nalgebra/src/core/ops.rs
2018-02-03 13:59:05 +01:00

756 lines
27 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use std::iter;
use std::ops::{Add, AddAssign, Sub, SubAssign, Mul, MulAssign, Div, DivAssign, Neg,
Index, IndexMut};
use std::cmp::PartialOrd;
use num::{Zero, One, Signed};
use alga::general::{ClosedMul, ClosedDiv, ClosedAdd, ClosedSub, ClosedNeg};
use core::{DefaultAllocator, Scalar, Matrix, MatrixN, MatrixMN, MatrixSum, SquareMatrix};
use core::dimension::{Dim, DimName, DimProd, DimMul};
use core::constraint::{ShapeConstraint, SameNumberOfRows, SameNumberOfColumns, AreMultipliable, DimEq};
use core::storage::{Storage, StorageMut, ContiguousStorageMut};
use core::allocator::{SameShapeAllocator, Allocator, SameShapeR, SameShapeC};
/*
*
* Indexing.
*
*/
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Index<usize> for Matrix<N, R, C, S> {
type Output = N;
#[inline]
fn index(&self, i: usize) -> &N {
let ij = self.vector_to_matrix_index(i);
&self[ij]
}
}
impl<N, R: Dim, C: Dim, S> Index<(usize, usize)> for Matrix<N, R, C, S>
where N: Scalar,
S: Storage<N, R, C> {
type Output = N;
#[inline]
fn index(&self, ij: (usize, usize)) -> &N {
let shape = self.shape();
assert!(ij.0 < shape.0 && ij.1 < shape.1, "Matrix index out of bounds.");
unsafe { self.get_unchecked(ij.0, ij.1) }
}
}
// Mutable versions.
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> IndexMut<usize> for Matrix<N, R, C, S> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut N {
let ij = self.vector_to_matrix_index(i);
&mut self[ij]
}
}
impl<N, R: Dim, C: Dim, S> IndexMut<(usize, usize)> for Matrix<N, R, C, S>
where N: Scalar,
S: StorageMut<N, R, C> {
#[inline]
fn index_mut(&mut self, ij: (usize, usize)) -> &mut N {
let shape = self.shape();
assert!(ij.0 < shape.0 && ij.1 < shape.1, "Matrix index out of bounds.");
unsafe { self.get_unchecked_mut(ij.0, ij.1) }
}
}
/*
*
* Neg
*
*/
impl<N, R: Dim, C: Dim, S> Neg for Matrix<N, R, C, S>
where N: Scalar + ClosedNeg,
S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> {
type Output = MatrixMN<N, R, C>;
#[inline]
fn neg(self) -> Self::Output {
let mut res = self.into_owned();
res.neg_mut();
res
}
}
impl<'a, N, R: Dim, C: Dim, S> Neg for &'a Matrix<N, R, C, S>
where N: Scalar + ClosedNeg,
S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> {
type Output = MatrixMN<N, R, C>;
#[inline]
fn neg(self) -> Self::Output {
-self.clone_owned()
}
}
impl<N, R: Dim, C: Dim, S> Matrix<N, R, C, S>
where N: Scalar + ClosedNeg,
S: StorageMut<N, R, C> {
/// Negates `self` in-place.
#[inline]
pub fn neg_mut(&mut self) {
for e in self.iter_mut() {
*e = -*e
}
}
}
/*
*
* Addition & Substraction
*
*/
macro_rules! componentwise_binop_impl(
($Trait: ident, $method: ident, $bound: ident;
$TraitAssign: ident, $method_assign: ident, $method_assign_statically_unchecked: ident,
$method_assign_statically_unchecked_rhs: ident;
$method_to: ident, $method_to_statically_unchecked: ident) => {
impl<N, R1: Dim, C1: Dim, SA: Storage<N, R1, C1>> Matrix<N, R1, C1, SA>
where N: Scalar + $bound {
/*
*
* Methods without dimension checking at compile-time.
* This is useful for code reuse because the sum representative system does not plays
* easily with static checks.
