nalgebra/src/geometry/isometry_conversion.rs
2021-01-28 18:46:14 -05:00

340 lines
11 KiB
Rust

use simba::scalar::{RealField, SubsetOf, SupersetOf};
use simba::simd::{PrimitiveSimdValue, SimdRealField, SimdValue};
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimMin, DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar};
use crate::geometry::{
AbstractRotation, Isometry, Isometry3, Similarity, SuperTCategoryOf, TAffine, Transform,
Translation, UnitDualQuaternion, UnitQuaternion,
};
/*
* This file provides the following conversions:
* =============================================
*
* Isometry -> Isometry
* Isometry3 -> UnitDualQuaternion
* Isometry -> Similarity
* Isometry -> Transform
* Isometry -> Matrix (homogeneous)
*/
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1, D, R1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
R2: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, D, R2> {
Isometry::from_parts(self.translation.to_superset(), self.rotation.to_superset())
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, D, R2>) -> bool {
crate::is_convertible::<_, Translation<N1, D>>(&iso.translation)
&& crate::is_convertible::<_, R1>(&iso.rotation)
}
#[inline]
fn from_superset_unchecked(iso: &Isometry<N2, D, R2>) -> Self {
Isometry::from_parts(
iso.translation.to_subset_unchecked(),
iso.rotation.to_subset_unchecked(),
)
}
}
impl<N1, N2> SubsetOf<UnitDualQuaternion<N2>> for Isometry3<N1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
{
#[inline]
fn to_superset(&self) -> UnitDualQuaternion<N2> {
let dq = UnitDualQuaternion::<N1>::from_isometry(self);
dq.to_superset()
}
#[inline]
fn is_in_subset(dq: &UnitDualQuaternion<N2>) -> bool {
crate::is_convertible::<_, UnitQuaternion<N1>>(&dq.rotation())
&& crate::is_convertible::<_, Translation<N1, _>>(&dq.translation())
}
#[inline]
fn from_superset_unchecked(dq: &UnitDualQuaternion<N2>) -> Self {
let dq: UnitDualQuaternion<N1> = crate::convert_ref_unchecked(dq);
dq.to_isometry()
}
}
impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R1: AbstractRotation<N1, D> + SubsetOf<R2>,
R2: AbstractRotation<N2, D>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, D, R2> {
Similarity::from_isometry(self.to_superset(), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, D, R2>) -> bool {
crate::is_convertible::<_, Isometry<N1, D, R1>>(&sim.isometry) && sim.scaling() == N2::one()
}
#[inline]
fn from_superset_unchecked(sim: &Similarity<N2, D, R2>) -> Self {
crate::convert_ref_unchecked(&sim.isometry)
}
}
impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<N1, D>
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
DefaultAllocator: Allocator<N1, D>
+ Allocator<N1, D, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<(usize, usize), D>
+ Allocator<N2, D, D>
+ Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Transform<N2, D, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1, N2, D, R> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Isometry<N1, D, R>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: AbstractRotation<N1, D>
+ SubsetOf<MatrixN<N1, DimNameSum<D, U1>>>
+ SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
D: DimNameAdd<U1> + DimMin<D, Output = D>, // needed by .is_special_orthogonal()
DefaultAllocator: Allocator<N1, D>
+ Allocator<N1, D, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<(usize, usize), D>
+ Allocator<N2, D, D>
+ Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
let rot = m.fixed_slice::<D, D>(0, 0);
let bottom = m.fixed_slice::<U1, D>(D::dim(), 0);
// Scalar types agree.
