Merge remote-tracking branch 'origin/hm-inference_anto' into hm-inference

This commit is contained in:
pca006132 2021-08-11 15:42:32 +08:00
commit 0af4e95914
5 changed files with 396 additions and 201 deletions

View File

@ -1,6 +1,6 @@
use crate::location::Location; use crate::location::Location;
use crate::typecheck::typedef::Type;
use crate::top_level::DefinitionId; use crate::top_level::DefinitionId;
use crate::typecheck::typedef::Type;
use rustpython_parser::ast::Expr; use rustpython_parser::ast::Expr;
#[derive(Clone, PartialEq)] #[derive(Clone, PartialEq)]

View File

@ -1,3 +1,4 @@
use std::borrow::Borrow;
use std::{collections::HashMap, sync::Arc}; use std::{collections::HashMap, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore; use super::typecheck::type_inferencer::PrimitiveStore;
@ -22,6 +23,8 @@ pub enum TopLevelDef {
methods: Vec<(String, Type, DefinitionId)>, methods: Vec<(String, Type, DefinitionId)>,
// ancestor classes, including itself. // ancestor classes, including itself.
ancestors: Vec<DefinitionId>, ancestors: Vec<DefinitionId>,
// symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
}, },
Function { Function {
// prefix for symbol, should be unique globally, and not ending with numbers // prefix for symbol, should be unique globally, and not ending with numbers
@ -40,6 +43,8 @@ pub enum TopLevelDef {
/// Value: AST annotated with types together with a unification table index. Could contain /// Value: AST annotated with types together with a unification table index. Could contain
/// rigid type variables that would be substituted when the function is instantiated. /// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>, instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
// symbol resolver of the module defined the class
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
}, },
Initializer { Initializer {
class_id: DefinitionId, class_id: DefinitionId,
@ -52,22 +57,28 @@ pub struct TopLevelContext {
pub conetexts: Arc<RwLock<Vec<Mutex<Context>>>>, pub conetexts: Arc<RwLock<Vec<Mutex<Context>>>>,
} }
pub struct TopLevelDefInfo<'a> { pub fn name_mangling(mut class_name: String, method_name: &str) -> String {
// need to further extend to more name mangling like instantiations of typevar
class_name.push_str(method_name);
class_name
}
pub struct TopLevelDefInfo {
// like adding some info on top of the TopLevelDef for later parsing the class bases, method, // like adding some info on top of the TopLevelDef for later parsing the class bases, method,
// and function sigatures // and function sigatures
def: TopLevelDef, // the definition entry def: TopLevelDef, // the definition entry
ty: Type, // the entry in the top_level unifier ty: Type, // the entry in the top_level unifier
ast: Option<ast::Stmt<()>>, // the ast submitted by applications ast: Option<ast::Stmt<()>>, // the ast submitted by applications, primitives and class methods will have None value here
resolver: Option<&'a dyn SymbolResolver>, // the resolver // resolver: Option<&'a dyn SymbolResolver> // the resolver
} }
pub struct TopLevelComposer<'a> { pub struct TopLevelComposer {
pub definition_list: Vec<TopLevelDefInfo<'a>>, pub definition_list: Vec<TopLevelDefInfo>,
pub primitives: PrimitiveStore, pub primitives: PrimitiveStore,
pub unifier: Unifier, pub unifier: Unifier,
} }
impl<'a> TopLevelComposer<'a> { impl TopLevelComposer {
pub fn make_primitives() -> (PrimitiveStore, Unifier) { pub fn make_primitives() -> (PrimitiveStore, Unifier) {
let mut unifier = Unifier::new(); let mut unifier = Unifier::new();
let int32 = unifier.add_ty(TypeEnum::TObj { let int32 = unifier.add_ty(TypeEnum::TObj {
@ -102,101 +113,145 @@ impl<'a> TopLevelComposer<'a> {
pub fn new() -> Self { pub fn new() -> Self {
let primitives = Self::make_primitives(); let primitives = Self::make_primitives();
let definition_list: Vec<TopLevelDefInfo<'a>> = vec![ let definition_list: Vec<TopLevelDefInfo> = vec![
TopLevelDefInfo { TopLevelDefInfo {
def: Self::make_top_level_class_def(0), def: Self::make_top_level_class_def(0, None),
ast: None, ast: None,
resolver: None,
ty: primitives.0.int32, ty: primitives.0.int32,
}, },
TopLevelDefInfo { TopLevelDefInfo {
def: Self::make_top_level_class_def(1), def: Self::make_top_level_class_def(1, None),
ast: None, ast: None,
resolver: None,
