len() { let types = values.iter().map(BasicValueEnum::get_type).collect_vec(); let ty = self.ctx.struct_type(&types, false); Some(ty.const_named_struct(&values).into()) } else { None } } Constant::Str(v) => { assert!(self.unifier.unioned(ty, self.primitives.str)); if let Some(v) = self.const_strings.get(v) { Some(*v) } else { let str_ptr = self.builder .build_global_string_ptr(v, "const") .map(|v| v.as_pointer_value().into()) .unwrap(); let size = generator.get_size_type(self.ctx).const_int(v.len() as u64, false); let ty = self.get_llvm_type(generator, self.primitives.str); let val = ty.into_struct_type().const_named_struct(&[str_ptr, size.into()]).into(); self.const_strings.insert(v.to_string(), val); Some(val) } } Constant::Ellipsis => { let msg = self.gen_string(generator, "NotImplementedError"); self.raise_exn( generator, "0:NotImplementedError", msg, [None, None, None], self.current_loc, ); None } _ => unreachable!(), } } /// Generates a binary operation `op` between two integral operands `lhs` and `rhs`. pub fn gen_int_ops<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, op: &Operator, lhs: BasicValueEnum<'ctx>, rhs: BasicValueEnum<'ctx>, signed: bool ) -> BasicValueEnum<'ctx> { let (BasicValueEnum::IntValue(lhs), BasicValueEnum::IntValue(rhs)) = (lhs, rhs) else { unreachable!() }; let float = self.ctx.f64_type(); match (op, signed) { (Operator::Add, _) => self.builder.build_int_add(lhs, rhs, "add").map(Into::into).unwrap(), (Operator::Sub, _) => self.builder.build_int_sub(lhs, rhs, "sub").map(Into::into).unwrap(), (Operator::Mult, _) => self.builder.build_int_mul(lhs, rhs, "mul").map(Into::into).unwrap(), (Operator::Div, true) => { let left = self.builder.build_signed_int_to_float(lhs, float, "i2f").unwrap(); let right = self.builder.build_signed_int_to_float(rhs, float, "i2f").unwrap(); self.builder.build_float_div(left, right, "fdiv").map(Into::into).unwrap() } (Operator::Div, false) => { let left = self.builder.build_unsigned_int_to_float(lhs, float, "i2f").unwrap(); let right = self.builder.build_unsigned_int_to_float(rhs, float, "i2f").unwrap(); self.builder.build_float_div(left, right, "fdiv").map(Into::into).unwrap() } (Operator::Mod, true) => self.builder.build_int_signed_rem(lhs, rhs, "mod").map(Into::into).unwrap(), (Operator::Mod, false) => self.builder.build_int_unsigned_rem(lhs, rhs, "mod").map(Into::into).unwrap(), (Operator::BitOr, _) => self.builder.build_or(lhs, rhs, "or").map(Into::into).unwrap(), (Operator::BitXor, _) => self.builder.build_xor(lhs, rhs, "xor").map(Into::into).unwrap(), (Operator::BitAnd, _) => self.builder.build_and(lhs, rhs, "and").map(Into::into).unwrap(), // Sign-ness of bitshift operators are always determined by the left operand (Operator::LShift | Operator::RShift, signed) => { // RHS operand is always 32 bits assert_eq!(rhs.get_type().get_bit_width(), 32); let common_type = lhs.get_type(); let rhs = if common_type.get_bit_width() > 32 { if signed { self.builder.build_int_s_extend(rhs, common_type, "").unwrap() } else { self.builder.build_int_z_extend(rhs, common_type, "").unwrap() } } else { rhs }; let rhs_gez = self.builder .build_int_compare(IntPredicate::SGE, rhs, common_type.const_zero(), "") .unwrap(); self.make_assert( generator, rhs_gez, "ValueError", "negative shift count", [None, None, None], self.current_loc ); match *op { Operator::LShift => self.builder.build_left_shift(lhs, rhs, "lshift").map(Into::into).unwrap(), Operator::RShift => self.builder.build_right_shift(lhs, rhs, signed, "rshift").map(Into::into).unwrap(), _ => unreachable!() } } (Operator::FloorDiv, true) => self.builder.build_int_signed_div(lhs, rhs, "floordiv").map(Into::into).unwrap(), (Operator::FloorDiv, false) => self.builder.build_int_unsigned_div(lhs, rhs, "floordiv").map(Into::into).unwrap(), (Operator::Pow, s) => integer_power(generator, self, lhs, rhs, s).into(), // special implementation? (Operator::MatMult, _) => unreachable!(), } } /// Generates a binary operation `op` between two floating-point operands `lhs` and `rhs`. pub fn gen_float_ops( &mut self, op: &Operator, lhs: BasicValueEnum<'ctx>, rhs: BasicValueEnum<'ctx>, ) -> BasicValueEnum<'ctx> { let (BasicValueEnum::FloatValue(lhs), BasicValueEnum::FloatValue(rhs)) = (lhs, rhs) else { unreachable!("Expected (FloatValue, FloatValue), got ({}, {})", lhs.get_type(), rhs.get_type()) }; match op { Operator::Add => self.builder.build_float_add(lhs, rhs, "fadd").map(Into::into).unwrap(), Operator::Sub => self.builder.build_float_sub(lhs, rhs, "fsub").map(Into::into).unwrap(), Operator::Mult => self.builder.build_float_mul(lhs, rhs, "fmul").map(Into::into).unwrap(), Operator::Div => self.builder.build_float_div(lhs, rhs, "fdiv").map(Into::into).unwrap(), Operator::Mod => self.builder.build_float_rem(lhs, rhs, "fmod").map(Into::into).unwrap(), Operator::FloorDiv => { let div = self.builder.build_float_div(lhs, rhs, "fdiv").unwrap(); call_float_floor(self, div, Some("floor")).into() } Operator::Pow => call_float_pow(self, lhs, rhs, Some("f_pow")).into(), // special implementation? _ => unimplemented!(), } } pub fn build_call_or_invoke( &mut self, fun: FunctionValue<'ctx>, params: &[BasicValueEnum<'ctx>], call_name: &str, ) -> Option<BasicValueEnum<'ctx>> { let mut loc_params: Vec<BasicValueEnum<'ctx>> = Vec::new(); let mut return_slot = None; let loc = self.debug_info.0.create_debug_location( self.ctx, self.current_loc.row as u32, self.current_loc.column as u32, self.debug_info.2, None, ); self.builder.set_current_debug_location(loc); if fun.count_params() > 0 { let sret_id = Attribute::get_named_enum_kind_id("sret"); let byref_id = Attribute::get_named_enum_kind_id("byref"); let byval_id = Attribute::get_named_enum_kind_id("byval"); let offset = if fun.get_enum_attribute(AttributeLoc::Param(0), sret_id).is_some() { return_slot = Some(self.builder .build_alloca( fun.get_type() .get_param_types()[0] .into_pointer_type() .get_element_type() .into_struct_type(), call_name ) .unwrap() ); loc_params.push((*return_slot.as_ref().unwrap()).into()); 1 } else { 0 }; for (i, param) in params.iter().enumerate() { let loc = AttributeLoc::Param((i + offset) as u32); if fun.get_enum_attribute(loc, byref_id).is_some() || fun.get_enum_attribute(loc, byval_id).is_some() { // lazy update if loc_params.is_empty() { loc_params.extend(params[0..i+offset].iter().copied()); } let slot = gen_var(self, param.get_type(), Some(call_name)).unwrap(); loc_params.push(slot.into()); self.builder.build_store(slot, *param).unwrap(); } else if !loc_params.is_empty() { loc_params.push(*param); } } } let params = if loc_params.is_empty() { params } else { &loc_params }; let params = fun .get_type() .get_param_types() .into_iter() .zip(params.iter()) .map(|(ty, val)| match (ty, val.get_type()) { (BasicTypeEnum::PointerType(arg_ty), BasicTypeEnum::PointerType(val_ty)) if { ty != val.get_type() && arg_ty.get_element_type().is_struct_type() && val_ty.get_element_type().is_struct_type() } => { self.builder.build_bitcast(*val, arg_ty, "call_arg_cast").unwrap() } _ => *val, }) .collect_vec(); let result = if let Some(target) = self.unwind_target { let current = self.builder.get_insert_block().unwrap().get_parent().unwrap(); let then_block = self.ctx.append_basic_block(current, &format!("after.