nalgebra/tests/geometry/similarity.rs
Eduard Bopp bba1993e58 Restructure test modules to avoid warnings
These warnings occurred only when running the test suite with no
features. Lots of uses had to be rescoped into newly created modules to
make it easier to separate these issues.
2018-01-18 13:13:38 +01:00

267 lines
9.4 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#![cfg(feature = "arbitrary")]
#![allow(non_snake_case)]
use alga::linear::{Transformation, ProjectiveTransformation};
use na::{Vector3, Point3, Similarity3, Translation3, Isometry3, UnitQuaternion};
quickcheck!(
fn inverse_is_identity(i: Similarity3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
let ii = i.inverse();
relative_eq!(i * ii, Similarity3::identity(), epsilon = 1.0e-7) &&
relative_eq!(ii * i, Similarity3::identity(), epsilon = 1.0e-7) &&
relative_eq!((i * ii) * p, p, epsilon = 1.0e-7) &&
relative_eq!((ii * i) * p, p, epsilon = 1.0e-7) &&
relative_eq!((i * ii) * v, v, epsilon = 1.0e-7) &&
relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
}
fn inverse_is_parts_inversion(t: Translation3<f64>, r: UnitQuaternion<f64>, scaling: f64) -> bool {
if relative_eq!(scaling, 0.0) {
true
}
else {
let s = Similarity3::from_isometry(t * r, scaling);
s.inverse() == Similarity3::from_scaling(1.0 / scaling) * r.inverse() * t.inverse()
}
}
fn multiply_equals_alga_transform(s: Similarity3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
s * v == s.transform_vector(&v) &&
s * p == s.transform_point(&p) &&
relative_eq!(s.inverse() * v, s.inverse_transform_vector(&v), epsilon = 1.0e-7) &&
relative_eq!(s.inverse() * p, s.inverse_transform_point(&p), epsilon = 1.0e-7)
}
fn composition(i: Isometry3<f64>, uq: UnitQuaternion<f64>,
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>, scaling: f64) -> bool {
if relative_eq!(scaling, 0.0) {
return true;
}
let s = Similarity3::from_scaling(scaling);
// (rotation × translation × scaling) × point = rotation × (translation × (scaling × point))
relative_eq!((uq * t * s) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
relative_eq!((uq * t * s) * p, uq * (t * (scaling * p)), epsilon = 1.0e-7) &&
// (translation × rotation × scaling) × point = translation × (rotation × (scaling × point))
relative_eq!((t * uq * s) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
relative_eq!((t * uq * s) * p, t * (uq * (scaling * p)), epsilon = 1.0e-7) &&
// (rotation × isometry × scaling) × point = rotation × (isometry × (scaling × point))
relative_eq!((uq * i * s) * v, uq * (i * (scaling * v)), epsilon = 1.0e-7) &&
relative_eq!((uq * i * s) * p, uq * (i * (scaling * p)), epsilon = 1.0e-7) &&
// (isometry × rotation × scaling) × point = isometry × (rotation × (scaling × point))
relative_eq!((i * uq * s) * v, i * (uq * (scaling * v)), epsilon = 1.0e-7) &&
relative_eq!((i * uq * s) * p, i * (uq * (scaling * p)), epsilon = 1.0e-7) &&
// (translation × isometry × scaling) × point = translation × (isometry × (scaling × point))
relative_eq!((t * i * s) * v, (i * (scaling * v)), epsilon = 1.0e-7) &&
relative_eq!((t * i * s) * p, t * (i * (scaling * p)), epsilon = 1.0e-7) &&
// (isometry × translation × scaling) × point = isometry × (translation × (scaling × point))
relative_eq!((i * t * s) * v, i * (scaling * v), epsilon = 1.0e-7) &&
relative_eq!((i * t * s) * p, i * (t * (scaling * p)), epsilon = 1.0e-7) &&
/*
* Same as before but with scaling on the middle.
*/
// (rotation × scaling × translation) × point = rotation × (scaling × (translation × point))
relative_eq!((uq * s * t) * v, uq * (scaling * v), epsilon = 1.0e-7) &&
relative_eq!((uq * s * t) * p, uq * (scaling * (t * p)), epsilon = 1.0e-7) &&
// (translation × scaling × rotation) × point = translation × (scaling × (rotation × point))
relative_eq!((t * s * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
relative_eq!((t * s * uq) * p, t * (scaling * (uq * p)), epsilon = 1.0e-7) &&
// (rotation × scaling × isometry) × point = rotation × (scaling × (isometry × point))
relative_eq!((uq * s * i) * v, uq * (scaling * (i * v)), epsilon = 1.0e-7) &&
relative_eq!((uq * s * i) * p, uq * (scaling * (i * p)), epsilon = 1.0e-7) &&
// (isometry × scaling × rotation) × point = isometry × (scaling × (rotation × point))
relative_eq!((i * s * uq) * v, i * (scaling * (uq * v)), epsilon = 1.0e-7) &&
relative_eq!((i * s * uq) * p, i * (scaling * (uq * p)), epsilon = 1.0e-7) &&
// (translation × scaling × isometry) × point = translation × (scaling × (isometry × point))
relative_eq!((t * s * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) &&
relative_eq!((t * s * i) * p, t * (scaling * (i * p)), epsilon = 1.0e-7) &&
// (isometry × scaling × translation) × point = isometry × (scaling × (translation × point))
relative_eq!((i * s * t) * v, i * (scaling * v), epsilon = 1.0e-7) &&
relative_eq!((i * s * t) * p, i * (scaling * (t * p)), epsilon = 1.0e-7) &&
/*
* Same as before but with scaling on the left.
