diff --git a/nac3standalone/demo/interpret_demo.py b/nac3standalone/demo/interpret_demo.py index b948edee1..379fb349a 100755 --- a/nac3standalone/demo/interpret_demo.py +++ b/nac3standalone/demo/interpret_demo.py @@ -5,6 +5,7 @@ import importlib.util import importlib.machinery import math import numpy as np +import scipy as sp import numpy.typing as npt import pathlib @@ -226,6 +227,19 @@ def patch(module): module.sp_spec_j0 = special.j0 module.sp_spec_j1 = special.j1 + # Linalg functions + module.np_dot = np.dot + module.np_linalg_matmul = np.matmul + module.np_linalg_cholesky = np.linalg.cholesky + module.np_linalg_qr = np.linalg.qr + module.np_linalg_svd = np.linalg.svd + module.np_linalg_inv = np.linalg.inv + module.np_linalg_pinv = np.linalg.pinv + + module.sp_linalg_lu = lambda x: sp.linalg.lu(x, True) + module.sp_linalg_schur = sp.linalg.schur + module.sp_linalg_hessenberg = lambda x: sp.linalg.hessenberg(x, True) + def file_import(filename, prefix="file_import_"): filename = pathlib.Path(filename) modname = prefix + filename.stem diff --git a/nac3standalone/demo/src/ndarray.py b/nac3standalone/demo/src/ndarray.py index 7501cb5db..9899cf174 100644 --- a/nac3standalone/demo/src/ndarray.py +++ b/nac3standalone/demo/src/ndarray.py @@ -1429,6 +1429,104 @@ def test_ndarray_nextafter_broadcast_rhs_scalar(): output_ndarray_float_2(nextafter_x_zeros) output_ndarray_float_2(nextafter_x_ones) +def test_ndarray_dot(): + x: ndarray[float, 1] = np_array([5.0, 1.0]) + y: ndarray[float, 1] = np_array([5.0, 1.0]) + z = np_dot(x, y) + + output_ndarray_float_1(x) + output_ndarray_float_1(y) + output_float64(z) + +def test_ndarray_linalg_matmul(): + x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]]) + y: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]]) + z = np_linalg_matmul(x, y) + + m = np_argmax(z) + + output_ndarray_float_2(x) + output_ndarray_float_2(y) + output_ndarray_float_2(z) + output_int64(m) + +def test_ndarray_cholesky(): + x: ndarray[float, 2] = np_array([[5.0, 1.0], [1.0, 4.0]]) + y = np_linalg_cholesky(x) + + output_ndarray_float_2(x) + output_ndarray_float_2(y) + +def test_ndarray_qr(): + x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]]) + y, z = np_linalg_qr(x) + + output_ndarray_float_2(x) + + # QR Factorization is not unique and gives different results in numpy and nalgebra + # Reverting the decomposition to compare the initial arrays + a = np_linalg_matmul(y, z) + output_ndarray_float_2(a) + +def test_ndarray_linalg_inv(): + x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]]) + y = np_linalg_inv(x) + + output_ndarray_float_2(x) + output_ndarray_float_2(y) + +def test_ndarray_pinv(): + x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]]) + y = np_linalg_pinv(x) + + output_ndarray_float_2(x) + output_ndarray_float_2(y) + +def test_ndarray_schur(): + x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]]) + t, z = sp_linalg_schur(x) + + output_ndarray_float_2(x) + + # Schur Factorization is not unique and gives different results in scipy and nalgebra + # Reverting the decomposition to compare the initial arrays + a = np_linalg_matmul(np_linalg_matmul(z, t), np_linalg_inv(z)) + output_ndarray_float_2(a) + +def test_ndarray_hessenberg(): + x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 5.0, 8.5]]) + h, q = sp_linalg_hessenberg(x) + + output_ndarray_float_2(x) + + # Hessenberg Factorization is not unique and gives different results in scipy and nalgebra + # Reverting the decomposition to compare the initial arrays + a = np_linalg_matmul(np_linalg_matmul(q, h), np_linalg_inv(q)) + output_ndarray_float_2(a) + + +def test_ndarray_lu(): + x: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5]]) + l, u = sp_linalg_lu(x) + + output_ndarray_float_2(x) + output_ndarray_float_2(l) + output_ndarray_float_2(u) + + +def test_ndarray_svd(): + w: ndarray[float, 2] = np_array([[-5.0, -1.0, 2.0], [-1.0, 4.0, 7.5], [-1.0, 8.0, -8.5]]) + x, y, z = np_linalg_svd(w) + + output_ndarray_float_2(w) + + # SVD Factorization is not unique and gives different results in numpy and nalgebra + # Reverting the decomposition to compare the initial arrays + a = np_linalg_matmul(x, z) + output_ndarray_float_2(a) + output_ndarray_float_1(y) + + def run() -> int32: test_ndarray_ctor() test_ndarray_empty() @@ -1608,4 +1706,14 @@ def run() -> int32: test_ndarray_nextafter_broadcast_lhs_scalar() test_ndarray_nextafter_broadcast_rhs_scalar() + test_ndarray_dot() + test_ndarray_linalg_matmul() + test_ndarray_cholesky() + test_ndarray_qr() + test_ndarray_svd() + test_ndarray_linalg_inv() + test_ndarray_pinv() + test_ndarray_lu() + test_ndarray_schur() + test_ndarray_hessenberg() return 0