nac3/nac3core/src/codegen/numpy.rs

1407 lines
45 KiB
Rust
Raw Normal View History

use inkwell::{IntPredicate, OptimizationLevel, types::BasicType, values::{BasicValueEnum, IntValue, PointerValue}};
use nac3parser::ast::{Operator, StrRef};
use crate::{
codegen::{
classes::{
ArrayLikeIndexer,
ArrayLikeValue,
ListValue,
NDArrayValue,
TypedArrayLikeAccessor,
2024-03-22 16:57:06 +08:00
TypedArrayLikeAdapter,
UntypedArrayLikeAccessor,
UntypedArrayLikeMutator,
},
CodeGenContext,
CodeGenerator,
expr::gen_binop_expr_with_values,
irrt::{
call_ndarray_calc_broadcast,
call_ndarray_calc_broadcast_index,
call_ndarray_calc_nd_indices,
call_ndarray_calc_size,
},
llvm_intrinsics,
llvm_intrinsics::{call_memcpy_generic},
stmt::{gen_for_callback_incrementing, gen_if_else_expr_callback},
},
symbol_resolver::ValueEnum,
toplevel::{
DefinitionId,
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
typecheck::typedef::{FunSignature, Type},
};
2024-05-29 14:19:12 +08:00
/// Creates an uninitialized `NDArray` instance.
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> Result<NDArrayValue<'ctx>, String> {
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_ndarray_t = ctx.get_llvm_type(generator, ndarray_ty)
.into_pointer_type()
.get_element_type()
.into_struct_type();
let ndarray = generator.gen_var_alloc(
ctx,
llvm_ndarray_t.into(),
None,
)?;
Ok(NDArrayValue::from_ptr_val(ndarray, llvm_usize, None))
}
/// Creates an `NDArray` instance from a dynamic shape.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The shape of the `NDArray`.
/// * `shape_len_fn` - A function that retrieves the number of dimensions from `shape`.
/// * `shape_data_fn` - A function that retrieves the size of a dimension from `shape`.
fn create_ndarray_dyn_shape<'ctx, 'a, G, V, LenFn, DataFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
shape: &V,
shape_len_fn: LenFn,
shape_data_fn: DataFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
LenFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, &V) -> Result<IntValue<'ctx>, String>,
DataFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, &V, IntValue<'ctx>) -> Result<IntValue<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
// Assert that all dimensions are non-negative
let shape_len = shape_len_fn(generator, ctx, shape)?;
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(shape_len, false),
|generator, ctx, i| {
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
let shape_dim_gez = ctx.builder
.build_int_compare(IntPredicate::SGE, shape_dim, shape_dim.get_type().const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
shape_dim_gez,
"0:ValueError",
"negative dimensions not supported",
[None, None, None],
ctx.current_loc,
);
// TODO: Disallow dim_sz > u32_MAX
Ok(())
},
llvm_usize.const_int(1, false),
)?;
2024-05-29 14:19:12 +08:00
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
let num_dims = shape_len_fn(generator, ctx, shape)?;
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
// Copy the dimension sizes from shape to ndarray.dims
let shape_len = shape_len_fn(generator, ctx, shape)?;
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(shape_len, false),
|generator, ctx, i| {
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
let shape_dim = ctx.builder
.build_int_z_extend(shape_dim, llvm_usize, "")
.unwrap();
let ndarray_pdim = unsafe {
ndarray.dim_sizes().ptr_offset_unchecked(ctx, generator, &i, None)
};
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
2024-05-29 14:19:12 +08:00
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
Ok(ndarray)
}
/// Creates an `NDArray` instance from a constant shape.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The shape of the `NDArray`, represented am array of [`IntValue`]s.
fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: &[IntValue<'ctx>],
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_usize = generator.get_size_type(ctx.ctx);
for shape_dim in shape {
let shape_dim_gez = ctx.builder
.build_int_compare(IntPredicate::SGE, *shape_dim, llvm_usize.const_zero(), "")
.unwrap();
ctx.make_assert(
generator,
shape_dim_gez,
"0:ValueError",
"negative dimensions not supported",
[None, None, None],
ctx.current_loc,
);
// TODO: Disallow dim_sz > u32_MAX
}
2024-05-29 14:19:12 +08:00
let ndarray = create_ndarray_uninitialized(generator, ctx, elem_ty)?;
let num_dims = llvm_usize.const_int(shape.len() as u64, false);
ndarray.store_ndims(ctx, generator, num_dims);
let ndarray_num_dims = ndarray.load_ndims(ctx);
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
for (i, shape_dim) in shape.iter().enumerate() {
let ndarray_dim = unsafe {
ndarray
.dim_sizes()
.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_int(i as u64, true), None)
};
ctx.builder.build_store(ndarray_dim, *shape_dim).unwrap();
}
2024-05-29 14:19:12 +08:00
let ndarray = ndarray_init_data(generator, ctx, elem_ty, ndarray);
Ok(ndarray)
}
/// Initializes the `data` field of [`NDArrayValue`] based on the `ndims` and `dim_sz` fields.
fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
ndarray: NDArrayValue<'ctx>,
) -> NDArrayValue<'ctx> {
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
assert!(llvm_ndarray_data_t.is_sized());
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
2024-05-29 14:19:12 +08:00
ndarray
}
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "")
} else {
unreachable!()
}
}
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
ctx.gen_string(generator, "1")
} else {
unreachable!()
}
}
/// LLVM-typed implementation for generating the implementation for constructing an `NDArray`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&shape,
|_, ctx, shape| {
Ok(shape.load_size(ctx, None))
},
|generator, ctx, shape, idx| {
Ok(shape.data().get(ctx, generator, &idx, None).into_int_value())
},
)
}
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as
/// its input.
fn ndarray_fill_flattened<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarray: NDArrayValue<'ctx>,
value_fn: ValueFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let ndarray_num_elems = call_ndarray_calc_size(
generator,
ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
gen_for_callback_incrementing(
generator,
ctx,
llvm_usize.const_zero(),
(ndarray_num_elems, false),
|generator, ctx, i| {
let elem = unsafe {
ndarray.data().ptr_offset_unchecked(ctx, generator, &i, None)
};
let value = value_fn(generator, ctx, i)?;
ctx.builder.build_store(elem, value).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)
}
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices
/// as its input.
fn ndarray_fill_indexed<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarray: NDArrayValue<'ctx>,
value_fn: ValueFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, &TypedArrayLikeAdapter<'ctx, IntValue<'ctx>>) -> Result<BasicValueEnum<'ctx>, String>,
{
ndarray_fill_flattened(
generator,
ctx,
ndarray,
|generator, ctx, idx| {
let indices = call_ndarray_calc_nd_indices(
generator,
ctx,
idx,
ndarray,
);
value_fn(generator, ctx, &indices)
}
)
}
fn ndarray_fill_mapping<'ctx, 'a, G, MapFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
src: NDArrayValue<'ctx>,
dest: NDArrayValue<'ctx>,
map_fn: MapFn,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
MapFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, BasicValueEnum<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
{
ndarray_fill_flattened(
generator,
ctx,
dest,
|generator, ctx, i| {
let elem = unsafe {
src.data().get_unchecked(ctx, generator, &i, None)
};
map_fn(generator, ctx, elem)
},
)
}
/// Generates the LLVM IR for checking whether the source `ndarray` can be broadcast to the shape of
/// the target `ndarray`.
fn ndarray_assert_is_broadcastable<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target: NDArrayValue<'ctx>,
source: NDArrayValue<'ctx>,
) {
let array_ndims = source.load_ndims(ctx);
let broadcast_size = target.load_ndims(ctx);
ctx.make_assert(
generator,
ctx.builder.build_int_compare(IntPredicate::ULE, array_ndims, broadcast_size, "").unwrap(),
"0:ValueError",
"operands cannot be broadcast together",
[None, None, None],
ctx.current_loc,
);
}
/// Generates the LLVM IR for populating the entire `NDArray` from two `ndarray` or scalar value
/// with broadcast-compatible shapes.