ty: primitives.0.int64, ty: primitives.0.int64,
}, },
TopLevelDefInfo { TopLevelDefInfo {
def: Self::make_top_level_class_def(2), def: Self::make_top_level_class_def(2, None),
ast: None, ast: None,
resolver: None,
ty: primitives.0.float, ty: primitives.0.float,
}, },
TopLevelDefInfo { TopLevelDefInfo {
def: Self::make_top_level_class_def(3), def: Self::make_top_level_class_def(3, None),
ast: None, ast: None,
resolver: None,
ty: primitives.0.bool, ty: primitives.0.bool,
}, },
TopLevelDefInfo { TopLevelDefInfo {
def: Self::make_top_level_class_def(4), def: Self::make_top_level_class_def(4, None),
ast: None, ast: None,
resolver: None,
ty: primitives.0.none, ty: primitives.0.none,
}, },
]; // the entries for primitive types ]; // the entries for primitive types
TopLevelComposer { definition_list, primitives: primitives.0, unifier: primitives.1 } TopLevelComposer { definition_list, primitives: primitives.0, unifier: primitives.1 }
} }
pub fn make_top_level_class_def(index: usize) -> TopLevelDef { /// already include the definition_id of itself inside the ancestors vector
pub fn make_top_level_class_def(
index: usize,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
) -> TopLevelDef {
TopLevelDef::Class { TopLevelDef::Class {
object_id: DefinitionId(index), object_id: DefinitionId(index),
type_vars: Default::default(), type_vars: Default::default(),
fields: Default::default(), fields: Default::default(),
methods: Default::default(), methods: Default::default(),
ancestors: Default::default(), ancestors: vec![DefinitionId(index)],
resolver,
} }
} }
pub fn make_top_level_function_def(name: String, ty: Type) -> TopLevelDef {
pub fn make_top_level_function_def(
name: String,
ty: Type,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
) -> TopLevelDef {
TopLevelDef::Function { TopLevelDef::Function {
name, name,
signature: ty, signature: ty,
instance_to_symbol: Default::default(), instance_to_symbol: Default::default(),
instance_to_stmt: Default::default(), instance_to_stmt: Default::default(),
resolver,
} }
} }
// like to make and return a "primitive" symbol resolver? so that the symbol resolver can later // like to make and return a "primitive" symbol resolver? so that the symbol resolver
// figure out primitive type definitions when passed a primitive type name // can later figure out primitive type definitions when passed a primitive type name
pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> { pub fn get_primitives_definition(&self) -> Vec<(String, DefinitionId, Type)> {
vec![ vec![
("int32".into(), DefinitionId(0), self.primitives.int32), ("int32".into(), DefinitionId(0), self.primitives.int32),
("int64".into(), DefinitionId(0), self.primitives.int32), ("int64".into(), DefinitionId(1), self.primitives.int64),
("float".into(), DefinitionId(0), self.primitives.int32), ("float".into(), DefinitionId(2), self.primitives.float),
("bool".into(), DefinitionId(0), self.primitives.int32), ("bool".into(), DefinitionId(3), self.primitives.bool),
("none".into(), DefinitionId(0), self.primitives.int32), ("none".into(), DefinitionId(4), self.primitives.none),
] ]
} }
pub fn register_top_level( pub fn register_top_level(
&mut self, &mut self,
ast: ast::Stmt<()>, ast: ast::Stmt<()>,
resolver: &'a dyn SymbolResolver, resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>,
) -> Result<Vec<(String, DefinitionId, Type)>, String> { ) -> Result<Vec<(String, DefinitionId, Type)>, String> {
match &ast.node { match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => { ast::StmtKind::ClassDef { name, body, .. } => {
let class_name = name.to_string(); let class_name = name.to_string();
let def_id = self.definition_list.len(); let class_def_id = self.definition_list.len();
// add the class to the unifier // add the class to the unifier
let ty = self.unifier.add_ty(TypeEnum::TObj { let ty = self.unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(def_id), obj_id: DefinitionId(class_def_id),
fields: Default::default(), fields: Default::default(),
params: Default::default(), params: Default::default(),
}); });
let mut ret_vector: Vec<(String, DefinitionId, Type)> =
vec![(class_name.clone(), DefinitionId(class_def_id), ty)];
// parse class def body and register class methods into the def list
// NOTE: module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id? so we have to manage it ourselves?