{call_name}")); let result = self .builder .build_invoke(fun, ¶ms, then_block, target, call_name) .map(CallSiteValue::try_as_basic_value) .map(Either::left) .unwrap(); self.builder.position_at_end(then_block); result } else { let param: Vec<_> = params.iter().map(|v| (*v).into()).collect(); self.builder.build_call(fun, ¶m, call_name) .map(CallSiteValue::try_as_basic_value) .map(Either::left) .unwrap() }; if let Some(slot) = return_slot { Some(self.builder.build_load(slot, call_name).unwrap()) } else { result } } /// Helper function for generating a LLVM variable storing a [String]. pub fn gen_string<G, S>( &mut self, generator: &mut G, s: S, ) -> BasicValueEnum<'ctx> where G: CodeGenerator + ?Sized, S: Into<String>, { self.gen_const(generator, &Constant::Str(s.into()), self.primitives.str).unwrap() } pub fn raise_exn<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, name: &str, msg: BasicValueEnum<'ctx>, params: [Option<IntValue<'ctx>>; 3], loc: Location, ) { let zelf = if let Some(exception_val) = self.exception_val { exception_val } else { let ty = self.get_llvm_type(generator, self.primitives.exception).into_pointer_type(); let zelf_ty: BasicTypeEnum = ty.get_element_type().into_struct_type().into(); let zelf = generator.gen_var_alloc(self, zelf_ty, Some("exn")).unwrap(); *self.exception_val.insert(zelf) }; let int32 = self.ctx.i32_type(); let zero = int32.const_zero(); unsafe { let id_ptr = self.builder .build_in_bounds_gep(zelf, &[zero, zero], "exn.id") .unwrap(); let id = self.resolver.get_string_id(name); self.builder.build_store(id_ptr, int32.const_int(id as u64, false)).unwrap(); let ptr = self.builder.build_in_bounds_gep( zelf, &[zero, int32.const_int(5, false)], "exn.msg", ).unwrap(); self.builder.build_store(ptr, msg).unwrap(); let i64_zero = self.ctx.i64_type().const_zero(); for (i, attr_ind) in [6, 7, 8].iter().enumerate() { let ptr = self.builder.build_in_bounds_gep( zelf, &[zero, int32.const_int(*attr_ind, false)], "exn.param", ).unwrap(); let val = params[i].map_or(i64_zero, |v| { self.builder.build_int_s_extend(v, self.ctx.i64_type(), "sext").unwrap() }); self.builder.build_store(ptr, val).unwrap(); } } gen_raise(generator, self, Some(&zelf.into()), loc); } pub fn make_assert<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, cond: IntValue<'ctx>, err_name: &str, err_msg: &str, params: [Option<IntValue<'ctx>>; 3], loc: Location, ) { let err_msg = self.gen_string(generator, err_msg); self.make_assert_impl(generator, cond, err_name, err_msg, params, loc); } pub fn make_assert_impl<G: CodeGenerator + ?Sized>( &mut self, generator: &mut G, cond: IntValue<'ctx>, err_name: &str, err_msg: BasicValueEnum<'ctx>, params: [Option<IntValue<'ctx>>; 3], loc: Location, ) { let i1 = self.ctx.bool_type(); let i1_true = i1.const_all_ones(); // we assume that the condition is most probably true, so the normal path is the most // probable path // even if this assumption is violated, it does not matter as exception unwinding is // slow anyway... let cond = call_expect(self, cond, i1_true, Some("expect")); let current_bb = self.builder.get_insert_block().unwrap(); let current_fun = current_bb.get_parent().unwrap(); let then_block = self.ctx.insert_basic_block_after(current_bb, "succ"); let exn_block = self.ctx.append_basic_block(current_fun, "fail"); self.builder.build_conditional_branch(cond, then_block, exn_block).unwrap(); self.builder.position_at_end(exn_block); self.raise_exn(generator, err_name, err_msg, params, loc); self.builder.position_at_end(then_block); } } /// See [`CodeGenerator::gen_constructor`]. pub fn gen_constructor<'ctx, 'a, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, 'a>, signature: &FunSignature, def: &TopLevelDef, params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, ) -> Result<BasicValueEnum<'ctx>, String> { let TopLevelDef::Class { methods, .. } = def else { unreachable!() }; // TODO: what about other fields that require alloca? let fun_id = methods.iter().find(|method| method.0 == "__init__".into()).map(|method| method.2); let ty = ctx.get_llvm_type(generator, signature.ret).into_pointer_type(); let zelf_ty: BasicTypeEnum = ty.get_element_type().try_into().unwrap(); let zelf: BasicValueEnum<'ctx> = ctx.builder.build_alloca(zelf_ty, "alloca").map(Into::into).unwrap(); // call `__init__` if there is one if let Some(fun_id) = fun_id { let mut sign = signature.clone(); sign.ret = ctx.primitives.none; generator.gen_call( ctx, Some((signature.ret, zelf.into())), (&sign, fun_id), params, )?; } Ok(zelf) } /// See [`CodeGenerator::gen_func_instance`]. pub fn gen_func_instance<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, obj: &Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, &mut TopLevelDef, String), id: usize, ) -> Result<String, String> { let ( sign, TopLevelDef::Function { name, instance_to_symbol, instance_to_stmt, var_id, resolver, .. }, key, ) = fun else { unreachable!() }; if let Some(sym) = instance_to_symbol.get(&key) { return Ok(sym.clone()); } let symbol = format!("{}.{}", name, instance_to_symbol.len()); instance_to_symbol.insert(key, symbol.clone()); let mut filter = var_id.clone(); if let Some((obj_ty, _)) = &obj { if let TypeEnum::TObj { params, .. } = &*ctx.unifier.get_ty(*obj_ty) { filter.extend(params.keys()); } } let key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), sign, Some(&filter)); let instance = instance_to_stmt.get(&key).unwrap(); let mut store = ConcreteTypeStore::new(); let mut cache = HashMap::new(); let subst = sign .vars .iter() .map(|(id, ty)| { ( *instance.subst.get(id).unwrap(), store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, *ty, &mut cache), ) }) .collect(); let mut signature = store.from_signature(&mut ctx.unifier, &ctx.primitives, sign, &mut cache); if let Some(obj) = &obj { let zelf = store.from_unifier_type(&mut ctx.unifier, &ctx.primitives, obj.0, &mut cache); let ConcreteTypeEnum::TFunc { args, .. } = &mut signature else { unreachable!() }; args.insert( 0, ConcreteFuncArg { name: "self".into(), ty: zelf, default_value: None }, ); } let signature = store.add_cty(signature); ctx.registry.add_task(CodeGenTask { symbol_name: symbol.clone(), body: instance.body.clone(), resolver: resolver.as_ref().unwrap().clone(), calls: instance.calls.clone(), subst, signature, store, unifier_index: instance.unifier_id, id, }); Ok(symbol) } /// See [`CodeGenerator::gen_call`]. pub fn gen_call<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, obj: Option<(Type, ValueEnum<'ctx>)>, fun: (&FunSignature, DefinitionId), params: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, ) -> Result<Option<BasicValueEnum<'ctx>>, String> { let definition = ctx.top_level.definitions.read().get(fun.1 .0).cloned().unwrap(); let id; let key; let param_vals; let is_extern; let symbol = { // make sure this lock guard is dropped at the end of this scope... let def = definition.read(); match &*def { TopLevelDef::Function { instance_to_symbol, instance_to_stmt, codegen_callback, .. } => { if let Some(callback) = codegen_callback { return callback.run(ctx, obj, fun, params, generator); } is_extern = instance_to_stmt.is_empty(); let old_key = ctx.get_subst_key(obj.as_ref().map(|a| a.0), fun.0, None); let mut keys = fun.0.args.clone(); let mut mapping = HashMap::new(); for (key, value) in params { mapping.insert(key.unwrap_or_else(|| keys.remove(0).name), value); } // default value handling for k in keys { if mapping.get(&k.name).is_some() { continue; } mapping.insert( k.name, ctx.gen_symbol_val(generator, &k.default_value.unwrap(), k.ty).into(), ); } // reorder the parameters let mut real_params = fun.0.args.iter().map(|arg| (mapping.remove(&arg.name).unwrap(), arg.ty)).collect_vec(); if let Some(obj) = &obj { real_params.insert(0, (obj.1.clone(), obj.0)); } let static_params = real_params .iter() .enumerate() .filter_map(|(i, (v, _))| { if let ValueEnum::Static(s) = v { Some((i, s.clone())) } else { None } }) .collect_vec(); id = { let ids = static_params .iter() .map(|(i, v)| (*i, v.get_unique_identifier())) .collect_vec(); let mut store = ctx.static_value_store.lock(); if let Some(index) = store.lookup.get(&ids) { *index } else { let length = store.store.len(); store.lookup.insert(ids, length); store.store.push(static_params.into_iter().collect()); length } }; // special case: extern functions key = if instance_to_stmt.is_empty() { String::new() } else { format!