diff --git a/src/fs.rs b/src/fs.rs index 9854f59..8db96be 100644 --- a/src/fs.rs +++ b/src/fs.rs @@ -45,6 +45,14 @@ impl FatType { FatType::Fat32 } } + + pub(crate) fn bits_per_fat_entry(&self) -> u32 { + match self { + FatType::Fat12 => 12, + FatType::Fat16 => 16, + FatType::Fat32 => 32, + } + } } /// A FAT volume status flags retrived from the Boot Sector and the allocation table second entry. @@ -1092,6 +1100,7 @@ pub struct FormatOptions { const KB: u32 = 1024; const MB: u32 = KB * 1024; +const GB: u32 = MB * 1024; fn determine_fat_type(total_bytes: u64) -> FatType { if total_bytes < 4*MB as u64 { @@ -1104,25 +1113,43 @@ fn determine_fat_type(total_bytes: u64) -> FatType { } fn determine_bytes_per_cluster(total_bytes: u64, fat_type: FatType, bytes_per_sector: u16) -> u32 { - // TODO: test! - let min_cluster_size = bytes_per_sector; let bytes_per_cluster = match fat_type { - FatType::Fat12 => (total_bytes as u32 / MB * KB) as u32, - FatType::Fat16 => (total_bytes / (32 * MB as u64) * KB as u64) as u32, - FatType::Fat32 => (total_bytes / (64 * MB as u64) * KB as u64) as u32, + FatType::Fat12 => (total_bytes.next_power_of_two() / MB as u64) as u32 * 512, + FatType::Fat16 => { + if total_bytes <= 16 * MB as u64 { + 1 * KB + } else if total_bytes <= 128 * MB as u64 { + 2 * KB + } else { + (total_bytes.next_power_of_two() / (64 * MB as u64)) as u32 * KB + } + }, + FatType::Fat32 => { + if total_bytes <= 260 * MB as u64 { + 512 + } else if total_bytes <= 8 * GB as u64 { + 4 * KB + } else { + (total_bytes.next_power_of_two() / (2 * GB as u64)) as u32 * KB + } + }, }; const MAX_CLUSTER_SIZE: u32 = 32*KB; - cmp::min(cmp::max(bytes_per_cluster.next_power_of_two(), min_cluster_size as u32), MAX_CLUSTER_SIZE) + debug_assert!(bytes_per_cluster.is_power_of_two()); + cmp::min(cmp::max(bytes_per_cluster, bytes_per_sector as u32), MAX_CLUSTER_SIZE) } fn determine_sectors_per_fat(total_sectors: u32, reserved_sectors: u16, fats: u8, root_dir_sectors: u32, - sectors_per_cluster: u8, fat_entries_per_sector: u16, fat_type: FatType) -> u32 { + sectors_per_cluster: u8, fat_type: FatType) -> u32 { + // TODO: use _fat_entries_per_sector // FIXME: this is for FAT16/32 let tmp_val1 = total_sectors - (reserved_sectors as u32 + root_dir_sectors as u32); let mut tmp_val2 = (256 * sectors_per_cluster as u32) + fats as u32; if fat_type == FatType::Fat32 { tmp_val2 = tmp_val2 / 2; + } else if fat_type == FatType::Fat12 { + tmp_val2 = tmp_val2 / 3 * 4 } let sectors_per_fat = (tmp_val1 + (tmp_val2 - 1)) / tmp_val2; @@ -1156,18 +1183,13 @@ fn format_bpb(options: &FormatOptions) -> io::Result<(BiosParameterBlock, FatTyp let root_dir_bytes = root_entries as u32 * DIR_ENTRY_SIZE as u32; let root_dir_sectors = (root_dir_bytes + bytes_per_sector as u32 - 1) / bytes_per_sector as u32; - let fat_entries_per_sector = match fat_type { - FatType::Fat12 => bytes_per_sector * 8 / 12, - FatType::Fat16 => bytes_per_sector * 8 / 16, - FatType::Fat32 => bytes_per_sector * 8 / 