// or do we return the class method list of (method_name, def_id, type) to
// application to be used to build symbol resolver? <- current implementation
// FIXME: better do not return and let symbol resolver to manage the mangled name
for b in body {
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
let fun_name = name_mangling(class_name.clone(), name);
let def_id = self.definition_list.len();
// add to unifier
let ty = self.unifier.add_ty(TypeEnum::TFunc(
crate::typecheck::typedef::FunSignature {
args: Default::default(),
ret: self.primitives.none,
vars: Default::default(),
},
));
// add to the definition list // add to the definition list
self.definition_list.push(TopLevelDefInfo { self.definition_list.push(TopLevelDefInfo {
def: Self::make_top_level_class_def(def_id), def: Self::make_top_level_function_def(fun_name.clone(), ty, None), // FIXME:
resolver: Some(resolver), ty,
ast: None, // since it is inside the class def body statments
});
ret_vector.push((fun_name, DefinitionId(def_id), ty));
// if it is the contructor, special handling is needed. In the above
// handling, we still add __init__ function to the class method
if name == "__init__" {
self.definition_list.push(TopLevelDefInfo {
def: TopLevelDef::Initializer {
class_id: DefinitionId(class_def_id),
},
ty: self.primitives.none, // arbitary picked one
ast: None, // it is inside the class def body statments
})
// FIXME: should we return this to the symbol resolver?, should be yes
}
} else {
} // else do nothing
}
// add to the definition list
self.definition_list.push(TopLevelDefInfo {
def: Self::make_top_level_class_def(class_def_id, resolver),
ast: Some(ast), ast: Some(ast),
ty, ty,
}); });
// TODO: parse class def body and register class methods into the def list? Ok(ret_vector)
// FIXME: module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id? so we have to manage it ourselves? or
// do we return the class method list of (method_name, def_id, type) to application
// to be used to build symbol resolver? <- current implementation
Ok(vec![(class_name, DefinitionId(def_id), ty)]) // FIXME: need to add class method def
} }
ast::StmtKind::FunctionDef { name, .. } => { ast::StmtKind::FunctionDef { name, .. } => {
@ -206,16 +261,16 @@ impl<'a> TopLevelComposer<'a> {
let ty = let ty =
self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature { self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature {
args: Default::default(), args: Default::default(),
ret: self.primitives.none, // NOTE: this needs to be changed later ret: self.primitives.none,
vars: Default::default(), vars: Default::default(),
})); }));
// add to the definition list // add to the definition list
self.definition_list.push(TopLevelDefInfo { self.definition_list.push(TopLevelDefInfo {
def: Self::make_top_level_function_def( def: Self::make_top_level_function_def(
name.into(), name.into(),
self.primitives.none, // NOTE: this needs to be changed later self.primitives.none,
resolver,
), ),
resolver: Some(resolver),
ast: Some(ast), ast: Some(ast),
ty, ty,
}); });
@ -230,53 +285,143 @@ impl<'a> TopLevelComposer<'a> {
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one /// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one
pub fn analyze_top_level(&mut self) -> Result<(), String> { pub fn analyze_top_level(&mut self) -> Result<(), String> {
for mut d in &mut self.definition_list { for mut d in &mut self.definition_list {
if let (Some(ast), Some(resolver)) = (&d.ast, d.resolver) { if let Some(ast) = &d.ast {
match &ast.node { match &ast.node {
ast::StmtKind::ClassDef { ast::StmtKind::ClassDef {
name,
bases, bases,
body, body,
.. ..