("{id}:{old_key}") }; param_vals = real_params .into_iter() .map(|(p, t)| p.to_basic_value_enum(ctx, generator, t)) .collect::<Result<Vec<_>, String>>()?; instance_to_symbol.get(&key).cloned().ok_or_else(String::new) } TopLevelDef::Class { .. } => { return Ok(Some(generator.gen_constructor(ctx, fun.0, &def, params)?)) } } } .or_else(|_: String| { generator.gen_func_instance(ctx, obj.clone(), (fun.0, &mut *definition.write(), key), id) })?; let fun_val = ctx.module.get_function(&symbol).unwrap_or_else(|| { let mut args = fun.0.args.clone(); if let Some(obj) = &obj { args.insert(0, FuncArg { name: "self".into(), ty: obj.0, default_value: None }); } let ret_type = if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) { None } else { Some(ctx.get_llvm_abi_type(generator, fun.0.ret)) }; let has_sret = ret_type.map_or(false, |ret_type| need_sret(ret_type)); let mut byrefs = Vec::new(); let mut params = args.iter().enumerate() .map(|(i, arg)| match ctx.get_llvm_abi_type(generator, arg.ty) { BasicTypeEnum::StructType(ty) if is_extern => { byrefs.push((i, ty)); ty.ptr_type(AddressSpace::default()).into() }, x => x }.into()) .collect_vec(); if has_sret { params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into()); } let fun_ty = match ret_type { Some(ret_type) if !has_sret => ret_type.fn_type(¶ms, false), _ => ctx.ctx.void_type().fn_type(¶ms, false) }; let fun_val = ctx.module.add_function(&symbol, fun_ty, None); let offset = if has_sret { fun_val.add_attribute(AttributeLoc::Param(0), ctx.ctx.create_type_attribute(Attribute::get_named_enum_kind_id("sret"), ret_type.unwrap().as_any_type_enum())); 1 } else { 0 }; // The attribute ID used to mark arguments of a structure type. // Structure-Typed parameters of extern functions must **not** be marked as `byval`, as // `byval` explicitly specifies that the argument is to be passed on the stack, which breaks // on most ABIs where the first several arguments are expected to be passed in registers. let passing_attr_id = Attribute::get_named_enum_kind_id( if is_extern { "byref" } else { "byval" } ); for (i, ty) in byrefs { fun_val.add_attribute( AttributeLoc::Param((i as u32) + offset), ctx.ctx.create_type_attribute(passing_attr_id, ty.as_any_type_enum()) ); } fun_val }); // Convert boolean parameter values into i1 let param_vals = fun_val.get_params().iter().zip(param_vals) .map(|(p, v)| { if p.is_int_value() && v.is_int_value() { let expected_ty = p.into_int_value().get_type(); let param_val = v.into_int_value(); if expected_ty.get_bit_width() == 1 && param_val.get_type().get_bit_width() != 1 { generator.bool_to_i1(ctx, param_val) } else { param_val }.into() } else { v } }) .collect_vec(); Ok(ctx.build_call_or_invoke(fun_val, ¶m_vals, "call")) } /// Generates three LLVM variables representing the start, stop, and step values of a [range] class /// respectively. pub fn destructure_range<'ctx>( ctx: &mut CodeGenContext<'ctx, '_>, range: RangeValue<'ctx>, ) -> (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>) { let start = range.load_start(ctx, None); let end = range.load_end(ctx, None); let step = range.load_step(ctx, None); (start, end, step) } /// Allocates a List structure with the given [type][ty] and [length]. The name of the resulting /// LLVM value is `{name}.addr`, or `list.addr` if [name] is not specified. /// /// Returns an instance of [`PointerValue`] pointing to the List structure. The List structure is /// defined as `type { ty*, size_t }` in LLVM, where the first element stores the pointer to the /// data, and the second element stores the size of the List. pub fn allocate_list<'ctx, G: CodeGenerator + ?Sized>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, ty: BasicTypeEnum<'ctx>, length: IntValue<'ctx>, name: Option<&str>, ) -> ListValue<'ctx> { let size_t = generator.get_size_type(ctx.ctx); // List structure; type { ty*, size_t } let arr_ty = ctx.ctx .struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false); let arr_str_ptr = ctx.builder.build_alloca( arr_ty, format!("{}.addr", name.unwrap_or("list")).as_str() ).unwrap(); let list = ListValue::from_ptr_val(arr_str_ptr, size_t, Some("list")); let length = ctx.builder.build_int_z_extend( length, size_t, "" ).unwrap(); list.store_size(ctx, generator, length); list.create_data(ctx, ty, None); list } /// Generates LLVM IR for a [list comprehension expression][expr]. pub fn gen_comprehension<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, expr: &Expr<Option<Type>>, ) -> Result<Option<BasicValueEnum<'ctx>>, String> { let ExprKind::ListComp { elt, generators } = &expr.node else { unreachable!() }; let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let init_bb = ctx.ctx.append_basic_block(current, "listcomp.init"); let test_bb = ctx.ctx.append_basic_block(current, "listcomp.test"); let body_bb = ctx.ctx.append_basic_block(current, "listcomp.body"); let cont_bb = ctx.ctx.append_basic_block(current, "listcomp.cont"); ctx.builder.build_unconditional_branch(init_bb).unwrap(); ctx.builder.position_at_end(init_bb); let Comprehension { target, iter, ifs, .. } = &generators[0]; let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? { v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())? } else { for bb in [test_bb, body_bb, cont_bb] { ctx.builder.position_at_end(bb); ctx.builder.build_unreachable().unwrap(); } return Ok(None) }; let int32 = ctx.ctx.i32_type(); let size_t = generator.get_size_type(ctx.ctx); let zero_size_t = size_t.const_zero(); let zero_32 = int32.const_zero(); let index = generator.gen_var_alloc(ctx, size_t.into(), Some("index.addr"))?; ctx.builder.build_store(index, zero_size_t).unwrap(); let elem_ty = ctx.get_llvm_type(generator, elt.custom.unwrap()); let is_range = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range); let list; let list_content; if is_range { let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range")); let (start, stop, step) = destructure_range(ctx, iter_val); let diff = ctx.builder.build_int_sub(stop, start, "diff").unwrap(); // add 1 to the length as the value is rounded to zero // the length may be 1 more than the actual length if the division is exact, but the // length is a upper bound only anyway so it does not matter. let length = ctx.builder.build_int_signed_div(diff, step, "div").unwrap(); let length = ctx.builder.build_int_add(length, int32.const_int(1, false), "add1").unwrap(); // in case length is non-positive let is_valid = ctx.builder .build_int_compare(IntPredicate::SGT, length, zero_32, "check") .unwrap(); let list_alloc_size = ctx.builder.build_select( is_valid, ctx.builder.build_int_z_extend_or_bit_cast(length, size_t, "z_ext_len").unwrap(), zero_size_t, "listcomp.alloc_size" ).unwrap(); list = allocate_list( generator, ctx, elem_ty, list_alloc_size.into_int_value(), Some("listcomp.addr") ); list_content = list.data().base_ptr(ctx, generator); let i = generator.gen_store_target(ctx, target, Some("i.addr"))?.unwrap(); ctx.builder .build_store(i, ctx.builder.build_int_sub(start, step, "start_init").unwrap()) .unwrap(); ctx.builder .build_conditional_branch(gen_in_range_check(ctx, start, stop, step), test_bb, cont_bb) .unwrap(); ctx.builder.position_at_end(test_bb); // add and test let tmp = ctx.builder.build_int_add( ctx.builder.build_load(i, "i").map(BasicValueEnum::into_int_value).unwrap(), step, "start_loop", ).unwrap(); ctx.builder.build_store(i, tmp).unwrap(); ctx.builder .build_conditional_branch(gen_in_range_check(ctx, tmp, stop, step), body_bb, cont_bb) .unwrap(); ctx.builder.position_at_end(body_bb); } else { let length = ctx .build_gep_and_load( iter_val.into_pointer_value(), &[zero_size_t, int32.const_int(1, false)], Some("length"), ) .into_int_value(); list = allocate_list(generator, ctx, elem_ty, length, Some("listcomp")); list_content = list.data().base_ptr(ctx, generator); let counter = generator.gen_var_alloc(ctx, size_t.into(), Some("counter.addr"))?; // counter = -1 ctx.builder.build_store(counter, size_t.const_int(u64::MAX, true)).unwrap(); ctx.builder.build_unconditional_branch(test_bb).unwrap(); ctx.builder.position_at_end(test_bb); let tmp = ctx.builder.build_load(counter, "i").map(BasicValueEnum::into_int_value).unwrap(); let tmp = ctx.builder.build_int_add(tmp, size_t.const_int(1, false), "inc").unwrap(); ctx.builder.build_store(counter, tmp).unwrap(); let cmp = ctx.builder.build_int_compare(IntPredicate::SLT, tmp, length, "cmp").unwrap(); ctx.builder.build_conditional_branch(cmp, body_bb, cont_bb).unwrap(); ctx.builder.position_at_end(body_bb); let arr_ptr = ctx .build_gep_and_load(iter_val.into_pointer_value(), &[zero_size_t, zero_32], Some("arr.addr")) .into_pointer_value(); let val = ctx.build_gep_and_load(arr_ptr, &[tmp], Some("val")); generator.gen_assign(ctx, target, val.into())?; } // Emits the content of `cont_bb` let emit_cont_bb = |ctx: &CodeGenContext<'ctx, '_>, generator: &dyn CodeGenerator, list: ListValue<'ctx>| { ctx.builder.position_at_end(cont_bb); list.store_size(ctx, generator, ctx.builder.build_load(index, "index").map(BasicValueEnum::into_int_value).unwrap()); }; for cond in ifs { let result = if let Some(v) = generator.gen_expr(ctx, cond)? { v.to_basic_value_enum(ctx, generator, cond.custom.unwrap())?.into_int_value() } else { // Bail if the predicate is an ellipsis - Emit cont_bb contents in case the // no element matches the predicate emit_cont_bb(ctx, generator, list); return Ok(None) }; let result = generator.bool_to_i1(ctx, result); let succ = ctx.ctx.append_basic_block(current, "then"); ctx.builder.build_conditional_branch(result, succ, test_bb).unwrap(); ctx.builder.position_at_end(succ); } let Some(elem) = generator.gen_expr(ctx, elt)? else { // Similarly, bail if the generator expression is an ellipsis, but keep cont_bb contents emit_cont_bb(ctx, generator, list); return Ok(None) }; let i = ctx.builder.build_load(index, "i").map(BasicValueEnum::into_int_value).unwrap(); let elem_ptr = unsafe { ctx.builder.build_gep(list_content, &[i], "elem_ptr") }.unwrap(); let val = elem.to_basic_value_enum(ctx, generator, elt.custom.unwrap())?; ctx.builder.build_store(elem_ptr, val).unwrap(); ctx.builder .build_store( index, ctx.builder.build_int_add(i, size_t.const_int(1, false), "inc").unwrap(), ) .unwrap(); ctx.builder.build_unconditional_branch(test_bb).unwrap(); emit_cont_bb(ctx, generator, list); Ok(Some(list.as_ptr_value().into())) } /// Generates LLVM IR for a binary operator expression using the [`Type`] and /// [LLVM value][`BasicValueEnum`] of the operands. pub fn gen_binop_expr_with_values<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, left: (&Option<Type>, BasicValueEnum<'ctx>), op: &Operator, right: (&Option<Type>, BasicValueEnum<'ctx>), loc: Location, is_aug_assign: bool, ) -> Result<Option<ValueEnum<'ctx>>, String> { let (left_ty, left_val) = left; let (right_ty, right_val) = right; let ty1 = ctx.unifier.get_representative(left_ty.unwrap()); let ty2 = ctx.unifier.get_representative(right_ty.unwrap()); // we can directly compare the types, because we've got their representatives // which would be unchanged until further unification, which we would never do // when doing code generation for function instances if ty1 == ty2 && [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1) { Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, true).into())) } else if ty1 == ty2 && [ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty1) { Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, false).into())) } else if [Operator::LShift, Operator::RShift].contains(op) { let signed = [ctx.primitives.int32, ctx.primitives.int64].contains(&ty1); Ok(Some(ctx.gen_int_ops(generator, op, left_val, right_val, signed).into())) } else if ty1 == ty2 && ctx.primitives.float == ty1 { Ok(Some(ctx.gen_float_ops(op, left_val, right_val).into())) } else if ty1 == ctx.primitives.float && ty2 == ctx.primitives.int32 { // Pow is the only operator that would pass typecheck between float and int assert_eq!(*op, Operator::Pow); let res = call_float_powi( ctx, left_val.into_float_value(), right_val.into_int_value(), Some("f_pow_i") ); Ok(Some(res.into())) } else if ty1.obj_id(&ctx.unifier).is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray) || ty2.obj_id(&ctx.unifier).is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray) { let llvm_usize = generator.get_size_type(ctx.ctx); let is_ndarray1 = ty1.obj_id(&ctx.unifier) .is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray); let is_ndarray2 = ty2.obj_id(&ctx.unifier) .is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray); if is_ndarray1 && is_ndarray2 { let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty1); let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty2); assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2)); let left_val = NDArrayValue::from_ptr_val( left_val.into_pointer_value(), llvm_usize, None, ); let right_val = NDArrayValue::from_ptr_val( right_val.into_pointer_value(), llvm_usize, None, ); let res = if *op == Operator::MatMult { // MatMult is the only binop which is not an elementwise op numpy::ndarray_matmul_2d( generator, ctx, ndarray_dtype1, if is_aug_assign { Some(left_val) } else { None }, left_val, right_val, )? } else { numpy::ndarray_elementwise_binop_impl( generator, ctx, ndarray_dtype1, if is_aug_assign { Some(left_val) } else { None }, (left_val.as_ptr_value().into(), false), (right_val.as_ptr_value().into(), false), |generator, ctx, (lhs, rhs)| { gen_binop_expr_with_values( generator, ctx, (&Some(ndarray_dtype1), lhs), op, (&Some(ndarray_dtype2), rhs), ctx.current_loc, is_aug_assign, )?.unwrap().to_basic_value_enum(ctx, generator, ndarray_dtype1) }, )? }; Ok(Some(res.as_ptr_value().into())) } else { let (ndarray_dtype, _) = unpack_ndarray_var_tys( &mut ctx.unifier, if is_ndarray1 { ty1 } else { ty2 }, ); let ndarray_val = NDArrayValue::from_ptr_val( if is_ndarray1 { left_val } else { right_val }.into_pointer_value(), llvm_usize, None, ); let res = numpy::ndarray_elementwise_binop_impl( generator, ctx, ndarray_dtype, if is_aug_assign { Some(ndarray_val) } else { None }, (left_val, !is_ndarray1), (right_val, !is_ndarray2), |generator, ctx, (lhs, rhs)| { gen_binop_expr_with_values( generator, ctx, (&Some(ndarray_dtype), lhs), op, (&Some(ndarray_dtype), rhs), ctx.current_loc, is_aug_assign, )?.unwrap().to_basic_value_enum(ctx, generator, ndarray_dtype) }, )?; Ok(Some(res.as_ptr_value().into())) } } else { let left_ty_enum = ctx.unifier.get_ty_immutable(left_ty.unwrap()); let TypeEnum::TObj { fields, obj_id, .. } = left_ty_enum.as_ref() else { unreachable!("must be tobj") }; let (op_name, id) = { let (binop_name, binop_assign_name) = ( binop_name(op).into(), binop_assign_name(op).into() ); // if is aug_assign, try aug_assign operator first if is_aug_assign && fields.contains_key(&binop_assign_name) { (binop_assign_name, *obj_id) } else { (binop_name, *obj_id) } }; let signature = if let Some(call) = ctx.calls.get(&loc.into()) { ctx.unifier.get_call_signature(*call).unwrap() } else { let left_enum_ty = ctx.unifier.get_ty_immutable(left_ty.unwrap()); let TypeEnum::TObj { fields, .. } = left_enum_ty.as_ref() else { unreachable!