use core::cell::RefCell; use core::cmp; use io::prelude::*; use io::{Error, ErrorKind, SeekFrom}; use io; use byteorder::LittleEndian; use byteorder_ext::ReadBytesExt; use file::File; use dir::{DirRawStream, Dir}; use dir_entry::DIR_ENTRY_SIZE; use table::{ClusterIterator, alloc_cluster, read_fat_flags}; #[cfg(not(feature = "std"))] use alloc::{String, string::ToString}; // FAT implementation based on: // http://wiki.osdev.org/FAT // https://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html #[derive(Debug, Copy, Clone, PartialEq)] pub enum FatType { Fat12, Fat16, Fat32, } impl FatType { fn from_clusters(total_clusters: u32) -> FatType { if total_clusters < 4085 { FatType::Fat12 } else if total_clusters < 65525 { FatType::Fat16 } else { FatType::Fat32 } } } pub struct FsStatusFlags { pub dirty: bool, pub io_error: bool, } pub trait ReadSeek: Read + Seek {} impl ReadSeek for T where T: Read + Seek {} pub trait ReadWriteSeek: Read + Write + Seek {} impl ReadWriteSeek for T where T: Read + Write + Seek {} #[allow(dead_code)] #[derive(Default, Debug, Clone)] struct BiosParameterBlock { bytes_per_sector: u16, sectors_per_cluster: u8, reserved_sectors: u16, fats: u8, root_entries: u16, total_sectors_16: u16, media: u8, sectors_per_fat_16: u16, sectors_per_track: u16, heads: u16, hidden_sectors: u32, total_sectors_32: u32, // Extended BIOS Parameter Block sectors_per_fat_32: u32, extended_flags: u16, fs_version: u16, root_dir_first_cluster: u32, fs_info_sector: u16, backup_boot_sector: u16, reserved_0: [u8; 12], drive_num: u8, reserved_1: u8, ext_sig: u8, volume_id: u32, volume_label: [u8; 11], fs_type_label: [u8; 8], } impl BiosParameterBlock { fn deserialize(rdr: &mut Read) -> io::Result { let mut bpb: BiosParameterBlock = Default::default(); bpb.bytes_per_sector = rdr.read_u16::()?; bpb.sectors_per_cluster = rdr.read_u8()?; bpb.reserved_sectors = rdr.read_u16::()?; bpb.fats = rdr.read_u8()?; bpb.root_entries = rdr.read_u16::()? ; bpb.total_sectors_16 = rdr.read_u16::()?; bpb.media = rdr.read_u8()?; bpb.sectors_per_fat_16 = rdr.read_u16::()?; bpb.sectors_per_track = rdr.read_u16::()?; bpb.heads = rdr.read_u16::()?; bpb.hidden_sectors = rdr.read_u32::()?; bpb.total_sectors_32 = rdr.read_u32::()?; // sanity checks if bpb.bytes_per_sector < 512 { return Err(Error::new(ErrorKind::Other, "invalid bytes_per_sector value in BPB")); } if bpb.sectors_per_cluster < 1 { return Err(Error::new(ErrorKind::Other, "invalid sectors_per_cluster value in BPB")); } if bpb.reserved_sectors < 1 { return Err(Error::new(ErrorKind::Other, "invalid reserved_sectors value in BPB")); } if bpb.fats == 0 { return Err(Error::new(ErrorKind::Other, "invalid fats value in BPB")); } if bpb.sectors_per_fat_16 == 0 { bpb.sectors_per_fat_32 = rdr.read_u32::()?; bpb.extended_flags = rdr.read_u16::()?; bpb.fs_version = rdr.read_u16::()?; bpb.root_dir_first_cluster = rdr.read_u32::()?; bpb.fs_info_sector = rdr.read_u16::()?; bpb.backup_boot_sector = rdr.read_u16::()?; rdr.read_exact(&mut bpb.reserved_0)?; bpb.drive_num = rdr.read_u8()?; bpb.reserved_1 = rdr.read_u8()?; bpb.ext_sig = rdr.read_u8()?; // 0x29 bpb.volume_id = rdr.read_u32::()?; rdr.read_exact(&mut bpb.volume_label)?; rdr.read_exact(&mut bpb.fs_type_label)?; } else { bpb.drive_num = rdr.read_u8()?; bpb.reserved_1 = rdr.read_u8()?; bpb.ext_sig = rdr.read_u8()?; // 0x29 bpb.volume_id = rdr.read_u32::()?; rdr.read_exact(&mut bpb.volume_label)?; rdr.read_exact(&mut bpb.fs_type_label)?; } if bpb.ext_sig != 0x29 { // fields after ext_sig are not used - clean them bpb.volume_id = 0; bpb.volume_label = [0; 11]; bpb.fs_type_label = [0; 8]; } Ok(bpb) } fn mirroring_enabled(&self) -> bool { self.extended_flags & 0x80 == 0 } fn active_fat(&self) -> u16 { self.extended_flags & 0x0F } fn status_flags(&self) -> FsStatusFlags { FsStatusFlags { dirty: self.reserved_1 & 1 != 0, io_error: self.reserved_1 & 2 != 