fn ndarray_broadcast_fill<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
res: NDArrayValue<'ctx>,
lhs: (BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool),
value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, (BasicValueEnum<'ctx>, BasicValueEnum<'ctx>)) -> Result<BasicValueEnum<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs;
assert!(!(lhs_scalar && rhs_scalar),
"One of the operands must be a ndarray instance: `{}`, `{}`",
lhs_val.get_type(),
rhs_val.get_type());
// Assert that all ndarray operands are broadcastable to the target size
if !lhs_scalar {
let lhs_val = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val);
}
if !rhs_scalar {
let rhs_val = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val);
}
ndarray_fill_indexed(
generator,
ctx,
res,
|generator, ctx, idx| {
let lhs_elem = if lhs_scalar {
lhs_val
} else {
let lhs = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx);
unsafe {
lhs.data().get_unchecked(ctx, generator, &lhs_idx, None)
}
};
let rhs_elem = if rhs_scalar {
rhs_val
} else {
let rhs = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx);
unsafe {
rhs.data().get_unchecked(ctx, generator, &rhs_idx, None)
}
};
value_fn(generator, ctx, (lhs_elem, rhs_elem))
},
)?;
Ok(res)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.zeros`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_zeros_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let supported_types = [
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
ctx.primitives.float,
ctx.primitives.bool,
ctx.primitives.str,
];
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
ndarray_fill_flattened(
generator,
ctx,
ndarray,
|generator, ctx, _| {
let value = ndarray_zero_value(generator, ctx, elem_ty);
Ok(value)
}
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.ones`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_ones_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let supported_types = [
ctx.primitives.int32,
ctx.primitives.int64,
ctx.primitives.uint32,
ctx.primitives.uint64,
ctx.primitives.float,
ctx.primitives.bool,
ctx.primitives.str,
];
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
ndarray_fill_flattened(
generator,
ctx,
ndarray,
|generator, ctx, _| {
let value = ndarray_one_value(generator, ctx, elem_ty);
Ok(value)
}
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.full`.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: ListValue<'ctx>,
fill_value: BasicValueEnum<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
ndarray_fill_flattened(
generator,
ctx,
ndarray,
|generator, ctx, _| {
let value = if fill_value.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type();
let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?;
call_memcpy_generic(
ctx,
copy,
fill_value.into_pointer_value(),
fill_value.get_type().size_of().map(Into::into).unwrap(),
llvm_i1.const_zero(),
);
copy.into()
} else if fill_value.is_int_value() || fill_value.is_float_value() {
fill_value
} else {
unreachable!()
};
Ok(value)
}
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.eye`.
///
/// * `elem_ty` - The element type of the `NDArray`.
fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
nrows: IntValue<'ctx>,
ncols: IntValue<'ctx>,
offset: IntValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap();
let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap();
let ndarray = create_ndarray_const_shape(
generator,
ctx,
elem_ty,
&[nrows, ncols],
)?;
ndarray_fill_indexed(
generator,
ctx,
ndarray,
|generator, ctx, indices| {
2024-03-22 16:57:06 +08:00
let (row, col) = unsafe {
(
indices.get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None),
indices.get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None),
2024-03-22 16:57:06 +08:00
)
};
let col_with_offset = ctx.builder
.build_int_add(
col,
ctx.builder.build_int_s_extend_or_bit_cast(offset, llvm_i32, "").unwrap(),
"",
)
.unwrap();
let is_on_diag = ctx.builder
.build_int_compare(IntPredicate::EQ, row, col_with_offset, "")
.unwrap();
let zero = ndarray_zero_value(generator, ctx, elem_ty);
let one = ndarray_one_value(generator, ctx, elem_ty);
let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap();
Ok(value)
},
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for generating the implementation for `ndarray.copy`.
///
/// * `elem_ty` - The element type of the `NDArray`.