("must be tobj") }; let fn_ty = fields.get(&op_name).unwrap().0; let fn_ty_enum = ctx.unifier.get_ty_immutable(fn_ty); let TypeEnum::TFunc(sig) = fn_ty_enum.as_ref() else { unreachable!() }; sig.clone() }; let fun_id = { let defs = ctx.top_level.definitions.read(); let obj_def = defs.get(id.0).unwrap().read(); let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() }; methods.iter().find(|method| method.0 == op_name).unwrap().2 }; generator .gen_call( ctx, Some((left_ty.unwrap(), left_val.into())), (&signature, fun_id), vec![(None, right_val.into())], ).map(|f| f.map(Into::into)) } } /// Generates LLVM IR for a binary operator expression. /// /// * `left` - The left-hand side of the binary operator. /// * `op` - The operator applied on the operands. /// * `right` - The right-hand side of the binary operator. /// * `loc` - The location of the full expression. /// * `is_aug_assign` - Whether the binary operator expression is also an assignment operator. pub fn gen_binop_expr<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, left: &Expr<Option<Type>>, op: &Operator, right: &Expr<Option<Type>>, loc: Location, is_aug_assign: bool, ) -> Result<Option<ValueEnum<'ctx>>, String> { let left_val = if let Some(v) = generator.gen_expr(ctx, left)? { v.to_basic_value_enum(ctx, generator, left.custom.unwrap())? } else { return Ok(None) }; let right_val = if let Some(v) = generator.gen_expr(ctx, right)? { v.to_basic_value_enum(ctx, generator, right.custom.unwrap())? } else { return Ok(None) }; gen_binop_expr_with_values( generator, ctx, (&left.custom, left_val), op, (&right.custom, right_val), loc, is_aug_assign, ) } /// Generates LLVM IR for a unary operator expression using the [`Type`] and /// [LLVM value][`BasicValueEnum`] of the operands. pub fn gen_unaryop_expr_with_values<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, op: &ast::Unaryop, operand: (&Option<Type>, BasicValueEnum<'ctx>), ) -> Result<Option<ValueEnum<'ctx>>, String> { let (ty, val) = operand; let ty = ctx.unifier.get_representative(ty.unwrap()); Ok(Some(if ty == ctx.primitives.bool { let val = val.into_int_value(); if *op == ast::Unaryop::Not { let not = ctx.builder.build_not(val, "not").unwrap(); let not_bool = ctx.builder.build_and( not, not.get_type().const_int(1, false), "", ).unwrap(); not_bool.into() } else { let llvm_i32 = ctx.ctx.i32_type(); gen_unaryop_expr_with_values( generator, ctx, op, ( &Some(ctx.primitives.int32), ctx.builder.build_int_z_extend(val, llvm_i32, "").map(Into::into).unwrap() ), )?.unwrap() } } else if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64].contains(&ty) { let val = val.into_int_value(); match op { ast::Unaryop::USub => ctx.builder.build_int_neg(val, "neg").map(Into::into).unwrap(), ast::Unaryop::Invert => ctx.builder.build_not(val, "not").map(Into::into).unwrap(), ast::Unaryop::Not => ctx.builder.build_xor(val, val.get_type().const_all_ones(), "not").map(Into::into).unwrap(), ast::Unaryop::UAdd => val.into(), } } else if ty == ctx.primitives.float { let val = val.into_float_value(); match op { ast::Unaryop::USub => ctx.builder.build_float_neg(val, "neg").map(Into::into).unwrap(), ast::Unaryop::Not => ctx .builder .build_float_compare( inkwell::FloatPredicate::OEQ, val, val.get_type().const_zero(), "not", ) .map(Into::into) .unwrap(), _ => val.into(), } } else if ty.obj_id(&ctx.unifier).is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray) { let llvm_usize = generator.get_size_type(ctx.ctx); let (ndarray_dtype, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty); let val = NDArrayValue::from_ptr_val( val.into_pointer_value(), llvm_usize, None, ); // ndarray uses `~` rather than `not` to perform elementwise inversion, convert it before // passing it to the elementwise codegen function let op = if ndarray_dtype.obj_id(&ctx.unifier).is_some_and(|id| id == PRIMITIVE_DEF_IDS.bool) { if *op == ast::Unaryop::Invert { &ast::Unaryop::Not } else { unreachable!("ufunc {} not supported for ndarray[bool, N]", unaryop_name(op)) } } else { op }; let res = numpy::ndarray_elementwise_unaryop_impl( generator, ctx, ndarray_dtype, None, val, |generator, ctx, val| { gen_unaryop_expr_with_values( generator, ctx, op, (&Some(ndarray_dtype), val), )?.unwrap().to_basic_value_enum(ctx, generator, ndarray_dtype) }, )?; res.as_ptr_value().into() } else { unimplemented!() })) } /// Generates LLVM IR for a unary operator expression. /// /// * `op` - The operator applied on the operand. /// * `operand` - The unary operand. pub fn gen_unaryop_expr<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, op: &ast::Unaryop, operand: &Expr<Option<Type>>, ) -> Result<Option<ValueEnum<'ctx>>, String> { let val = if let Some(v) = generator.gen_expr(ctx, operand)? { v.to_basic_value_enum(ctx, generator, operand.custom.unwrap())? } else { return Ok(None) }; gen_unaryop_expr_with_values(generator, ctx, op, (&operand.custom, val)) } /// Generates LLVM IR for a comparison operator expression using the [`Type`] and /// [LLVM value][`BasicValueEnum`] of the operands. pub fn gen_cmpop_expr_with_values<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, left: (Option<Type>, BasicValueEnum<'ctx>), ops: &[ast::Cmpop], comparators: &[(Option<Type>, BasicValueEnum<'ctx>)], ) -> Result<Option<ValueEnum<'ctx>>, String> { debug_assert_eq!(comparators.len(), ops.len()); if comparators.len() == 1 { let left_ty = ctx.unifier.get_representative(left.0.unwrap()); let right_ty = ctx.unifier.get_representative(comparators[0].0.unwrap()); if left_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray) || right_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray) { let llvm_usize = generator.get_size_type(ctx.ctx); let (Some(left_ty), lhs) = left else { unreachable!() }; let (Some(right_ty), rhs) = comparators[0] else { unreachable!() }; let op = ops[0].clone(); let is_ndarray1 = left_ty.obj_id(&ctx.unifier) .is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray); let is_ndarray2 = right_ty.obj_id(&ctx.unifier) .is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray); return if is_ndarray1 && is_ndarray2 { let (ndarray_dtype1, _) = unpack_ndarray_var_tys(&mut ctx.unifier, left_ty); let (ndarray_dtype2, _) = unpack_ndarray_var_tys(&mut ctx.unifier, right_ty); assert!(ctx.unifier.unioned(ndarray_dtype1, ndarray_dtype2)); let left_val = NDArrayValue::from_ptr_val( lhs.into_pointer_value(), llvm_usize, None ); let res = numpy::ndarray_elementwise_binop_impl( generator, ctx, ctx.primitives.bool, None, (left_val.as_ptr_value().into(), false), (rhs, false), |generator, ctx, (lhs, rhs)| { let val = gen_cmpop_expr_with_values( generator, ctx, (Some(ndarray_dtype1), lhs), &[op.clone()], &[(Some(ndarray_dtype2), rhs)], )?.unwrap().to_basic_value_enum(ctx, generator, ctx.primitives.bool)?; Ok(generator.bool_to_i8(ctx, val.into_int_value()).into()) }, )?; Ok(Some(res.as_ptr_value().into())) } else { let (ndarray_dtype, _) = unpack_ndarray_var_tys( &mut ctx.unifier, if is_ndarray1 { left_ty } else { right_ty }, ); let res = numpy::ndarray_elementwise_binop_impl( generator, ctx, ctx.primitives.bool, None, (lhs, !is_ndarray1), (rhs, !is_ndarray2), |generator, ctx, (lhs, rhs)| { let val = gen_cmpop_expr_with_values( generator, ctx, (Some(ndarray_dtype), lhs), &[op.clone()], &[(Some(ndarray_dtype), rhs)], )?.unwrap().to_basic_value_enum(ctx, generator, ctx.primitives.bool)?; Ok(generator.bool_to_i8(ctx, val.into_int_value()).into()) }, )?; Ok(Some(res.as_ptr_value().into())) } } } let cmp_val = izip!