} => { } => {
// get the mutable reference of the entry in the definition list, get the `TopLevelDef`
let (_,
ancestors,
fields,
methods,
type_vars,
// resolver,
) = if let TopLevelDef::Class {
object_id,
ancestors,
fields,
methods,
type_vars,
resolver
} = &mut d.def {
(object_id, ancestors, fields, methods, type_vars) // FIXME: this unwrap is not safe
} else { unreachable!() };
// try to get mutable reference of the entry in the unification table, get the `TypeEnum`
let (params,
fields
) = if let TypeEnum::TObj {
params, // FIXME: this params is immutable, even if this is mutable, what should the key be, get the original typevar's var_id?
fields,
..
} = self.unifier.get_ty(d.ty).borrow() {
(params, fields)
} else { unreachable!() };
// ancestors and typevars associate with the class are analyzed by looking // ancestors and typevars associate with the class are analyzed by looking
// into the `bases` ast node // into the `bases` ast node
for b in bases { for b in bases {
match &b.node { match &b.node {
// base class, name directly available inside the module, can use // typevars bounded to the class, things like `class A(Generic[T, V, ImportedModule.T])`
// this module's symbol resolver // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
ast::ExprKind::Name {id, ..} => { ast::ExprKind::Subscript {value, slice, ..} if {
let def_id = resolver.get_identifier_def(id);
unimplemented!()
},
// things can be like `class A(BaseModule.Base)`, here we have to
// get the symbol resolver of the module `BaseModule`?
ast::ExprKind::Attribute {value, attr, ..} => {
// need to change symbol resolver in order to get the symbol
// resolver of the imported module
unimplemented!()
},
// typevars bounded to the class, things like
// `class A(Generic[T, V])`
ast::ExprKind::Subscript {value, slice, ..} => {
if let ast::ExprKind::Name {id, ..} = &value.node { if let ast::ExprKind::Name {id, ..} = &value.node {
if id == "Generic" { id == "Generic"
// TODO: get typevars } else { false }
} => {
match &slice.node {
// `class Foo(Generic[T, V, P, ImportedModule.T]):`
ast::ExprKind::Tuple {elts, ..} => {
for e in elts {
// TODO: I'd better parse the node to get the Type of the type vars(can have things like: A.B.C.typevar?)
match &e.node {
ast::ExprKind::Name {id, ..} => {
// the def_list
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
// the TypeEnum of the class
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
unimplemented!() unimplemented!()
} else { },
return Err("unknown type var".into())
_ => unimplemented!()
} }
} }
}, },
// `class Foo(Generic[T]):`
ast::ExprKind::Name {id, ..} => {
// the def_list
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME:
// the TypeEnum of the class
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be?
unimplemented!()
},
// `class Foo(Generic[ImportedModule.T])`
ast::ExprKind::Attribute {value, attr, ..} => {
// TODO:
unimplemented!()
},
_ => return Err("not supported".into()) // NOTE: it is really all the supported cases?
};
},
// base class, name directly available inside the
// module, can use this module's symbol resolver
ast::ExprKind::Name {id, ..} => {
// let def_id = resolver.get_identifier_def(id); FIXME:
// the definition list
// ancestors.push(def_id);
},
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
// symbol resolver of the module `BaseModule`?
ast::ExprKind::Attribute {value, attr, ..} => {
if let ast::ExprKind::Name {id, ..} = &value.node {
// if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
// let def_id = base_module_resolver.get_identifier_def(attr);
// // the definition list
// ancestors.push(def_id);
// } else { return Err("unkown imported module".into()) } FIXME:
} else { return Err("unkown imported module".into()) }
},
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
ast::ExprKind::Subscript {value, slice, ..} => {
unimplemented!()
},
_ => return Err("not supported".into()) _ => return Err("not supported".into())
} }
} }
// class method and field are analyzed by looking into the class body ast node // class method and field are analyzed by
// looking into the class body ast node
for stmt in body { for stmt in body {
unimplemented!() if let ast::StmtKind::FunctionDef {
name,
args,
body,
returns,
..