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
// The block part is a rotation.
rot.is_special_orthogonal(N2::default_epsilon() * crate::convert(100.0)) &&
// The bottom row is (0, 0, ..., 1)
bottom.iter().all(|e| e.is_zero()) && m[(D::dim(), D::dim())] == N2::one()
}
#[inline]
fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let t = m.fixed_slice::<D, U1>(0, D::dim()).into_owned();
let t = Translation {
vector: crate::convert_unchecked(t),
};
Self::from_parts(t, crate::convert_unchecked(m.clone_owned()))
}
}
impl<N: SimdRealField, D: DimName, R: AbstractRotation<N, D>> From<Translation<N, D>>
for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn from(tra: Translation<N, D>) -> Self {
Self::from_parts(tra, R::identity())
}
}
impl<N: SimdRealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>>
where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>,
{
#[inline]
fn from(iso: Isometry<N, D, R>) -> Self {
iso.to_homogeneous()
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 2]>
for Isometry<N, D, R>
where
N: From<[<N as SimdValue>::Element; 2]>,
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 2]>,
R::Element: AbstractRotation<N::Element, D>,
N::Element: Scalar + Copy,
R::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Isometry<N::Element, D, R::Element>; 2]) -> Self {
let tra = Translation::from([arr[0].translation.clone(), arr[1].translation.clone()]);
let rot = R::from([arr[0].rotation, arr[0].rotation]);
Self::from_parts(tra, rot)
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 4]>
for Isometry<N, D, R>
where
N: From<[<N as SimdValue>::Element; 4]>,
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 4]>,
R::Element: AbstractRotation<N::Element, D>,
N::Element: Scalar + Copy,
R::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Isometry<N::Element, D, R::Element>; 4]) -> Self {
let tra = Translation::from([
arr[0].translation.clone(),
arr[1].translation.clone(),
arr[2].translation.clone(),
arr[3].translation.clone(),
]);
let rot = R::from([
arr[0].rotation,
arr[1].rotation,
arr[2].rotation,
arr[3].rotation,
]);
Self::from_parts(tra, rot)
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 8]>
for Isometry<N, D, R>
where
N: From<[<N as SimdValue>::Element; 8]>,
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 8]>,
R::Element: AbstractRotation<N::Element, D>,
N::Element: Scalar + Copy,
R::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Isometry<N::Element, D, R::Element>; 8]) -> Self {
let tra = Translation::from([
arr[0].translation.clone(),
arr[1].translation.clone(),
arr[2].translation.clone(),
arr[3].translation.clone(),
arr[4].translation.clone(),
arr[5].translation.clone(),
arr[6].translation.clone(),
arr[7].translation.clone(),
]);
let rot = R::from([
arr[0].rotation,
arr[1].rotation,
arr[2].rotation,
arr[3].rotation,
arr[4].rotation,
arr[5].rotation,
arr[6].rotation,
arr[7].rotation,
]);
Self::from_parts(tra, rot)
}
}
impl<N: Scalar + PrimitiveSimdValue, D: DimName, R> From<[Isometry<N::Element, D, R::Element>; 16]>
for Isometry<N, D, R>
where
N: From<[<N as SimdValue>::Element; 16]>,
R: SimdValue + AbstractRotation<N, D> + From<[<R as SimdValue>::Element; 16]>,
R::Element: AbstractRotation<N::Element, D>,
N::Element: Scalar + Copy,
R::Element: Scalar + Copy,
DefaultAllocator: Allocator<N, D> + Allocator<N::Element, D>,
{
#[inline]
fn from(arr: [Isometry<N::Element, D, R::Element>; 16]) -> Self {
let tra = Translation::from([
arr[0].translation.clone(),
arr[1].translation.clone(),
arr[2].translation.clone(),
arr[3].translation.clone(),
arr[4].translation.clone(),
arr[5].translation.clone(),
arr[6].translation.clone(),
arr[7].translation.clone(),
arr[8].translation.clone(),
arr[9].translation.clone(),
arr[10].translation.clone(),
arr[11].translation.clone(),
arr[12].translation.clone(),
arr[13].translation.clone(),
arr[14].translation.clone(),
arr[15].translation.clone(),
]);
let rot = R::from([
arr[0].rotation,
arr[1].rotation,
arr[2].rotation,
arr[3].rotation,
arr[4].rotation,
arr[5].rotation,
arr[6].rotation,
arr[7].rotation,
arr[8].rotation,
arr[9].rotation,
arr[10].rotation,
arr[11].rotation,
arr[12].rotation,
arr[13].rotation,
arr[14].rotation,
arr[15].rotation,
]);
Self::from_parts(tra, rot)
}
}