(chain(once(&left), comparators.iter()), comparators.iter(), ops.iter(),) .fold(Ok(None), |prev: Result<Option<_>, String>, (lhs, rhs, op)| { let (left_ty, lhs) = lhs; let (right_ty, rhs) = rhs; let left_ty = ctx.unifier.get_representative(left_ty.unwrap()); let right_ty = ctx.unifier.get_representative(right_ty.unwrap()); let current = if [ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64, ctx.primitives.bool] .contains(&left_ty) { assert!(ctx.unifier.unioned(left_ty, right_ty)); let use_unsigned_ops = [ ctx.primitives.uint32, ctx.primitives.uint64, ].contains(&left_ty); let lhs = lhs.into_int_value(); let rhs = rhs.into_int_value(); let op = match op { ast::Cmpop::Eq | ast::Cmpop::Is => IntPredicate::EQ, ast::Cmpop::NotEq => IntPredicate::NE, _ if left_ty == ctx.primitives.bool => unreachable!(), ast::Cmpop::Lt => if use_unsigned_ops { IntPredicate::ULT } else { IntPredicate::SLT }, ast::Cmpop::LtE => if use_unsigned_ops { IntPredicate::ULE } else { IntPredicate::SLE }, ast::Cmpop::Gt => if use_unsigned_ops { IntPredicate::UGT } else { IntPredicate::SGT }, ast::Cmpop::GtE => if use_unsigned_ops { IntPredicate::UGE } else { IntPredicate::SGE }, _ => unreachable!(), }; ctx.builder.build_int_compare(op, lhs, rhs, "cmp").unwrap() } else if left_ty == ctx.primitives.float { assert!(ctx.unifier.unioned(left_ty, right_ty)); let lhs = lhs.into_float_value(); let rhs = rhs.into_float_value(); let op = match op { ast::Cmpop::Eq | ast::Cmpop::Is => inkwell::FloatPredicate::OEQ, ast::Cmpop::NotEq => inkwell::FloatPredicate::ONE, ast::Cmpop::Lt => inkwell::FloatPredicate::OLT, ast::Cmpop::LtE => inkwell::FloatPredicate::OLE, ast::Cmpop::Gt => inkwell::FloatPredicate::OGT, ast::Cmpop::GtE => inkwell::FloatPredicate::OGE, _ => unreachable!(), }; ctx.builder.build_float_compare(op, lhs, rhs, "cmp").unwrap() } else { unimplemented!() }; Ok(prev?.map(|v| ctx.builder.build_and(v, current, "cmp").unwrap()).or(Some(current))) })?; Ok(Some(match cmp_val { Some(v) => v.into(), None => return Ok(None), })) } /// Generates LLVM IR for a comparison operator expression. /// /// * `left` - The left-hand side of the comparison operator. /// * `ops` - The (possibly chained) operators applied on the operands. /// * `comparators` - The right-hand side of the binary operator. pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, left: &Expr<Option<Type>>, ops: &[ast::Cmpop], comparators: &[Expr<Option<Type>>], ) -> Result<Option<ValueEnum<'ctx>>, String> { let left_val = if let Some(v) = generator.gen_expr(ctx, left)? { v.to_basic_value_enum(ctx, generator, left.custom.unwrap())? } else { return Ok(None) }; let comparator_vals = comparators.iter() .map(|cmptor| { Ok(if let Some(v) = generator.gen_expr(ctx, cmptor)? { Some((cmptor.custom, v.to_basic_value_enum(ctx, generator, cmptor.custom.unwrap())?)) } else { None }) }) .take_while(|v| if let Ok(v) = v { v.is_some() } else { true }) .collect::<Result<Vec<_>, String>>()?; let comparator_vals = if comparator_vals.len() == comparators.len() { comparator_vals .into_iter() .map(Option::unwrap) .collect_vec() } else { return Ok(None) }; gen_cmpop_expr_with_values( generator, ctx, (left.custom, left_val), ops, comparator_vals.as_slice(), ) } /// Generates code for a subscript expression on an `ndarray`. /// /// * `ty` - The `Type` of the `NDArray` elements. /// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`. /// * `v` - The `NDArray` value. /// * `slice` - The slice expression used to subscript into the `ndarray`. fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, ty: Type, ndims: Type, v: NDArrayValue<'ctx>, slice: &Expr<Option<Type>>, ) -> Result<Option<ValueEnum<'ctx>>, String> { let llvm_i1 = ctx.ctx.bool_type(); let llvm_usize = generator.get_size_type(ctx.ctx); let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else { unreachable!() }; let ndims = values.iter() .map(|ndim| match *ndim { SymbolValue::U64(v) => Ok(v), SymbolValue::U32(v) => Ok(v as u64), SymbolValue::I32(v) => u64::try_from(v) .map_err(|_| format!("Expected non-negative literal for ndarray.ndims, got {v}")), SymbolValue::I64(v) => u64::try_from(v) .map_err(|_| format!("Expected non-negative literal for ndarray.ndims, got {v}")), _ => unreachable!(), }) .collect::<Result<Vec<_>, _>>()?; assert!(!ndims.is_empty()); let ndarray_ndims_ty = ctx.unifier.get_fresh_literal( ndims.iter().map(|v| SymbolValue::U64(v - 1)).collect(), None, ); let ndarray_ty = make_ndarray_ty( &mut ctx.unifier, &ctx.primitives, Some(ty), Some(ndarray_ndims_ty), ); let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type(); let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type(); let llvm_ndarray_data_t = ctx.get_llvm_type(generator, ty).as_basic_type_enum(); // Check that len is non-zero let len = v.load_ndims(ctx); ctx.make_assert( generator, ctx.builder.build_int_compare(IntPredicate::SGT, len, llvm_usize.const_zero(), "").unwrap(), "0:IndexError", "too many indices for array: array is {0}-dimensional but 1 were indexed", [Some(len), None, None], slice.location, ); if let ExprKind::Slice { .. } = &slice.node { return Err(String::from("subscript operator for ndarray not implemented")) } let index = if let Some(index) = generator.gen_expr(ctx, slice)? { let index = index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value(); gen_if_else_expr_callback( generator, ctx, |_, ctx| { Ok(ctx.builder.build_int_compare( IntPredicate::SGE, index, index.get_type().const_zero(), "", ).unwrap()) }, |_, _| Ok(Some(index)), |generator, ctx| { let llvm_i32 = ctx.ctx.i32_type(); let len = unsafe { v.dim_sizes().get_typed_unchecked( ctx, generator, &llvm_usize.const_zero(), None, ) }; let index = ctx.builder.build_int_add( len, ctx.builder.build_int_s_extend(index, llvm_usize, "").unwrap(), "", ).unwrap(); Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap())) }, )?.map(BasicValueEnum::into_int_value).unwrap() } else { return Ok(None) }; let index_addr = generator.gen_var_alloc(ctx, index.get_type().into(), None)?; ctx.builder.build_store(index_addr, index).unwrap(); if ndims.len() == 1 && ndims[0] == 1 { // Accessing an element from a 1-dimensional `ndarray` Ok(Some(v.data() .get( ctx, generator, &ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None), None, ) .into())) } else { // Accessing an element from a multi-dimensional `ndarray` // Create a new array, remove the top dimension from the dimension-size-list, and copy the // elements over let subscripted_ndarray = generator.gen_var_alloc( ctx, llvm_ndarray_t.into(), None )?; let ndarray = NDArrayValue::from_ptr_val( subscripted_ndarray, llvm_usize, None ); let num_dims = v.load_ndims(ctx); ndarray.store_ndims( ctx, generator, ctx.builder.build_int_sub(num_dims, llvm_usize.const_int(1, false), "").unwrap(), ); let ndarray_num_dims = ndarray.load_ndims(ctx); ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims); let ndarray_num_dims = ndarray.load_ndims(ctx); let v_dims_src_ptr = unsafe { v.dim_sizes().ptr_offset_unchecked( ctx, generator, &llvm_usize.const_int(1, false), None, ) }; call_memcpy_generic( ctx, ndarray.dim_sizes().base_ptr(ctx, generator), v_dims_src_ptr, ctx.builder .build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "") .map(Into::into) .unwrap(), llvm_i1.const_zero(), ); let ndarray_num_elems = call_ndarray_calc_size( generator, ctx, &ndarray.dim_sizes().as_slice_value(ctx, generator), (None, None), ); ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems); let v_data_src_ptr = v.data().ptr_offset( ctx, generator, &ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None), None ); call_memcpy_generic( ctx, ndarray.data().base_ptr(ctx, generator), v_data_src_ptr, ctx.builder .build_int_mul(ndarray_num_elems, llvm_ndarray_data_t.size_of().unwrap(), "") .map(Into::into) .unwrap(), llvm_i1.const_zero(), ); Ok(Some(ndarray.as_ptr_value().into())) } } /// See [`CodeGenerator::gen_expr`]. pub fn gen_expr<'ctx, G: CodeGenerator>( generator: &mut G, ctx: &mut CodeGenContext<'ctx, '_>, expr: &Expr<Option<Type>>, ) -> Result<Option<ValueEnum<'ctx>>, String> { ctx.current_loc = expr.location; let int32 = ctx.ctx.i32_type(); let usize = generator.get_size_type(ctx.ctx); let zero = int32.const_int(0, false); let loc = ctx.debug_info.0.create_debug_location( ctx.ctx, ctx.current_loc.row as u32, ctx.current_loc.column as u32, ctx.debug_info.2, None, ); ctx.builder.set_current_debug_location(loc); Ok(Some(match &expr.node { ExprKind::Constant { value, .. } => { let ty = expr.custom.unwrap(); let Some(const_val) = ctx.gen_const(generator, value, ty) else { return Ok(None) }; const_val.into() } ExprKind::Name { id, .. } if id == &"none".into() => { match ( ctx.unifier.get_ty(expr.custom.unwrap()).as_ref(), ctx.unifier.get_ty(ctx.primitives.option).as_ref(), ) { ( TypeEnum::TObj { obj_id, params, .. }, TypeEnum::TObj { obj_id: opt_id, .. }, ) if *obj_id == *opt_id => ctx .get_llvm_type(generator, *params.iter().next().unwrap().1) .ptr_type(AddressSpace::default()) .const_null() .into(), _ => unreachable!