} = &stmt.node {
} else { }
// do nothing. we do not care about things like this?
// class A:
// a = 3
// b = [2, 3]
} }
}, },
// top level function definition
ast::StmtKind::FunctionDef { ast::StmtKind::FunctionDef {
name, name,
args, args,
@ -294,3 +439,38 @@ impl<'a> TopLevelComposer<'a> {
Ok(()) Ok(())
} }
} }
pub fn parse_type_var<T>(
input: &ast::Expr<T>,
resolver: &dyn SymbolResolver,
) -> Result<Type, String> {
match &input.node {
ast::ExprKind::Name { id, .. } => resolver
.get_symbol_type(id)
.ok_or_else(|| "unknown type variable identifer".to_string()),
ast::ExprKind::Attribute { value, attr, .. } => {
if let ast::ExprKind::Name { id, .. } = &value.node {
let next_resolver = resolver
.get_module_resolver(id)
.ok_or_else(|| "unknown imported module".to_string())?;
next_resolver
.get_symbol_type(attr)
.ok_or_else(|| "unknown type variable identifer".to_string())
} else {
unimplemented!()
// recursively resolve attr thing, FIXME: new problem: how do we handle this?
// # A.py
// class A:
// T = TypeVar('T', int, bool)
// pass
// # B.py
// import A
// class B(Generic[A.A.T]):
// pass
}
}
_ => Err("not supported".into()),
}
}

View File

@ -1,8 +1,11 @@
use crate::typecheck::{
type_inferencer::*,
typedef::{FunSignature, FuncArg, Type, TypeEnum, Unifier},
};
use rustpython_parser::ast;
use rustpython_parser::ast::{Cmpop, Operator, Unaryop};
use std::borrow::Borrow; use std::borrow::Borrow;
use std::collections::HashMap; use std::collections::HashMap;
use rustpython_parser::ast::{Cmpop, Operator, Unaryop};
use crate::typecheck::{type_inferencer::*, typedef::{FunSignature, FuncArg, TypeEnum, Unifier, Type}};
use rustpython_parser::ast;
pub fn binop_name(op: &Operator) -> &'static str { pub fn binop_name(op: &Operator) -> &'static str {
match op { match op {
@ -61,12 +64,17 @@ pub fn comparison_name(op: &Cmpop) -> Option<&'static str> {
} }
} }
pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type, ops: &[ast::Operator]) { pub fn impl_binop(
unifier: &mut Unifier,
_store: &PrimitiveStore,
ty: Type,
other_ty: &[Type],
ret_ty: Type,
ops: &[ast::Operator],
) {
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() { if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
for op in ops { for op in ops {
fields.borrow_mut().insert( fields.borrow_mut().insert(binop_name(op).into(), {
binop_name(op).into(),
{
let other = if other_ty.len() == 1 { let other = if other_ty.len() == 1 {
other_ty[0] other_ty[0]
} else { } else {
@ -75,18 +83,11 @@ pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, othe
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty, ret: ret_ty,
vars: HashMap::new(), vars: HashMap::new(),
args: vec![FuncArg { args: vec![FuncArg { ty: other, default_value: None, name: "other".into() }],
ty: other,
default_value: None,
name: "other".into()
}]
})) }))
} });
);
fields.borrow_mut().insert( fields.borrow_mut().insert(binop_assign_name(op).into(), {
binop_assign_name(op).into(),
{
let other = if other_ty.len() == 1 { let other = if other_ty.len() == 1 {
other_ty[0] other_ty[0]
} else { } else {
@ -95,19 +96,22 @@ pub fn impl_binop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, othe
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty, ret: ret_ty,
vars: HashMap::new(), vars: HashMap::new(),
args: vec![FuncArg { args: vec![FuncArg { ty: other, default_value: None, name: "other".into() }],
ty: other,
default_value: None,
name: "other".into()
}]
})) }))
});
} }
); } else {
unreachable!("")
} }
} else { unreachable!("") }
} }
pub fn impl_unaryop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, ret_ty: Type, ops: &[ast::Unaryop]) { pub fn impl_unaryop(
unifier: &mut Unifier,
_store: &PrimitiveStore,
ty: Type,
ret_ty: Type,
ops: &[ast::Unaryop],
) {