fn ndarray_copy_impl<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
this: NDArrayValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i1 = ctx.ctx.bool_type();
let ndarray = create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&this,
|_, ctx, shape| {
Ok(shape.load_ndims(ctx))
},
|generator, ctx, shape, idx| {
unsafe { Ok(shape.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None)) }
},
)?;
let len = call_ndarray_calc_size(
generator,
ctx,
&ndarray.dim_sizes().as_slice_value(ctx, generator),
(None, None),
);
let sizeof_ty = ctx.get_llvm_type(generator, elem_ty);
let len_bytes = ctx.builder
.build_int_mul(
len,
sizeof_ty.size_of().unwrap(),
"",
)
.unwrap();
call_memcpy_generic(
ctx,
ndarray.data().base_ptr(ctx, generator),
this.data().base_ptr(ctx, generator),
len_bytes,
llvm_i1.const_zero(),
);
Ok(ndarray)
}
pub fn ndarray_elementwise_unaryop_impl<'ctx, 'a, G, MapFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
operand: NDArrayValue<'ctx>,
map_fn: MapFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MapFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, BasicValueEnum<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
{
let res = res.unwrap_or_else(|| {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&operand,
|_, ctx, v| {
Ok(v.load_ndims(ctx))
},
|generator, ctx, v, idx| {
unsafe {
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
}
},
).unwrap()
});
ndarray_fill_mapping(
generator,
ctx,
operand,
res,
|generator, ctx, elem| {
map_fn(generator, ctx, elem)
}
)?;
Ok(res)
}
/// LLVM-typed implementation for computing elementwise binary operations on two input operands.
///
/// If the operand is a `ndarray`, the broadcast index corresponding to each element in the output
/// is computed, the element accessed and used as an operand of the `value_fn` arguments tuple.
/// Otherwise, the operand is treated as a scalar value, and is used as an operand of the
/// `value_fn` arguments tuple for all output elements.
///
/// The second element of the tuple indicates whether to treat the operand value as a `ndarray`
/// (which would be accessed by its broadcast index) or as a scalar value (which would be
/// broadcast to all elements).
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `res` - The `ndarray` instance to write results into, or [`None`] if the result should be
/// written to a new `ndarray`.
/// * `value_fn` - Function mapping the two input elements into the result.
///
/// # Panic
///
/// This function will panic if neither input operands (`lhs` or `rhs`) is a `ndarray`.
pub fn ndarray_elementwise_binop_impl<'ctx, 'a, G, ValueFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
lhs: (BasicValueEnum<'ctx>, bool),
rhs: (BasicValueEnum<'ctx>, bool),
value_fn: ValueFn,
) -> Result<NDArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
ValueFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>, (BasicValueEnum<'ctx>, BasicValueEnum<'ctx>)) -> Result<BasicValueEnum<'ctx>, String>,
{
let llvm_usize = generator.get_size_type(ctx.ctx);
let (lhs_val, lhs_scalar) = lhs;
let (rhs_val, rhs_scalar) = rhs;
assert!(!(lhs_scalar && rhs_scalar),
"One of the operands must be a ndarray instance: `{}`, `{}`",
lhs_val.get_type(),
rhs_val.get_type());
let ndarray = res.unwrap_or_else(|| {
if lhs_scalar && rhs_scalar {
let lhs_val = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
let rhs_val = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val);
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&ndarray_dims,
|generator, ctx, v| {
Ok(v.size(ctx, generator))
},
|generator, ctx, v, idx| {
unsafe {
Ok(v.get_typed_unchecked(ctx, generator, &idx, None))
}
},
).unwrap()
} else {
let ndarray = NDArrayValue::from_ptr_val(
if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(),
llvm_usize,
None,
);
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&ndarray,
|_, ctx, v| {
Ok(v.load_ndims(ctx))
},
|generator, ctx, v, idx| {
unsafe {
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
}
},
).unwrap()
}
});
ndarray_broadcast_fill(
generator,
ctx,
ndarray,
lhs,
rhs,
|generator, ctx, elems| {
value_fn(generator, ctx, elems)
},
)?;
Ok(ndarray)
}
/// LLVM-typed implementation for computing matrix multiplication between two 2D `ndarray`s.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `res` - The `ndarray` instance to write results into, or [`None`] if the result should be
/// written to a new `ndarray`.
pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
res: Option<NDArrayValue<'ctx>>,
lhs: NDArrayValue<'ctx>,
rhs: NDArrayValue<'ctx>,
) -> Result<NDArrayValue<'ctx>, String> {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
if cfg!(debug_assertions) {
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_ndims = rhs.load_ndims(ctx);
// lhs.ndims == 2
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
lhs_ndims,
llvm_usize.const_int(2, false),
"",
).unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
// rhs.ndims == 2
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
rhs_ndims,
llvm_usize.const_int(2, false),
"",
).unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
if let Some(res) = res {
let res_ndims = res.load_ndims(ctx);
let res_dim0 = unsafe {
res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let res_dim1 = unsafe {
res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
};
let lhs_dim0 = unsafe {
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
let rhs_dim1 = unsafe {
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
};
// res.ndims == 2
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
res_ndims,
llvm_usize.const_int(2, false),
"",
).unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
// res.dims[0] == lhs.dims[0]
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
lhs_dim0,
res_dim0,
"",
).unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
// res.dims[1] == rhs.dims[0]
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
rhs_dim1,
res_dim1,
"",
).unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
}
}
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
let lhs_dim1 = unsafe {
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
};
let rhs_dim0 = unsafe {
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
// lhs.dims[1] == rhs.dims[0]
ctx.make_assert(
generator,
ctx.builder.build_int_compare(
IntPredicate::EQ,
lhs_dim1,
rhs_dim0,
"",
).unwrap(),
"0:ValueError",
"",
[None, None, None],
ctx.current_loc,
);
}
let lhs = if res.is_some_and(|res| res.as_ptr_value() == lhs.as_ptr_value()) {
ndarray_copy_impl(generator, ctx, elem_ty, lhs)?
} else {
lhs
};
let ndarray = res.unwrap_or_else(|| {
create_ndarray_dyn_shape(
generator,
ctx,
elem_ty,
&(lhs, rhs),
|_, _, _| {
Ok(llvm_usize.const_int(2, false))
},
|generator, ctx, (lhs, rhs), idx| {
gen_if_else_expr_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx.builder.build_int_compare(
IntPredicate::EQ,
idx,
llvm_usize.const_zero(),
"",
).unwrap())
},
|generator, ctx| {
Ok(Some(unsafe {
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
}))
},
|generator, ctx| {
Ok(Some(unsafe {
rhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
}))
},
).map(|v| v.map(BasicValueEnum::into_int_value).unwrap())
},
).unwrap()
});
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
ndarray_fill_indexed(
generator,
ctx,
ndarray,
|generator, ctx, idx| {
llvm_intrinsics::call_expect(
ctx,
idx.size(ctx, generator).get_type().const_int(2, false),
idx.size(ctx, generator),
None,
);
let common_dim = {
let lhs_idx1 = unsafe {
lhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
)
};
let rhs_idx0 = unsafe {
rhs.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
};
let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None);
ctx.builder.build_int_truncate(idx, llvm_i32, "").unwrap()
};
let idx0 = unsafe {
let idx0 = idx.get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
);
ctx.builder.build_int_truncate(idx0, llvm_i32, "").unwrap()
};
let idx1 = unsafe {
let idx1 = idx.get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_int(1, false),
None,
);
ctx.builder.build_int_truncate(idx1, llvm_i32, "").unwrap()
};
let result_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
let result_identity = ndarray_zero_value(generator, ctx, elem_ty);
ctx.builder.build_store(result_addr, result_identity).unwrap();
gen_for_callback_incrementing(
generator,
ctx,
llvm_i32.const_zero(),
(common_dim, false),
|generator, ctx, i| {
let i = ctx.builder.build_int_truncate(i, llvm_i32, "").unwrap();
let ab_idx = generator.gen_array_var_alloc(
ctx,
llvm_i32.into(),
llvm_usize.const_int(2, false),
None,
)?;
let a = unsafe {
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_zero(), idx0.into());
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_int(1, false), i.into());
lhs.data().get_unchecked(ctx, generator, &ab_idx, None)
};
let b = unsafe {
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_zero(), i.into());
ab_idx.set_unchecked(ctx, generator, &llvm_usize.const_int(1, false), idx1.into());
rhs.data().get_unchecked(ctx, generator, &ab_idx, None)
};
let a_mul_b = gen_binop_expr_with_values(
generator,
ctx,
(&Some(elem_ty), a),
&Operator::Mult,
(&Some(elem_ty), b),
ctx.current_loc,
false,
)?.unwrap().to_basic_value_enum(ctx, generator, elem_ty)?;
let result = ctx.builder.build_load(result_addr, "").unwrap();
let result = gen_binop_expr_with_values(
generator,
ctx,
(&Some(elem_ty), result),
&Operator::Add,
(&Some(elem_ty), a_mul_b),
ctx.current_loc,
false,
)?.unwrap().to_basic_value_enum(ctx, generator, elem_ty)?;
ctx.builder.build_store(result_addr, result).unwrap();
Ok(())
},
llvm_usize.const_int(1, false),
)?;
let result = ctx.builder.build_load(result_addr, "").unwrap();
Ok(result)
}
)?;
Ok(ndarray)
}
/// Generates LLVM IR for `ndarray.empty`.
pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_empty_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.zeros`.
pub fn gen_ndarray_zeros<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_zeros_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.ones`.
pub fn gen_ndarray_ones<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, shape_ty)?;
call_ndarray_ones_impl(
generator,
context,
context.primitives.float,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.full`.
pub fn gen_ndarray_full<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let llvm_usize = generator.get_size_type(context.ctx);
let shape_ty = fun.0.args[0].ty;
let shape_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, shape_ty)?;
let fill_value_ty = fun.0.args[1].ty;
let fill_value_arg = args[1].1.clone()
.to_basic_value_enum(context, generator, fill_value_ty)?;
call_ndarray_full_impl(
generator,
context,
fill_value_ty,
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
fill_value_arg,
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.eye`.
pub fn gen_ndarray_eye<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert!(matches!(args.len(), 1..=3));
let nrows_ty = fun.0.args[0].ty;
let nrows_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, nrows_ty)?;
let ncols_ty = fun.0.args[1].ty;
2024-04-01 16:22:40 +08:00
let ncols_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name)) {
arg.1.clone().to_basic_value_enum(context, generator, ncols_ty)
} else {
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
}?;
let offset_ty = fun.0.args[2].ty;
2024-04-01 16:22:40 +08:00
let offset_arg = if let Some(arg) =
args.iter().find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name)) {
arg.1.clone().to_basic_value_enum(context, generator, offset_ty)
} else {
Ok(context.gen_symbol_val(
generator,
fun.0.args[2].default_value.as_ref().unwrap(),
offset_ty
))
}?;
call_ndarray_eye_impl(
generator,
context,
context.primitives.float,
nrows_arg.into_int_value(),
ncols_arg.into_int_value(),
offset_arg.into_int_value(),
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.identity`.
pub fn gen_ndarray_identity<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let n_ty = fun.0.args[0].ty;
let n_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, n_ty)?;
call_ndarray_eye_impl(
generator,
context,
context.primitives.float,
n_arg.into_int_value(),
n_arg.into_int_value(),
llvm_usize.const_zero(),
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.copy`.
pub fn gen_ndarray_copy<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
_fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_some());
assert!(args.is_empty());
let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0;
let (this_elem_ty, _) = unpack_ndarray_var_tys(&mut context.unifier, this_ty);
let this_arg = obj
.as_ref()
.unwrap()
.1
.clone()
.to_basic_value_enum(context, generator, this_ty)?;
ndarray_copy_impl(
generator,
context,
this_elem_ty,
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None),
).map(NDArrayValue::into)
}
/// Generates LLVM IR for `ndarray.fill`.
pub fn gen_ndarray_fill<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_some());
assert_eq!(args.len(), 1);
let llvm_usize = generator.get_size_type(context.ctx);
let this_ty = obj.as_ref().unwrap().0;
let this_arg = obj.as_ref().unwrap().1.clone()
.to_basic_value_enum(context, generator, this_ty)?
.into_pointer_value();
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone()
.to_basic_value_enum(context, generator, value_ty)?;
ndarray_fill_flattened(
generator,
context,
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|generator, ctx, _| {
let value = if value_arg.is_pointer_value() {
let llvm_i1 = ctx.ctx.bool_type();
let copy = generator.gen_var_alloc(ctx, value_arg.get_type(), None)?;
call_memcpy_generic(
ctx,
copy,
value_arg.into_pointer_value(),
value_arg.get_type().size_of().map(Into::into).unwrap(),
llvm_i1.const_zero(),
);
copy.into()
} else if value_arg.is_int_value() || value_arg.is_float_value() {
value_arg
} else {
unreachable!()
};
Ok(value)
}
)?;
Ok(())
}