("must be option type"), } } ExprKind::Name { id, .. } => match ctx.var_assignment.get(id) { Some((ptr, None, _)) => ctx.builder.build_load(*ptr, id.to_string().as_str()).map(Into::into).unwrap(), Some((_, Some(static_value), _)) => ValueEnum::Static(static_value.clone()), None => { let resolver = ctx.resolver.clone(); resolver.get_symbol_value(*id, ctx).unwrap() } }, ExprKind::List { elts, .. } => { // this shall be optimized later for constant primitive lists... // we should use memcpy for that instead of generating thousands of stores let elements = elts .iter() .map(|x| generator.gen_expr(ctx, x)) .take_while(|v| !matches!(v, Ok(None))) .collect::<Result<Vec<_>, _>>()?; let elements = elements.into_iter().zip(elts) .map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap())) .collect::<Result<Vec<_>, _>>()?; if elements.len() < elts.len() { return Ok(None) } let ty = if elements.is_empty() { let TypeEnum::TList { ty } = &*ctx.unifier.get_ty(expr.custom.unwrap()) else { unreachable!() }; ctx.get_llvm_type(generator, *ty) } else { elements[0].get_type() }; let length = generator.get_size_type(ctx.ctx).const_int(elements.len() as u64, false); let arr_str_ptr = allocate_list(generator, ctx, ty, length, Some("list")); let arr_ptr = arr_str_ptr.data(); for (i, v) in elements.iter().enumerate() { let elem_ptr = arr_ptr .ptr_offset(ctx, generator, &usize.const_int(i as u64, false), Some("elem_ptr")); ctx.builder.build_store(elem_ptr, *v).unwrap(); } arr_str_ptr.as_ptr_value().into() } ExprKind::Tuple { elts, .. } => { let elements_val = elts .iter() .map(|x| generator.gen_expr(ctx, x)) .take_while(|v| !matches!(v, Ok(None))) .collect::<Result<Vec<_>, _>>()?; let element_val = elements_val.into_iter().zip(elts) .map(|(v, x)| v.unwrap().to_basic_value_enum(ctx, generator, x.custom.unwrap())) .collect::<Result<Vec<_>, _>>()?; if element_val.len() < elts.len() { return Ok(None) } let element_ty = element_val.iter().map(BasicValueEnum::get_type).collect_vec(); let tuple_ty = ctx.ctx.struct_type(&element_ty, false); let tuple_ptr = ctx.builder.build_alloca(tuple_ty, "tuple").unwrap(); for (i, v) in element_val.into_iter().enumerate() { unsafe { let ptr = ctx.builder.build_in_bounds_gep( tuple_ptr, &[zero, int32.const_int(i as u64, false)], "ptr", ).unwrap(); ctx.builder.build_store(ptr, v).unwrap(); } } ctx.builder.build_load(tuple_ptr, "tup_val").map(Into::into).unwrap() } ExprKind::Attribute { value, attr, .. } => { // note that we would handle class methods directly in calls match generator.gen_expr(ctx, value)? { Some(ValueEnum::Static(v)) => v.get_field(*attr, ctx).map_or_else(|| { let v = v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?; let index = ctx.get_attr_index(value.custom.unwrap(), *attr); Ok(ValueEnum::Dynamic(ctx.build_gep_and_load( v.into_pointer_value(), &[zero, int32.const_int(index as u64, false)], None, ))) as Result<_, String> }, Ok)?, Some(ValueEnum::Dynamic(v)) => { let index = ctx.get_attr_index(value.custom.unwrap(), *attr); ValueEnum::Dynamic(ctx.build_gep_and_load( v.into_pointer_value(), &[zero, int32.const_int(index as u64, false)], None, )) } None => return Ok(None), } } ExprKind::BoolOp { op, values } => { // requires conditional branches for short-circuiting... let left = if let Some(v) = generator.gen_expr(ctx, &values[0])? { v.to_basic_value_enum(ctx, generator, values[0].custom.unwrap())?.into_int_value() } else { return Ok(None) }; let left = generator.bool_to_i1(ctx, left); let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let a_bb = ctx.ctx.append_basic_block(current, "a"); let b_bb = ctx.ctx.append_basic_block(current, "b"); let cont_bb = ctx.ctx.append_basic_block(current, "cont"); ctx.builder.build_conditional_branch(left, a_bb, b_bb).unwrap(); let (a, b) = match op { Boolop::Or => { ctx.builder.position_at_end(a_bb); let a = ctx.ctx.i8_type().const_int(1, false); ctx.builder.build_unconditional_branch(cont_bb).unwrap(); ctx.builder.position_at_end(b_bb); let b = if let Some(v) = generator.gen_expr(ctx, &values[1])? { let b = v.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?.into_int_value(); let b = generator.bool_to_i8(ctx, b); ctx.builder.build_unconditional_branch(cont_bb).unwrap(); Some(b) } else { None }; (Some(a), b) } Boolop::And => { ctx.builder.position_at_end(a_bb); let a = if let Some(v) = generator.gen_expr(ctx, &values[1])? { let a = v.to_basic_value_enum(ctx, generator, values[1].custom.unwrap())?.into_int_value(); let a = generator.bool_to_i8(ctx, a); ctx.builder.build_unconditional_branch(cont_bb).unwrap(); Some(a) } else { None }; ctx.builder.position_at_end(b_bb); let b = ctx.ctx.i8_type().const_zero(); ctx.builder.build_unconditional_branch(cont_bb).unwrap(); (a, Some(b)) } }; ctx.builder.position_at_end(cont_bb); match (a, b) { (Some(a), Some(b)) => { let phi = ctx.builder.build_phi(ctx.ctx.i8_type(), "").unwrap(); phi.add_incoming(&[(&a, a_bb), (&b, b_bb)]); phi.as_basic_value().into() } (Some(a), None) => a.into(), (None, Some(b)) => b.into(), (None, None) => unreachable!(), } } ExprKind::BinOp { op, left, right } => { return gen_binop_expr(generator, ctx, left, op, right, expr.location, false); } ExprKind::UnaryOp { op, operand } => { return gen_unaryop_expr(generator, ctx, op, operand) } ExprKind::Compare { left, ops, comparators } => { return gen_cmpop_expr(generator, ctx, left, ops, comparators) } ExprKind::IfExp { test, body, orelse } => { let test = match generator.gen_expr(ctx, test)? { Some(v) => v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?.into_int_value(), None => return Ok(None), }; let test = generator.bool_to_i1(ctx, test); let body_ty = body.custom.unwrap(); let is_none = ctx.unifier.get_representative(body_ty) == ctx.primitives.none; let result = if is_none { None } else { let llvm_ty = ctx.get_llvm_type(generator, body_ty); Some(ctx.builder.build_alloca(llvm_ty, "if_exp_result").unwrap()) }; let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap(); let then_bb = ctx.ctx.append_basic_block(current, "then"); let else_bb = ctx.ctx.append_basic_block(current, "else"); let cont_bb = ctx.ctx.append_basic_block(current, "cont"); ctx.builder.build_conditional_branch(test, then_bb, else_bb).unwrap(); ctx.builder.position_at_end(then_bb); let a = generator.gen_expr(ctx, body)?; if let Some(a) = a { match result { None => None, Some(v) => { let a = a.to_basic_value_enum(ctx, generator, body.custom.unwrap())?; Some(ctx.builder.build_store(v, a)) } }; ctx.builder.build_unconditional_branch(cont_bb).unwrap(); } ctx.builder.position_at_end(else_bb); let b = generator.gen_expr(ctx, orelse)?; if let Some(b) = b { match result { None => None, Some(v) => { let b = b.to_basic_value_enum(ctx, generator, orelse.custom.unwrap())?; Some(ctx.builder.build_store(v, b)) } }; ctx.builder.build_unconditional_branch(cont_bb).unwrap(); } ctx.builder.position_at_end(cont_bb); if let Some(v) = result { ctx.builder.build_load(v, "if_exp_val_load").map(Into::into).unwrap() } else { return Ok(None) } } ExprKind::Call { func, args, keywords } => { let mut params = args .iter() .map(|arg| generator.gen_expr(ctx, arg)) .take_while(|expr| !matches!