partial implementation

This commit is contained in:
pca006132 2021-07-14 15:24:00 +08:00
parent e554737b68
commit 291e642699

View File

@ -1,7 +1,9 @@
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
use generational_arena::{Arena, Index};
use std::borrow::{BorrowMut, Cow};
use std::cell::RefCell;
use std::collections::HashMap;
use std::collections::BTreeMap;
use std::mem::swap;
// Order:
// TVar
@ -24,9 +26,10 @@ impl UnifyValue for TypeIndex {
type Error = NoError;
fn unify_values(_: &Self, value2: &Self) -> Result<Self, Self::Error> {
// WARN: depends on the implementation details of ena.
// We do not use this to do unification, instead we perform unification and assign the type
// by `union_value(key, new_value)`, which set the value as `unify_values(key.value, new_value)`.
// So, we need to return the right one.
// We do not use this to do unification, instead we perform unification
// and assign the type by `union_value(key, new_value)`, which set the
// value as `unify_values(key.value, new_value)`. So, we need to return
// the right one.
Ok(*value2)
}
}
@ -40,15 +43,16 @@ impl UnifyKey for Type {
Type(u)
}
fn tag() -> &'static str {
"TypeKey"
"TypeID"
}
}
type VarMapping = HashMap<u32, Type>;
type Mapping<K, V = Type> = BTreeMap<K, V>;
type VarMap = Mapping<u32>;
struct Call {
posargs: Vec<Type>,
kwargs: HashMap<String, Type>,
kwargs: BTreeMap<String, Type>,
ret: Type,
fn_id: usize,
}
@ -59,38 +63,44 @@ struct FuncArg {
is_optional: bool,
}
// We use a lot of `RefCell`s here as we want to simplify our code.
// Pattern:
// 1. Take the complex data structure out
// 2. Drop the arena (required before unification)
// 3. Do unification for each type in the data structure
// 4. Put the complex data structure back...
enum TypeEnum {
TVar {
// TODO: upper/lower bound
id: u32,
},
TSeq {
index: HashMap<u32, Type>,
map: RefCell<VarMap>,
},
TTuple {
index: HashMap<u32, Type>,
ty: RefCell<Vec<Type>>,
},
TList {
ty: Type,
},
TRecord {
fields: HashMap<String, Type>,
fields: RefCell<Mapping<String>>,
},
TObj {
obj_id: usize,
instantiation: VarMapping,
fields: RefCell<Mapping<String>>,
params: RefCell<VarMap>,
},
TVirtual {
obj_id: usize,
instantiation: VarMapping,
ty: Type,
},
TCall {
calls: Vec<Call>,
calls: RefCell<Vec<Call>>,
},
TFunc {
args: Vec<FuncArg>,
args: RefCell<Vec<FuncArg>>,
ret: Type,
instantiation: VarMapping,
params: RefCell<VarMap>,
},
}
@ -115,11 +125,27 @@ impl TypeEnum {
let b = other.get_int();
(a % b) == 0
}
pub fn get_kind_name(&self) -> &'static str {
// this function is for debugging only...
// a proper to_str implementation requires the context
match self {
TypeEnum::TVar { .. } => "TVar",
TypeEnum::TSeq { .. } => "TSeq",
TypeEnum::TTuple { .. } => "TTuple",
TypeEnum::TList { .. } => "TList",
TypeEnum::TRecord { .. } => "TRecord",
TypeEnum::TObj { .. } => "TObj",
TypeEnum::TVirtual { .. } => "TVirtual",
TypeEnum::TCall { .. } => "TCall",
TypeEnum::TFunc { .. } => "TFunc",
}
}
}
struct ObjDef {
name: String,
fields: HashMap<String, Type>,
fields: Mapping<String>,
}
struct Unifier {
@ -129,14 +155,14 @@ struct Unifier {
}
impl Unifier {
fn unify(&self, a: Type, b: Type) {
let (i_a, i_b) = {
fn unify(&self, a: Type, b: Type) -> Result<(), String> {
let (mut i_a, mut i_b) = {
let mut table = self.unification_table.borrow_mut();
(table.probe_value(a), table.probe_value(b))
};
if i_a == i_b {
return;
return Ok(());
}
let arena = self.type_arena.borrow();
@ -145,75 +171,348 @@ impl Unifier {
// simplify our pattern matching...