*
*/
#[inline]
fn $method_to_statically_unchecked<R2: Dim, C2: Dim, SB,
R3: Dim, C3: Dim, SC>(&self,
rhs: &Matrix<N, R2, C2, SB>,
out: &mut Matrix<N, R3, C3, SC>)
where SB: Storage<N, R2, C2>,
SC: StorageMut<N, R3, C3> {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert!(self.shape() == out.shape(), "Matrix addition/subtraction output dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// FIXME: use specialization instead?
if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
let arr1 = self.data.as_slice();
let arr2 = rhs.data.as_slice();
let out = out.data.as_mut_slice();
for i in 0 .. arr1.len() {
unsafe {
*out.get_unchecked_mut(i) = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
}
}
}
else {
for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() {
unsafe {
let val = self.get_unchecked(i, j).$method(*rhs.get_unchecked(i, j));
*out.get_unchecked_mut(i, j) = val;
}
}
}
}
}
#[inline]
fn $method_assign_statically_unchecked<R2, C2, SB>(&mut self, rhs: &Matrix<N, R2, C2, SB>)
where R2: Dim,
C2: Dim,
SA: StorageMut<N, R1, C1>,
SB: Storage<N, R2, C2> {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// FIXME: use specialization instead?
if self.data.is_contiguous() && rhs.data.is_contiguous() {
let arr1 = self.data.as_mut_slice();
let arr2 = rhs.data.as_slice();
for i in 0 .. arr2.len() {
unsafe {
arr1.get_unchecked_mut(i).$method_assign(*arr2.get_unchecked(i));
}
}
}
else {
for j in 0 .. rhs.ncols() {
for i in 0 .. rhs.nrows() {
unsafe {
self.get_unchecked_mut(i, j).$method_assign(*rhs.get_unchecked(i, j))
}
}
}
}
}
#[inline]
fn $method_assign_statically_unchecked_rhs<R2, C2, SB>(&self, rhs: &mut Matrix<N, R2, C2, SB>)
where R2: Dim,
C2: Dim,
SB: StorageMut<N, R2, C2> {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// FIXME: use specialization instead?
if self.data.is_contiguous() && rhs.data.is_contiguous() {
let arr1 = self.data.as_slice();
let arr2 = rhs.data.as_mut_slice();
for i in 0 .. arr1.len() {
unsafe {
let res = arr1.get_unchecked(i).$method(*arr2.get_unchecked(i));
*arr2.get_unchecked_mut(i) = res;
}
}
}
else {
for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() {
unsafe {
let r = rhs.get_unchecked_mut(i, j);
*r = self.get_unchecked(i, j).$method(*r)
}
}
}
}
}
/*
*
* Methods without dimension checking at compile-time.
* This is useful for code reuse because the sum representative system does not plays
* easily with static checks.
*
*/
/// Equivalent to `self + rhs` but stores the result into `out` to avoid allocations.
#[inline]
pub fn $method_to<R2: Dim, C2: Dim, SB,
R3: Dim, C3: Dim, SC>(&self,
rhs: &Matrix<N, R2, C2, SB>,
out: &mut Matrix<N, R3, C3, SC>)
where SB: Storage<N, R2, C2>,
SC: StorageMut<N, R3, C3>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> +
SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3> {
self.$method_to_statically_unchecked(rhs, out)
}
}
impl<'b, N, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + $bound,
SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
type Output = MatrixSum<N, R1, C1, R2, C2>;
#[inline]
fn $method(self, rhs: &'b Matrix<N, R2, C2, SB>) -> Self::Output {
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
let mut res = self.into_owned_sum::<R2, C2>();
res.$method_assign_statically_unchecked(rhs);
res
}
}
impl<'a, N, R1, C1, R2, C2, SA, SB> $Trait<Matrix<N, R2, C2, SB>> for &'a Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + $bound,
SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R2, C2, R1, C1>,
ShapeConstraint: SameNumberOfRows<R2, R1> + SameNumberOfColumns<C2, C1> {