32, - }; - if total_sectors <= reserved_sectors as u32 + root_dir_sectors as u32 + 16 { return Err(Error::new(ErrorKind::Other, "volume is too small",)); } + //let fat_entries_per_sector = bytes_per_sector * 8 / fat_type.bits_per_fat_entry() as u16; let sectors_per_fat = determine_sectors_per_fat(total_sectors, reserved_sectors, fats, root_dir_sectors, - sectors_per_cluster, fat_entries_per_sector, fat_type); + sectors_per_cluster, fat_type); // drive_num should be 0 for floppy disks and 0x80 for hard disks - determine it using FAT type let drive_num = options.drive_num.unwrap_or_else(|| if fat_type == FatType::Fat12 { 0 } else { 0x80 }); @@ -1242,11 +1264,11 @@ fn write_zeros_until_end_of_sector(mut disk: T, bytes_per_sect fn format_boot_sector(options: &FormatOptions) -> io::Result<(BootRecord, FatType)> { let mut boot: BootRecord = Default::default(); - boot.bootjmp = [0xEB, 0x58, 0x90]; - boot.oem_name.copy_from_slice("MSWIN4.1".as_bytes()); let (bpb, fat_type) = format_bpb(options)?; boot.bpb = bpb; - // Boot code copied from boot sector initialized by mkfs.fat + boot.oem_name.copy_from_slice("MSWIN4.1".as_bytes()); + // Boot code copied from FAT32 boot sector initialized by mkfs.fat + boot.bootjmp = [0xEB, 0x58, 0x90]; let boot_code: [u8; 129] = [ 0x0E, 0x1F, 0xBE, 0x77, 0x7C, 0xAC, 0x22, 0xC0, 0x74, 0x0B, 0x56, 0xB4, 0x0E, 0xBB, 0x07, 0x00, 0xCD, 0x10, 0x5E, 0xEB, 0xF0, 0x32, 0xE4, 0xCD, 0x16, 0xCD, 0x19, 0xEB, 0xFE, 0x54, 0x68, 0x69, @@ -1259,6 +1281,19 @@ fn format_boot_sector(options: &FormatOptions) -> io::Result<(BootRecord, FatTyp 0x0A]; boot.boot_code[..boot_code.len()].copy_from_slice(&boot_code); boot.boot_sig = [0x55, 0xAA]; + + // fix offsets in bootjmp and boot code for non-FAT32 filesystems (bootcode is on a different offset) + if fat_type != FatType::Fat32 { + // offset of boot code + let boot_code_offset = 0x36 + 8; + boot.bootjmp[1] = (boot_code_offset - 2) as u8; + // offset of message + const MESSAGE_OFFSET: u32 = 29; + let message_offset_in_sector = boot_code_offset + MESSAGE_OFFSET + 0x7c00; + boot.boot_code[3] = (message_offset_in_sector & 0xff) as u8; + boot.boot_code[4] = (message_offset_in_sector >> 8) as u8; + } + Ok((boot, fat_type)) } @@ -1307,6 +1342,7 @@ pub fn format_volume(mut disk: T, options: FormatOptions) -> i let root_dir_sectors: u32 = boot.bpb.root_dir_sectors(); write_zeros(&mut disk, root_dir_sectors as usize * bytes_per_sector as usize)?; if fat_type == FatType::Fat32 { + // FIXME: alloc_cluster needs FAT stream, not entire disk let root_dir_first_cluster = alloc_cluster(&mut disk, fat_type, None, None, 1)?; assert!(root_dir_first_cluster == boot.bpb.root_dir_first_cluster); let first_data_sector = reserved_sectors as u32 + sectors_per_fat + root_dir_sectors; @@ -1323,3 +1359,59 @@ pub fn format_volume(mut disk: T, options: FormatOptions) -> i disk.seek(SeekFrom::Start(0))?; Ok(()) } + +#[cfg(test)] +mod tests { + use super::*; + + #[test] + fn test_determine_fat_type() { + assert_eq!