if ty_a.kind_le(ty_b) {
std::mem::swap(&mut ty_a, &mut ty_b);
swap(&mut i_a, &mut i_b);
swap(&mut ty_a, &mut ty_b);
}
// TODO: type variables bound check
match (ty_a, ty_b) {
(TypeEnum::TVar { .. }, TypeEnum::TVar { .. }) => {
self.unification_table.borrow_mut().union(a, b);
let old = if self.unification_table.borrow_mut().find(a) == a {
i_b
} else {
i_a
}
.0;
self.type_arena.borrow_mut().remove(old);
}
(TypeEnum::TVar { .. }, _) => {
let mut table = self.unification_table.borrow_mut();
table.union(a, b);
table.union_value(a, i_b);
// TODO: occur check...
self.type_arena.borrow_mut().remove(i_a.0);
}
(TypeEnum::TSeq { .. }, TypeEnum::TSeq { .. }) => {
let is_a = {
let mut table = self.unification_table.borrow_mut();
table.union(a, b);
table.find(a) == a
};
// fighting with the borrow checker...
// we have to manually drop this before we call borrow_mut
std::mem::drop(arena);
let (mut new, old) = {
// the mutable arena would be dropped before calling unify later
let mut arena = self.type_arena.borrow_mut();
let (ty_a, ty_b) = arena.get2_mut(i_a.0, i_b.0);
let index1 = if let Some(TypeEnum::TSeq { index }) = ty_a {
std::mem::take(index)
} else {
unreachable!()
};
let index2 = if let Some(TypeEnum::TSeq { index }) = ty_b {
std::mem::take(index)
} else {
unreachable!()
};
if is_a {
arena.remove(i_b.0);
(index1, index2)
} else {
arena.remove(i_a.0);
(index2, index1)
match ty_a {
TypeEnum::TVar { .. } => {
match ty_b {
TypeEnum::TVar { .. } => {
// TODO: type variables bound check
let old = {
let mut table = self.unification_table.borrow_mut();
table.union(a, b);
if table.find(a) == a {
i_b
} else {
i_a
}
}
.0;
drop(arena);
self.type_arena.borrow_mut().remove(old);
}
};
for (key, value) in old.iter() {
if let Some(ty) = new.get(key) {
self.unify(*ty, *value);
} else {
new.insert(*key, *value);
_ => {
// TODO: type variables bound check and occur check
drop(arena);
self.set_a_to_b(a, b);
}
}
// put it back
let index = if is_a { i_a } else { i_b }.0;
if let Some(TypeEnum::TSeq { index }) = self.type_arena.borrow_mut().get_mut(index) {
*index = new;
}
TypeEnum::TSeq { map: map1 } => {
match ty_b {
TypeEnum::TSeq { map: map2 } => {
// we get the tables out first.
// unification requires mutable access to the underlying
// structs, so we have to manaully drop the arena first,
// do the unification, and then get a mutable reference
// and put them back...