(expr, Ok(None))) .map(|expr| Ok((None, expr?.unwrap())) as Result<_, String>) .collect::<Result<Vec<_>, _>>()?; if params.len() < args.len() { return Ok(None) } let kw_iter = keywords.iter().map(|kw| { Ok(( Some(*kw.node.arg.as_ref().unwrap()), generator.gen_expr(ctx, &kw.node.value)?.unwrap(), )) as Result<_, String> }); let kw_iter = kw_iter.collect::<Result<Vec<_>, _>>()?; params.extend(kw_iter); let call = ctx.calls.get(&expr.location.into()); let signature = if let Some(call) = call { ctx.unifier.get_call_signature(*call).unwrap() } else { let ty = func.custom.unwrap(); let TypeEnum::TFunc(sign) = &*ctx.unifier.get_ty(ty) else { unreachable!() }; sign.clone() }; let func = func.as_ref(); match &func.node { ExprKind::Name { id, .. } => { // TODO: handle primitive casts and function pointers let fun = ctx .resolver .get_identifier_def(*id) .map_err(|e| format!("{} (at {})", e.iter().next().unwrap(), func.location))?; return Ok(generator .gen_call(ctx, None, (&signature, fun), params)? .map(Into::into)); } ExprKind::Attribute { value, attr, .. } => { let Some(val) = generator.gen_expr(ctx, value)? else { return Ok(None) }; let id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(value.custom.unwrap()) { *obj_id } else { unreachable!() }; let fun_id = { let defs = ctx.top_level.definitions.read(); let obj_def = defs.get(id.0).unwrap().read(); let TopLevelDef::Class { methods, .. } = &*obj_def else { unreachable!() }; methods.iter().find(|method| method.0 == *attr).unwrap().2 }; // directly generate code for option.unwrap // since it needs to return static value to optimize for kernel invariant if attr == &"unwrap".into() && id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap() { match val { ValueEnum::Static(v) => return match v.get_field("_nac3_option".into(), ctx) { // if is none, raise exception directly None => { let err_msg = ctx.gen_string(generator, ""); let current_fun = ctx .builder .get_insert_block() .unwrap() .get_parent() .unwrap(); let unreachable_block = ctx.ctx.append_basic_block( current_fun, "unwrap_none_unreachable" ); let exn_block = ctx.ctx.append_basic_block( current_fun, "unwrap_none_exception" ); ctx.builder.build_unconditional_branch(exn_block).unwrap(); ctx.builder.position_at_end(exn_block); ctx.raise_exn( generator, "0:UnwrapNoneError", err_msg, [None, None, None], ctx.current_loc ); ctx.builder.position_at_end(unreachable_block); let ptr = ctx .get_llvm_type(generator, value.custom.unwrap()) .into_pointer_type() .const_null(); Ok(Some(ctx.builder.build_load( ptr, "unwrap_none_unreachable_load" ).map(Into::into).unwrap())) } Some(v) => Ok(Some(v)), }, ValueEnum::Dynamic(BasicValueEnum::PointerValue(ptr)) => { let not_null = ctx.builder.build_is_not_null(ptr, "unwrap_not_null").unwrap(); ctx.make_assert( generator, not_null, "0:UnwrapNoneError", "", [None, None, None], expr.location, ); return Ok(Some(ctx.builder.build_load( ptr, "unwrap_some_load" ).map(Into::into).unwrap())) } ValueEnum::Dynamic(_) => unreachable!("option must be static or ptr") } } // Reset current_loc back to the location of the call ctx.current_loc = expr.location; return Ok(generator .gen_call( ctx, Some((value.custom.unwrap(), val)), (&signature, fun_id), params, )? .map(Into::into)); } _ => unimplemented!(), } } ExprKind::Subscript { value, slice, .. } => { match &*ctx.unifier.get_ty(value.custom.unwrap()) { TypeEnum::TList { ty } => { let v = if let Some(v) = generator.gen_expr(ctx, value)? { v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?.into_pointer_value() } else { return Ok(None) }; let v = ListValue::from_ptr_val(v, usize, Some("arr")); let ty = ctx.get_llvm_type(generator, *ty); if let ExprKind::Slice { lower, upper, step } = &slice.node { let one = int32.const_int(1, false); let Some((start, end, step)) = handle_slice_indices( lower, upper, step, ctx, generator, v.load_size(ctx, None), )? else { return Ok(None) }; let length = calculate_len_for_slice_range( generator, ctx, start, ctx.builder .build_select( ctx.builder.build_int_compare( IntPredicate::SLT, step, zero, "is_neg", ).unwrap(), ctx.builder.build_int_sub(end, one, "e_min_one").unwrap(), ctx.builder.build_int_add(end, one, "e_add_one").unwrap(), "final_e", ) .map(BasicValueEnum::into_int_value) .unwrap(), step, ); let res_array_ret = allocate_list(generator, ctx, ty, length, Some("ret")); let Some(res_ind) = handle_slice_indices( &None, &None, &None, ctx, generator, res_array_ret.load_size(ctx, None), )? else { return Ok(None) }; list_slice_assignment( generator, ctx, ty, res_array_ret, res_ind, v, (start, end, step), ); res_array_ret.as_ptr_value().into() } else { let len = v.load_size(ctx, Some("len")); let raw_index = if let Some(v) = generator.gen_expr(ctx, slice)? { v.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value() } else { return Ok(None) }; let raw_index = ctx.builder.build_int_s_extend( raw_index, generator.get_size_type(ctx.ctx), "sext", ).unwrap(); // handle negative index let is_negative = ctx.builder.build_int_compare( IntPredicate::SLT, raw_index, generator.get_size_type(ctx.ctx).const_zero(), "is_neg", ).unwrap(); let adjusted = ctx.builder.build_int_add(raw_index, len, "adjusted").unwrap(); let index = ctx .builder .build_select(is_negative, adjusted, raw_index, "index") .map(BasicValueEnum::into_int_value) .unwrap(); // unsigned less than is enough, because negative index after adjustment is // bigger than the length (for unsigned cmp) let bound_check = ctx.builder.build_int_compare( IntPredicate::ULT, index, len, "inbound", ).unwrap(); ctx.make_assert( generator, bound_check, "0:IndexError", "index {0} out of bounds 0:{1}", [Some(raw_index), Some(len), None], expr.location, ); v.data().get(ctx, generator, &index, None).into() } } TypeEnum::TObj { obj_id, params, .. } if *obj_id == PRIMITIVE_DEF_IDS.ndarray => { let (ty, ndims) = params.iter() .map(|(_, ty)| ty) .collect_tuple() .unwrap(); let v = if let Some(v) = generator.gen_expr(ctx, value)? { v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?.into_pointer_value() } else { return Ok(None) }; let v = NDArrayValue::from_ptr_val(v, usize, None); return gen_ndarray_subscript_expr( generator, ctx, *ty, *ndims, v, slice, ) } TypeEnum::TTuple { .. } => { let index: u32 = if let ExprKind::Constant { value: Constant::Int(v), .. } = &slice.node { (*v).try_into().unwrap() } else { unreachable!("tuple subscript must be const int after type check"); }; match generator.gen_expr(ctx, value)? { Some(ValueEnum::Dynamic(v)) => { let v = v.into_struct_value(); ctx.builder.build_extract_value(v, index, "tup_elem").unwrap().into() } Some(ValueEnum::Static(v)) => { if let Some(v) = v.get_tuple_element(index) { v } else { let tup = v .to_basic_value_enum(ctx, generator, value.custom.unwrap())? .into_struct_value(); ctx.builder.build_extract_value(tup, index, "tup_elem").unwrap().into() } } None => return Ok(None), } } _ => unreachable!("should not be other subscriptable types after type check"), } }, ExprKind::ListComp { .. } => { if let Some(v) = gen_comprehension(generator, ctx, expr)? { v.into() } else { return Ok(None) } } _ => unimplemented!(), })) }