(determine_fat_type(3 * MB as u64), FatType::Fat12); + assert_eq!(determine_fat_type(4 * MB as u64), FatType::Fat16); + assert_eq!(determine_fat_type(511 * MB as u64), FatType::Fat16); + assert_eq!(determine_fat_type(512 * MB as u64), FatType::Fat32); + } + + #[test] + fn test_determine_bytes_per_cluster_fat12() { + assert_eq!(determine_bytes_per_cluster(1 * MB as u64 + 0, FatType::Fat12, 512), 512); + assert_eq!(determine_bytes_per_cluster(1 * MB as u64 + 1, FatType::Fat12, 512), 1024); + assert_eq!(determine_bytes_per_cluster(1 * MB as u64, FatType::Fat12, 4096), 4096); + } + + #[test] + fn test_determine_bytes_per_cluster_fat16() { + assert_eq!(determine_bytes_per_cluster(1 * MB as u64, FatType::Fat16, 512), 1 * KB); + assert_eq!(determine_bytes_per_cluster(1 * MB as u64, FatType::Fat16, 4 * KB as u16), 4 * KB); + assert_eq!(determine_bytes_per_cluster(16 * MB as u64 + 0, FatType::Fat16, 512), 1 * KB); + assert_eq!(determine_bytes_per_cluster(16 * MB as u64 + 1, FatType::Fat16, 512), 2 * KB); + assert_eq!(determine_bytes_per_cluster(128 * MB as u64 + 0, FatType::Fat16, 512), 2 * KB); + assert_eq!(determine_bytes_per_cluster(128 * MB as u64 + 1, FatType::Fat16, 512), 4 * KB); + assert_eq!(determine_bytes_per_cluster(256 * MB as u64 + 0, FatType::Fat16, 512), 4 * KB); + assert_eq!(determine_bytes_per_cluster(256 * MB as u64 + 1, FatType::Fat16, 512), 8 * KB); + assert_eq!(determine_bytes_per_cluster(512 * MB as u64 + 0, FatType::Fat16, 512), 8 * KB); + assert_eq!(determine_bytes_per_cluster(512 * MB as u64 + 1, FatType::Fat16, 512), 16 * KB); + assert_eq!(determine_bytes_per_cluster(1024 * MB as u64 + 0, FatType::Fat16, 512), 16 * KB); + assert_eq!(determine_bytes_per_cluster(1024 * MB as u64 + 1, FatType::Fat16, 512), 32 * KB); + assert_eq!(determine_bytes_per_cluster(99999 * MB as u64, FatType::Fat16, 512), 32 * KB); + } + + #[test] + fn test_determine_bytes_per_cluster_fat32() { + assert_eq!(determine_bytes_per_cluster(260 * MB as u64, FatType::Fat32, 512), 512); + assert_eq!(determine_bytes_per_cluster(260 * MB as u64, FatType::Fat32, 4 * KB as u16), 4 * KB); + assert_eq!(determine_bytes_per_cluster(260 * MB as u64 + 1, FatType::Fat32, 512), 4 * KB); + assert_eq!(determine_bytes_per_cluster(8 * GB as u64, FatType::Fat32, 512), 4 * KB); + assert_eq!(determine_bytes_per_cluster(8 * GB as u64 + 1, FatType::Fat32, 512), 8 * KB); + assert_eq!(determine_bytes_per_cluster(16 * GB as u64 + 0, FatType::Fat32, 512), 8 * KB); + assert_eq!(determine_bytes_per_cluster(16 * GB as u64 + 1, FatType::Fat32, 512), 16 * KB); + assert_eq!(determine_bytes_per_cluster(32 * GB as u64, FatType::Fat32, 512), 16 * KB); + assert_eq!(determine_bytes_per_cluster(32 * GB as u64 + 1, FatType::Fat32, 512), 32 * KB); + assert_eq!(determine_bytes_per_cluster(999 * GB as u64, FatType::Fat32, 512), 32 * KB); + } + + #[test] + fn test_determine_sectors_per_fat() { + assert_eq!(determine_sectors_per_fat(1 * MB / 512, 1, 2, 32, 1, FatType::Fat12), 6); + } +}