let mut map1 = map1.take();
let map2 = map2.take();
drop(arena);
self.set_a_to_b(a, b);
// unify them to map1
for (key, value) in map2.iter() {
if let Some(ty) = map1.get(key) {
self.unify(*ty, *value)?;
} else {
map1.insert(*key, *value);
}
}
if let Some(TypeEnum::TSeq { map: mapping }) =
self.type_arena.borrow().get(i_b.0)
{
*mapping.borrow_mut() = map1;
} else {
unreachable!()
}
}
TypeEnum::TTuple { ty: types } => {
let map = map1.take();
let types = types.take();
drop(arena);
self.set_a_to_b(a, b);
let len = types.len() as u32;
for (k, v) in map.iter() {
if *k >= len {
return Err(format!(
"Tuple index out of range. (Length: {}, Index: {})",
types.len(),
k
));
}
self.unify(*v, types[*k as usize])?;
}
if let Some(TypeEnum::TTuple { ty }) = self.type_arena.borrow().get(i_b.0) {
*ty.borrow_mut() = types;
} else {
unreachable!()
}
}
TypeEnum::TList { ty } => {
let map = map1.take();
let ty = *ty;
drop(arena);
self.set_a_to_b(a, b);
for v in map.values() {
self.unify(*v, ty)?;
}
}
_ => {
return self.report_kind_error(ty_a, ty_b);
}
}
}
TypeEnum::TTuple { ty: ty1 } => {
if let TypeEnum::TTuple { ty: ty2 } = ty_b {
let ty1 = ty1.take();
let ty2 = ty2.take();
if ty1.len() != ty2.len() {
return Err(format!(
"Cannot unify tuples with length {} and {}",
ty1.len(),
ty2.len()
));
}
drop(arena);
self.set_a_to_b(a, b);
for (a, b) in ty1.iter().zip(ty2.iter()) {
self.unify(*a, *b)?;
}
if let Some(TypeEnum::TTuple { ty }) =
self.type_arena.borrow_mut().get_mut(i_b.0)
{
*ty.borrow_mut().get_mut() = ty1;
} else {
unreachable!()
}
} else {
unreachable!()
return self.report_kind_error(ty_a, ty_b);
}
}
TypeEnum::TList { ty: ty1 } => {
if let TypeEnum::TList { ty: ty2 } = ty_b {
let ty1 = *ty1;
let ty2 = *ty2;
drop(arena);
self.set_a_to_b(a, b);
self.unify(ty1, ty2)?;
} else {
return self.report_kind_error(ty_a, ty_b);
}
}
TypeEnum::TRecord { fields: fields1 } => {
match ty_b {
TypeEnum::TRecord { fields: fields2 } => {
let mut fields1 = fields1.take();
let fields2 = fields2.take();
drop(arena);
self.set_a_to_b(a, b);
for (key, value) in fields2.iter() {
if let Some(ty) = fields1.get(key) {
self.unify(*ty, *value)?;
} else {
fields1.insert(key.clone(), *value);
}
}
if let Some(TypeEnum::TRecord { fields }) =
self.type_arena.borrow().get(i_b.0)
{
*fields.borrow_mut() = fields1;
} else {
unreachable!()
}
}
// obj...
_ => {
return self.report_kind_error(ty_a, ty_b);
}
}
}
_ => unimplemented!(),
}
Ok(())
}
fn set_a_to_b(&self, a: Type, b: Type) {
// unify a and b together, and set the value to b's value this would
// also deallocate a's previous value in the arena to save space...
let mut table = self.unification_table.borrow_mut();
let i_a = table.probe_value(a);
let i_b = table.probe_value(b);
table.union(a, b);
table.union_value(a, i_b);
self.type_arena.borrow_mut().remove(i_a.0);
}
fn report_kind_error(&self, a: &TypeEnum, b: &TypeEnum) -> Result<(), String> {
Err(format!(
"Cannot unify {} with {}",
a.get_kind_name(),
b.get_kind_name()
))
}
fn subst(&self, a: Type, mapping: &VarMap) -> Option<Type> {
let index = self.unification_table.borrow_mut().probe_value(a);
let arena = self.type_arena.borrow();
let ty = arena.get(index.0).unwrap();
// this function would only be called when we instantiate functions.