*/
// (scaling × rotation × translation) × point = scaling × (rotation × (translation × point))
relative_eq!((s * uq * t) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
relative_eq!((s * uq * t) * p, scaling * (uq * (t * p)), epsilon = 1.0e-7) &&
// (scaling × translation × rotation) × point = scaling × (translation × (rotation × point))
relative_eq!((s * t * uq) * v, scaling * (uq * v), epsilon = 1.0e-7) &&
relative_eq!((s * t * uq) * p, scaling * (t * (uq * p)), epsilon = 1.0e-7) &&
// (scaling × rotation × isometry) × point = scaling × (rotation × (isometry × point))
relative_eq!((s * uq * i) * v, scaling * (uq * (i * v)), epsilon = 1.0e-7) &&
relative_eq!((s * uq * i) * p, scaling * (uq * (i * p)), epsilon = 1.0e-7) &&
// (scaling × isometry × rotation) × point = scaling × (isometry × (rotation × point))
relative_eq!((s * i * uq) * v, scaling * (i * (uq * v)), epsilon = 1.0e-7) &&
relative_eq!((s * i * uq) * p, scaling * (i * (uq * p)), epsilon = 1.0e-7) &&
// (scaling × translation × isometry) × point = scaling × (translation × (isometry × point))
relative_eq!((s * t * i) * v, (scaling * (i * v)), epsilon = 1.0e-7) &&
relative_eq!((s * t * i) * p, scaling * (t * (i * p)), epsilon = 1.0e-7) &&
// (scaling × isometry × translation) × point = scaling × (isometry × (translation × point))
relative_eq!((s * i * t) * v, scaling * (i * v), epsilon = 1.0e-7) &&
relative_eq!((s * i * t) * p, scaling * (i * (t * p)), epsilon = 1.0e-7)
}
fn all_op_exist(s: Similarity3<f64>, i: Isometry3<f64>, uq: UnitQuaternion<f64>,
t: Translation3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
let sMs = s * s;
let sMuq = s * uq;
let sDs = s / s;
let sDuq = s / uq;
let sMp = s * p;
let sMv = s * v;
let sMt = s * t;
let tMs = t * s;
let uqMs = uq * s;
let uqDs = uq / s;
let sMi = s * i;
let sDi = s / i;
let iMs = i * s;
let iDs = i / s;
let mut sMt1 = s;
let mut sMt2 = s;
let mut sMs1 = s;
let mut sMs2 = s;
let mut sMuq1 = s;
let mut sMuq2 = s;
let mut sMi1 = s;
let mut sMi2 = s;
let mut sDs1 = s;
let mut sDs2 = s;
let mut sDuq1 = s;
let mut sDuq2 = s;
let mut sDi1 = s;
let mut sDi2 = s;
sMt1 *= t;
sMt2 *= &t;
sMs1 *= s;
sMs2 *= &s;
sMuq1 *= uq;
sMuq2 *= &uq;
sMi1 *= i;
sMi2 *= &i;
sDs1 /= s;
sDs2 /= &s;
sDuq1 /= uq;
sDuq2 /= &uq;
sDi1 /= i;
sDi2 /= &i;
sMt == sMt1 &&
sMt == sMt2 &&
sMs == sMs1 &&
sMs == sMs2 &&
sMuq == sMuq1 &&
sMuq == sMuq2 &&
sMi == sMi1 &&
sMi == sMi2 &&
sDs == sDs1 &&
sDs == sDs2 &&
sDuq == sDuq1 &&
sDuq == sDuq2 &&
sDi == sDi1 &&
sDi == sDi2 &&
sMs == &s * &s &&
sMs == s * &s &&
sMs == &s * s &&
sMuq == &s * &uq &&
sMuq == s * &uq &&
sMuq == &s * uq &&
sDs == &s / &s &&
sDs == s / &s &&
sDs == &s / s &&
sDuq == &s / &uq &&
sDuq == s / &uq &&
sDuq == &s / uq &&
sMp == &s * &p &&
sMp == s * &p &&
sMp == &s * p &&
sMv == &s * &v &&
sMv == s * &v &&
sMv == &s * v &&
sMt == &s * &t &&
sMt == s * &t &&
sMt == &s * t &&
tMs == &t * &s &&
tMs == t * &s &&
tMs == &t * s &&
uqMs == &uq * &s &&
uqMs == uq * &s &&
uqMs == &uq * s &&
uqDs == &uq / &s &&
uqDs == uq / &s &&
uqDs == &uq / s &&
sMi == &s * &i &&
sMi == s * &i &&
sMi == &s * i &&
sDi == &s / &i &&
sDi == s / &i &&
sDi == &s / i &&
iMs == &i * &s &&
iMs == i * &s &&
iMs == &i * s &&
iDs == &i / &s &&
iDs == i / &s &&
iDs == &i / s
}
);