type Output = MatrixSum<N, R2, C2, R1, C1>;
#[inline]
fn $method(self, rhs: Matrix<N, R2, C2, SB>) -> Self::Output {
let mut rhs = rhs.into_owned_sum::<R1, C1>();
assert!(self.shape() == rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
self.$method_assign_statically_unchecked_rhs(&mut rhs);
rhs
}
}
impl<N, R1, C1, R2, C2, SA, SB> $Trait<Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + $bound,
SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
type Output = MatrixSum<N, R1, C1, R2, C2>;
#[inline]
fn $method(self, rhs: Matrix<N, R2, C2, SB>) -> Self::Output {
self.$method(&rhs)
}
}
impl<'a, 'b, N, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<N, R2, C2, SB>> for &'a Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + $bound,
SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>,
DefaultAllocator: SameShapeAllocator<N, R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
type Output = MatrixSum<N, R1, C1, R2, C2>;
#[inline]
fn $method(self, rhs: &'b Matrix<N, R2, C2, SB>) -> Self::Output {
let mut res = unsafe {
let (nrows, ncols) = self.shape();
let nrows: SameShapeR<R1, R2> = Dim::from_usize(nrows);
let ncols: SameShapeC<C1, C2> = Dim::from_usize(ncols);
Matrix::new_uninitialized_generic(nrows, ncols)
};
self.$method_to_statically_unchecked(rhs, &mut res);
res
}
}
impl<'b, N, R1, C1, R2, C2, SA, SB> $TraitAssign<&'b Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + $bound,
SA: StorageMut<N, R1, C1>,
SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
#[inline]
fn $method_assign(&mut self, rhs: &'b Matrix<N, R2, C2, SB>) {
self.$method_assign_statically_unchecked(rhs)
}
}
impl<N, R1, C1, R2, C2, SA, SB> $TraitAssign<Matrix<N, R2, C2, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
N: Scalar + $bound,
SA: StorageMut<N, R1, C1>,
SB: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
#[inline]
fn $method_assign(&mut self, rhs: Matrix<N, R2, C2, SB>) {
self.$method_assign(&rhs)
}
}
}
);
componentwise_binop_impl!(Add, add, ClosedAdd;
AddAssign, add_assign, add_assign_statically_unchecked, add_assign_statically_unchecked_mut;
add_to, add_to_statically_unchecked);
componentwise_binop_impl!(Sub, sub, ClosedSub;
SubAssign, sub_assign, sub_assign_statically_unchecked, sub_assign_statically_unchecked_mut;
sub_to, sub_to_statically_unchecked);
impl<N, R: DimName, C: DimName> iter::Sum for MatrixMN<N, R, C>
where N: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<N, R, C>
{
fn sum<I: Iterator<Item = MatrixMN<N, R, C>>>(iter: I) -> MatrixMN<N, R, C> {
iter.fold(Matrix::zero(), |acc, x| acc + x)
}
}
impl<'a, N, R: DimName, C: DimName> iter::Sum<&'a MatrixMN<N, R, C>> for MatrixMN<N, R, C>
where N: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<N, R, C>
{
fn sum<I: Iterator<Item = &'a MatrixMN<N, R, C>>>(iter: I) -> MatrixMN<N, R, C> {
iter.fold(Matrix::zero(), |acc, x| acc + x)
}
}
/*
*
* Multiplication
*
*/
// Matrix × Scalar
// Matrix / Scalar
macro_rules! componentwise_scalarop_impl(
($Trait: ident, $method: ident, $bound: ident;
$TraitAssign: ident, $method_assign: ident) => {
impl<N, R: Dim, C: Dim, S> $Trait<N> for Matrix<N, R, C, S>
where N: Scalar + $bound,
S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> {
type Output = MatrixMN<N, R, C>;
#[inline]
fn $method(self, rhs: N) -> Self::Output {
let mut res = self.into_owned();
// XXX: optimize our iterator!
//
// Using our own iterator prevents loop unrolling, wich breaks some optimization
// (like SIMD). On the other hand, using the slice iterator is 4x faster.