0, } } } #[allow(dead_code)] struct BootRecord { bootjmp: [u8; 3], oem_name: [u8; 8], bpb: BiosParameterBlock, boot_code: [u8; 448], boot_sig: [u8; 2], } impl BootRecord { fn deserialize(rdr: &mut Read) -> io::Result { let mut boot: BootRecord = Default::default(); rdr.read_exact(&mut boot.bootjmp)?; rdr.read_exact(&mut boot.oem_name)?; boot.bpb = BiosParameterBlock::deserialize(rdr)?; if boot.bpb.sectors_per_fat_16 == 0 { rdr.read_exact(&mut boot.boot_code[0..420])?; } else { rdr.read_exact(&mut boot.boot_code[0..448])?; } rdr.read_exact(&mut boot.boot_sig)?; Ok(boot) } } impl Default for BootRecord { fn default() -> BootRecord { BootRecord { bootjmp: Default::default(), oem_name: Default::default(), bpb: Default::default(), boot_code: [0; 448], boot_sig: Default::default(), } } } /// FAT filesystem options. #[derive(Debug, Clone, Copy)] pub struct FsOptions { pub(crate) update_accessed_date: bool, } impl FsOptions { pub fn new() -> Self { FsOptions { update_accessed_date: false, } } /// If enabled library updates accessed date field in directory entry when reading pub fn update_accessed_date(mut self, enabled: bool) -> Self { self.update_accessed_date = enabled; self } } pub(crate) type FileSystemRef<'a, 'b> = &'a FileSystem<'b>; /// FAT filesystem main struct. pub struct FileSystem<'a> { pub(crate) disk: RefCell<&'a mut ReadWriteSeek>, pub(crate) options: FsOptions, fat_type: FatType, bpb: BiosParameterBlock, first_data_sector: u32, root_dir_sectors: u32, } impl <'a> FileSystem<'a> { /// Creates new filesystem object instance. /// /// Supplied disk parameter cannot be seeked. If there is a need to read a fragment of disk image (e.g. partition) /// library user should provide a custom implementation of ReadWriteSeek trait. /// /// Note: creating multiple filesystem objects with one underlying device/disk image can /// cause filesystem corruption. pub fn new(disk: &'a mut T, options: FsOptions) -> io::Result> { // Make sure given image is not seeked debug_assert!(disk.seek(SeekFrom::Current(0))? == 0); // Read boot sector let bpb = { let boot = BootRecord::deserialize(disk)?; if boot.boot_sig != [0x55, 0xAA] { return Err(Error::new(ErrorKind::Other, "invalid signature")); } boot.bpb }; let total_sectors = if bpb.total_sectors_16 == 0 { bpb.total_sectors_32 } else { bpb.total_sectors_16 as u32 }; let sectors_per_fat = if bpb.sectors_per_fat_16 == 0 { bpb.sectors_per_fat_32 } else { bpb.sectors_per_fat_16 as u32 }; let root_dir_bytes = bpb.root_entries as u32 * DIR_ENTRY_SIZE as u32; let root_dir_sectors = (root_dir_bytes + (bpb.bytes_per_sector as u32 - 1)) / bpb.bytes_per_sector as u32; let first_data_sector = bpb.reserved_sectors as u32 + (bpb.fats as u32 * sectors_per_fat) + root_dir_sectors; let fat_sectors = bpb.fats as u32 * sectors_per_fat; let data_sectors = total_sectors - (bpb.reserved_sectors as u32 + fat_sectors + root_dir_sectors as u32); let total_clusters = data_sectors / bpb.sectors_per_cluster as u32; let fat_type = FatType::from_clusters(total_clusters); Ok(FileSystem { disk: RefCell::new(disk), options, fat_type, bpb: bpb, first_data_sector, root_dir_sectors, }) } /// Returns type of used File Allocation Table (FAT). pub fn fat_type(&self) -> FatType { self.fat_type } /// Returns volume identifier read from BPB in Boot Sector. pub fn volume_id(&self) -> u32 { self.bpb.volume_id } /// Returns volume label from BPB in Boot Sector. /// /// Note: File with VOLUME_ID attribute in root directory is ignored by this library. /// Only label from BPB is used. pub fn volume_label(&self) -> String { String::from_utf8_lossy(&self.bpb.volume_label).trim_right().to_string() } /// Returns root directory object allowing futher penetration of filesystem structure. pub fn root_dir<'b>(&'b self) -> Dir<'b, 'a> { let root_rdr = { match self.fat_type { FatType::Fat12 | FatType::Fat16 => DirRawStream::Root(DiskSlice::from_sectors( self.first_data_sector - self.root_dir_sectors, self.root_dir_sectors, 1, self)), _ => DirRawStream::File(File::new(Some(self.bpb.root_dir_first_cluster), None, self)), } }; Dir::new(root_rdr, self) } pub(crate) fn offset_from_sector(&self, sector: u32) -> u64 { (sector as u64) * self.bpb.bytes_per_sector as u64 } pub(crate) fn sector_from_cluster(&self, cluster: u32) -> u32 { ((cluster - 2) * self.bpb.sectors_per_cluster as u32) + self.first_data_sector } pub(crate) fn cluster_size(&self) -> u32 { self.bpb.sectors_per_cluster as u32 * self.bpb.bytes_per_sector as u32 } pub(crate) fn offset_from_cluster(&self, cluser: u32) -> u64 { self.offset_from_sector(self.sector_from_cluster(cluser)) } fn fat_slice<'b>(&'b self) -> DiskSlice<'b, 'a> { let sectors_per_fat = if self.bpb.sectors_per_fat_16 == 0 { self.bpb.sectors_per_fat_32 } else { self.bpb.sectors_per_fat_16 as u32 }; let mirroring_enabled = self.bpb.mirroring_enabled(); let (fat_first_sector, mirrors) = if mirroring_enabled { (self.bpb.reserved_sectors as u32, self.bpb.fats) } else { let active_fat = self.bpb.active_fat() as u32; let fat_first_sector = (self.bpb.reserved_sectors as u32) + active_fat * sectors_per_fat; (fat_first_sector, 1) }; DiskSlice::from_sectors(fat_first_sector, sectors_per_fat, mirrors, self) } pub(crate) fn cluster_iter<'b>(&'b self, cluster: u32) -> ClusterIterator<'b, 'a> { let disk_slice = self.fat_slice(); ClusterIterator::new(disk_slice, self.fat_type, cluster) } pub(crate) fn alloc_cluster(&self, prev_cluster: Option) -> io::Result { let mut disk_slice = self.fat_slice(); alloc_cluster(&mut disk_slice, self.fat_type, prev_cluster) } pub fn read_status_flags(&self) -> io::Result { let bpb_status = self.bpb.status_flags(); let fat_status = read_fat_flags(&mut self.fat_slice(), self.fat_type)?; Ok(FsStatusFlags { dirty: bpb_status.dirty || fat_status.dirty, io_error: bpb_status.io_error || fat_status.io_error, }) } } #[derive(Clone)] pub(crate) struct DiskSlice<'a, 'b: 'a> { begin: u64, size: u64, offset: u64, mirrors: u8, fs: &'a FileSystem<'b>, } impl <'a, 'b> DiskSlice<'a, 'b> { pub(crate) fn new(begin: u64, size: u64, mirrors: u8, fs: FileSystemRef<'a, 'b>) -> Self { DiskSlice { begin, size, mirrors, fs, offset: 0 } } pub(crate) fn from_sectors(first_sector: u32, sector_count: u32, mirrors: u8, fs: FileSystemRef<'a, 'b>) -> Self { let bytes_per_sector = fs.bpb.bytes_per_sector as u64; Self::new(first_sector as u64 * bytes_per_sector, sector_count as u64 * bytes_per_sector, mirrors, fs) } pub(crate) fn abs_pos(&self) -> u64 { self.begin + self.offset } } impl <'a, 'b> Read for DiskSlice<'a, 'b> { fn read(&mut self, buf: &mut [u8]) -> io::Result { let offset = self.begin + self.offset; let read_size = cmp::min((self.size - self.offset) as usize, buf.len()); let mut disk = self.fs.disk.borrow_mut(); disk.seek(SeekFrom::Start(offset))?; let size = disk.read(&mut buf[..read_size])?; self.offset += size as u64; Ok(size) } } impl <'a, 'b> Write for DiskSlice<'a, 'b> { fn write(&mut self, buf: &[u8]) -> io::Result { let offset = self.begin + self.offset; let write_size = cmp::min((self.size - self.offset) as usize, buf.len()); for i in 0..self.mirrors { let mut disk = self.fs.disk.borrow_mut(); disk.seek(SeekFrom::Start(offset + i as u64 * self.size))?; disk.write_all(&buf[..write_size])?; } self.offset += write_size as u64; Ok(write_size) } fn flush(&mut self) -> io::Result<()> { let mut disk = self.fs.disk.borrow_mut(); disk.flush() } } impl <'a, 'b> Seek for DiskSlice<'a, 'b> { fn seek(&mut self, pos: SeekFrom) -> io::Result { let new_offset = match pos { SeekFrom::Current(x) => self.offset as i64 + x, SeekFrom::Start(x) => x as i64, SeekFrom::End(x) => self.size as i64 + x, }; if new_offset < 0 || new_offset as u64 > self.size { Err(io::Error::new(ErrorKind::InvalidInput, "invalid seek")) } else { self.offset = new_offset as u64; Ok(self.offset) } } }