// function type signature should ONLY contain concrete types and type
// variables, i.e. things like TRecord, TCall should not occur, and we
// should be safe to not implement the substitution for those variants.
match ty {
TypeEnum::TVar { id } => mapping.get(&id).cloned(),
TypeEnum::TSeq { map } => {
let map = map.take();
drop(arena);
let new_map = self.subst_map(&map, mapping);
if let Some(TypeEnum::TSeq { map: m }) = self.type_arena.borrow().get(index.0) {
*m.borrow_mut() = map;
} else {
unreachable!();
};
new_map.map(|m| {
let index = self
.type_arena
.borrow_mut()
.insert(TypeEnum::TSeq { map: m.into() });
self.unification_table
.borrow_mut()
.new_key(TypeIndex(index))
})
}
TypeEnum::TTuple { ty } => {
let ty = ty.take();
drop(arena);
let mut new_ty = None;
for (i, t) in ty.iter().enumerate() {
if let Some(t1) = self.subst(*t, mapping) {
if new_ty.is_none() {
new_ty = Some(ty.clone());
}
new_ty.as_mut().unwrap()[i] = t1;
}
}
if let Some(TypeEnum::TTuple { ty: t }) = self.type_arena.borrow().get(index.0) {
*t.borrow_mut() = ty;
} else {
unreachable!();
};
new_ty.map(|t| {
let index = self
.type_arena
.borrow_mut()
.insert(TypeEnum::TTuple { ty: t.into() });
self.unification_table
.borrow_mut()
.new_key(TypeIndex(index))
})
}
TypeEnum::TList { ty } => {
let ty = *ty;
drop(arena);
self.subst(ty, mapping).map(|t| {
let index = self
.type_arena
.borrow_mut()
.insert(TypeEnum::TList { ty: t });
self.unification_table
.borrow_mut()
.new_key(TypeIndex(index))
})
}
TypeEnum::TVirtual { ty } => {
let ty = *ty;
drop(arena);
self.subst(ty, mapping).map(|t| {
let index = self
.type_arena
.borrow_mut()
.insert(TypeEnum::TVirtual { ty: t });
self.unification_table
.borrow_mut()
.new_key(TypeIndex(index))
})
}
TypeEnum::TObj {
obj_id,
fields,
params,
} => {
let obj_id = *obj_id;
let params = params.take();
let fields = fields.take();
drop(arena);
let mut new_params = None;
let mut new_fields = None;
// Type variables in field types must be present in the type parameter.
// If the mapping does not contain any type variables in the
// parameter list, we don't need to substitute the fields.
// This is also used to prevent infinite substitution...
let need_subst = params.values().any(|v| {
let index = self.unification_table.borrow_mut().probe_value(*v);
let arena = self.type_arena.borrow();
let ty = arena.get(index.0).unwrap();
if let TypeEnum::TVar { id } = ty {
mapping.contains_key(id)
} else {
false
}
});
if need_subst {
new_params = self
.subst_map(&params, mapping)
.or_else(|| Some(params.clone()));
new_fields = self
.subst_map(&fields, mapping)
.or_else(|| Some(fields.clone()));
}
if let Some(TypeEnum::TObj {
params: p,
fields: f,
..
}) = self.type_arena.borrow().get(index.0)
{
*p.borrow_mut() = params;
*f.borrow_mut() = fields;
} else {
unreachable!();
};
if need_subst {
let index = self.type_arena.borrow_mut().insert(TypeEnum::TObj {
obj_id,
params: new_params.unwrap().into(),
fields: new_fields.unwrap().into(),
});
Some(
self.unification_table
.borrow_mut()
.new_key(TypeIndex(index)),
)
} else {
None
}
}
_ => unimplemented!(),
}
}
fn subst_map<K>(&self, map: &Mapping<K>, mapping: &VarMap) -> Option<Mapping<K>>
where
K: std::cmp::Ord + std::clone::Clone,
{
let mut map2 = None;
for (k, v) in map.iter() {
if let Some(v1) = self.subst(*v, mapping) {
if map2.is_none() {
map2 = Some(map.clone());
}
*map2.as_mut().unwrap().get_mut(k).unwrap() = v1;
}
}
map2
}
}