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() { if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
for op in ops { for op in ops {
fields.borrow_mut().insert( fields.borrow_mut().insert(
@ -115,14 +119,22 @@ pub fn impl_unaryop(unifier: &mut Unifier, _store: &PrimitiveStore, ty: Type, re
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: ret_ty, ret: ret_ty,
vars: HashMap::new(), vars: HashMap::new(),
args: vec![] args: vec![],
})) })),
); );
} }
} else { unreachable!() } } else {
unreachable!()
}
} }
pub fn impl_cmpop(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type, ops: &[ast::Cmpop]) { pub fn impl_cmpop(
unifier: &mut Unifier,
store: &PrimitiveStore,
ty: Type,
other_ty: Type,
ops: &[ast::Cmpop],
) {
if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() { if let TypeEnum::TObj { fields, .. } = unifier.get_ty(ty).borrow() {
for op in ops { for op in ops {
fields.borrow_mut().insert( fields.borrow_mut().insert(
@ -130,118 +142,121 @@ pub fn impl_cmpop(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other
unifier.add_ty(TypeEnum::TFunc(FunSignature { unifier.add_ty(TypeEnum::TFunc(FunSignature {
ret: store.bool, ret: store.bool,
vars: HashMap::new(), vars: HashMap::new(),
args: vec![FuncArg { args: vec![FuncArg { ty: other_ty, default_value: None, name: "other".into() }],
ty: other_ty, })),
default_value: None,
name: "other".into()
}]
}))
); );
} }
} else { unreachable!() } } else {
unreachable!()
}
} }
/// Add, Sub, Mult, Pow /// Add, Sub, Mult, Pow
pub fn impl_basic_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { pub fn impl_basic_arithmetic(
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ unifier: &mut Unifier,
ast::Operator::Add, store: &PrimitiveStore,
ast::Operator::Sub, ty: Type,
ast::Operator::Mult, other_ty: &[Type],
]) ret_ty: Type,
) {
impl_binop(
unifier,
store,
ty,
other_ty,
ret_ty,
&[ast::Operator::Add, ast::Operator::Sub, ast::Operator::Mult],
)
} }
pub fn impl_pow(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { pub fn impl_pow(
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ unifier: &mut Unifier,
ast::Operator::Pow, store: &PrimitiveStore,
]) ty: Type,
other_ty: &[Type],
ret_ty: Type,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Pow])
} }
/// BitOr, BitXor, BitAnd /// BitOr, BitXor, BitAnd
pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_bitwise_arithmetic(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_binop(unifier, store, ty, &[ty], ty, &[ impl_binop(
ast::Operator::BitAnd, unifier,
ast::Operator::BitOr, store,
ast::Operator::BitXor, ty,
]) &[ty],
ty,
&[ast::Operator::BitAnd, ast::Operator::BitOr, ast::Operator::BitXor],
)
} }
/// LShift, RShift /// LShift, RShift
pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_bitwise_shift(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_binop(unifier, store, ty, &[ty], ty, &[ impl_binop(unifier, store, ty, &[ty], ty, &[ast::Operator::LShift, ast::Operator::RShift])
ast::Operator::LShift,
ast::Operator::RShift,
])
} }
/// Div /// Div
pub fn impl_div(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type]) { pub fn impl_div(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type]) {
impl_binop(unifier, store, ty, other_ty, store.float, &[ impl_binop(unifier, store, ty, other_ty, store.float, &[ast::Operator::Div])
ast::Operator::Div,
])
} }
/// FloorDiv /// FloorDiv
pub fn impl_floordiv(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { pub fn impl_floordiv(
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ unifier: &mut Unifier,
ast::Operator::FloorDiv, store: &PrimitiveStore,
]) ty: Type,
other_ty: &[Type],
ret_ty: Type,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::FloorDiv])
} }
/// Mod /// Mod
pub fn impl_mod(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: &[Type], ret_ty: Type) { pub fn impl_mod(
