forked from M-Labs/nalgebra
114 lines
3.1 KiB
Rust
114 lines
3.1 KiB
Rust
use num::Zero;
|
|
use simba::scalar::ClosedAdd;
|
|
|
|
use crate::allocator::Allocator;
|
|
use crate::sparse::cs_utils;
|
|
use crate::sparse::{CsMatrix, CsStorage};
|
|
use crate::storage::Storage;
|
|
use crate::{DefaultAllocator, Dim, Dynamic, Matrix, MatrixMN, Scalar};
|
|
|
|
impl<'a, N: Scalar + Zero + ClosedAdd> CsMatrix<N> {
|
|
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
|
|
pub fn from_triplet(
|
|
nrows: usize,
|
|
ncols: usize,
|
|
irows: &[usize],
|
|
icols: &[usize],
|
|
vals: &[N],
|
|
) -> Self {
|
|
Self::from_triplet_generic(Dynamic::new(nrows), Dynamic::new(ncols), irows, icols, vals)
|
|
}
|
|
}
|
|
|
|
impl<'a, N: Scalar + Zero + ClosedAdd, R: Dim, C: Dim> CsMatrix<N, R, C>
|
|
where
|
|
DefaultAllocator: Allocator<usize, C> + Allocator<N, R>,
|
|
{
|
|
/// Creates a column-compressed sparse matrix from a sparse matrix in triplet form.
|
|
pub fn from_triplet_generic(
|
|
nrows: R,
|
|
ncols: C,
|
|
irows: &[usize],
|
|
icols: &[usize],
|
|
vals: &[N],
|
|
) -> Self {
|
|
assert!(vals.len() == irows.len());
|
|
assert!(vals.len() == icols.len());
|
|
|
|
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, vals.len());
|
|
let mut workspace = res.data.p.clone();
|
|
|
|
// Column count.
|
|
for j in icols.iter().cloned() {
|
|
workspace[j] += 1;
|
|
}
|
|
|
|
let _ = cs_utils::cumsum(&mut workspace, &mut res.data.p);
|
|
|
|
// Fill i and vals.
|
|
for ((i, j), val) in irows
|
|
.iter()
|
|
.cloned()
|
|
.zip(icols.iter().cloned())
|
|
.zip(vals.iter().cloned())
|
|
{
|
|
let offset = workspace[j];
|
|
res.data.i[offset] = i;
|
|
res.data.vals[offset] = val;
|
|
workspace[j] = offset + 1;
|
|
}
|
|
|
|
// Sort the result.
|
|
res.sort();
|
|
res.dedup();
|
|
res
|
|
}
|
|
}
|
|
|
|
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<CsMatrix<N, R, C, S>> for MatrixMN<N, R, C>
|
|
where
|
|
S: CsStorage<N, R, C>,
|
|
DefaultAllocator: Allocator<N, R, C>,
|
|
{
|
|
fn from(m: CsMatrix<N, R, C, S>) -> Self {
|
|
let (nrows, ncols) = m.data.shape();
|
|
let mut res = MatrixMN::zeros_generic(nrows, ncols);
|
|
|
|
for j in 0..ncols.value() {
|
|
for (i, val) in m.data.column_entries(j) {
|
|
res[(i, j)] = val;
|
|
}
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
impl<'a, N: Scalar + Zero, R: Dim, C: Dim, S> From<Matrix<N, R, C, S>> for CsMatrix<N, R, C>
|
|
where
|
|
S: Storage<N, R, C>,
|
|
DefaultAllocator: Allocator<N, R, C> + Allocator<usize, C>,
|
|
{
|
|
fn from(m: Matrix<N, R, C, S>) -> Self {
|
|
let (nrows, ncols) = m.data.shape();
|
|
let len = m.iter().filter(|e| !e.is_zero()).count();
|
|
let mut res = CsMatrix::new_uninitialized_generic(nrows, ncols, len);
|
|
let mut nz = 0;
|
|
|
|
for j in 0..ncols.value() {
|
|
let column = m.column(j);
|
|
res.data.p[j] = nz;
|
|
|
|
for i in 0..nrows.value() {
|
|
if !column[i].is_zero() {
|
|
res.data.i[nz] = i;
|
|
res.data.vals[nz] = column[i].inlined_clone();
|
|
nz += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|