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ unifier: &mut Unifier,
ast::Operator::Mod, store: &PrimitiveStore,
]) ty: Type,
other_ty: &[Type],
ret_ty: Type,
) {
impl_binop(unifier, store, ty, other_ty, ret_ty, &[ast::Operator::Mod])
} }
/// UAdd, USub /// UAdd, USub
pub fn impl_sign(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_sign(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, store, ty, ty, &[ impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::UAdd, ast::Unaryop::USub])
ast::Unaryop::UAdd,
ast::Unaryop::USub,
])
} }
/// Invert /// Invert
pub fn impl_invert(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_invert(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, store, ty, ty, &[ impl_unaryop(unifier, store, ty, ty, &[ast::Unaryop::Invert])
ast::Unaryop::Invert,
])
} }
/// Not /// Not
pub fn impl_not(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_not(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_unaryop(unifier, store, ty, store.bool, &[ impl_unaryop(unifier, store, ty, store.bool, &[ast::Unaryop::Not])
ast::Unaryop::Not,
])
} }
/// Lt, LtE, Gt, GtE /// Lt, LtE, Gt, GtE
pub fn impl_comparison(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type) { pub fn impl_comparison(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type, other_ty: Type) {
impl_cmpop(unifier, store, ty, other_ty, &[ impl_cmpop(
ast::Cmpop::Lt, unifier,
ast::Cmpop::Gt, store,
ast::Cmpop::LtE, ty,
ast::Cmpop::GtE, other_ty,
]) &[ast::Cmpop::Lt, ast::Cmpop::Gt, ast::Cmpop::LtE, ast::Cmpop::GtE],
)
} }
/// Eq, NotEq /// Eq, NotEq
pub fn impl_eq(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) { pub fn impl_eq(unifier: &mut Unifier, store: &PrimitiveStore, ty: Type) {
impl_cmpop(unifier, store, ty, ty, &[ impl_cmpop(unifier, store, ty, ty, &[ast::Cmpop::Eq, ast::Cmpop::NotEq])
ast::Cmpop::Eq,
ast::Cmpop::NotEq,
])
} }
pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) { pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifier) {
let PrimitiveStore { let PrimitiveStore { int32: int32_t, int64: int64_t, float: float_t, bool: bool_t, .. } =
int32: int32_t, *store;
int64: int64_t,
float: float_t,
bool: bool_t,
..
} = *store;
/* int32 ======== */ /* int32 ======== */
impl_basic_arithmetic(unifier, store, int32_t, &[int32_t], int32_t); impl_basic_arithmetic(unifier, store, int32_t, &[int32_t], int32_t);
impl_pow(unifier, store, int32_t, &[int32_t], int32_t); impl_pow(unifier, store, int32_t, &[int32_t], int32_t);

View File

@ -38,7 +38,7 @@ pub struct PrimitiveStore {
} }
pub struct FunctionData { pub struct FunctionData {
pub resolver: Box<dyn SymbolResolver>, pub resolver: Arc<dyn SymbolResolver>,
pub return_type: Option<Type>, pub return_type: Option<Type>,
pub bound_variables: Vec<Type>, pub bound_variables: Vec<Type>,
} }

View File

@ -100,10 +100,10 @@ impl TestEnvironment {
let mut identifier_mapping = HashMap::new(); let mut identifier_mapping = HashMap::new();
identifier_mapping.insert("None".into(), none); identifier_mapping.insert("None".into(), none);
let resolver = Box::new(Resolver { let resolver = Arc::new(Resolver {
identifier_mapping: identifier_mapping.clone(), identifier_mapping: identifier_mapping.clone(),
class_names: Default::default(), class_names: Default::default(),
}) as Box<dyn SymbolResolver>; }) as Arc<dyn SymbolResolver>;
TestEnvironment { TestEnvironment {
unifier, unifier,
@ -226,8 +226,8 @@ impl TestEnvironment {
.collect(); .collect();
let resolver = let resolver =
Box::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names }) Arc::new(Resolver { identifier_mapping: identifier_mapping.clone(), class_names })
as Box<dyn SymbolResolver>; as Arc<dyn SymbolResolver>;
TestEnvironment { TestEnvironment {
unifier, unifier,