// for left in res.iter_mut() {
for left in res.as_mut_slice().iter_mut() {
*left = left.$method(rhs)
}
res
}
}
impl<'a, N, R: Dim, C: Dim, S> $Trait<N> for &'a Matrix<N, R, C, S>
where N: Scalar + $bound,
S: Storage<N, R, C>,
DefaultAllocator: Allocator<N, R, C> {
type Output = MatrixMN<N, R, C>;
#[inline]
fn $method(self, rhs: N) -> Self::Output {
self.clone_owned().$method(rhs)
}
}
impl<N, R: Dim, C: Dim, S> $TraitAssign<N> for Matrix<N, R, C, S>
where N: Scalar + $bound,
S: StorageMut<N, R, C> {
#[inline]
fn $method_assign(&mut self, rhs: N) {
for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() {
unsafe { self.get_unchecked_mut(i, j).$method_assign(rhs) };
}
}
}
}
}
);
componentwise_scalarop_impl!(Mul, mul, ClosedMul; MulAssign, mul_assign);
componentwise_scalarop_impl!(Div, div, ClosedDiv; DivAssign, div_assign);
macro_rules! left_scalar_mul_impl(
($($T: ty),* $(,)*) => {$(
impl<R: Dim, C: Dim, S: Storage<$T, R, C>> Mul<Matrix<$T, R, C, S>> for $T
where DefaultAllocator: Allocator<$T, R, C> {
type Output = MatrixMN<$T, R, C>;
#[inline]
fn mul(self, rhs: Matrix<$T, R, C, S>) -> Self::Output {
let mut res = rhs.into_owned();
// XXX: optimize our iterator!
//
// Using our own iterator prevents loop unrolling, wich breaks some optimization
// (like SIMD). On the other hand, using the slice iterator is 4x faster.
// for rhs in res.iter_mut() {
for rhs in res.as_mut_slice().iter_mut() {
*rhs = self * *rhs
}
res
}
}
impl<'b, R: Dim, C: Dim, S: Storage<$T, R, C>> Mul<&'b Matrix<$T, R, C, S>> for $T
where DefaultAllocator: Allocator<$T, R, C> {
type Output = MatrixMN<$T, R, C>;
#[inline]
fn mul(self, rhs: &'b Matrix<$T, R, C, S>) -> Self::Output {
self * rhs.clone_owned()
}
}
)*}
);
left_scalar_mul_impl!(
u8, u16, u32, u64, usize,
i8, i16, i32, i64, isize,
f32, f64
);
// Matrix × Matrix
impl<'a, 'b, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>>
for &'a Matrix<N, R1, C1, SA>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SA: Storage<N, R1, C1>,
SB: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2> {
type Output = MatrixMN<N, R1, C2>;
#[inline]
fn mul(self, rhs: &'b Matrix<N, R2, C2, SB>) -> Self::Output {
let mut res = unsafe {
Matrix::new_uninitialized_generic(self.data.shape().0, rhs.data.shape().1)
};
self.mul_to(rhs, &mut res);
res
}
}
impl<'a, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>>
for &'a Matrix<N, R1, C1, SA>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C2>,
SA: Storage<N, R1, C1>,
DefaultAllocator: Allocator<N, R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2> {
type Output = MatrixMN<N, R1, C2>;
#[inline]
fn mul(self, rhs: Matrix<N, R2, C2, SB>) -> Self::Output {
self * &rhs
}
}
impl<'b, N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<N, R2, C2, SB>>
for Matrix<N, R1, C1, SA>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C2>,
SA: Storage<N, R1, C1>,
DefaultAllocator: Allocator<N, R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2> {
type Output = MatrixMN<N, R1, C2>;
#[inline]
fn mul(self, rhs: &'b Matrix<N, R2, C2, SB>) -> Self::Output {
&self * rhs
}
}
impl<N, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<N, R2, C2, SB>>
for Matrix<N, R1, C1, SA>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C2>,
SA: Storage<N, R1, C1>,
DefaultAllocator: Allocator<N, R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2> {
type Output = MatrixMN<N, R1, C2>;
#[inline]
fn mul(self, rhs: Matrix<N, R2, C2, SB>) -> Self::Output {
&self * &rhs
}
}
// FIXME: this is too restrictive:
// we can't use `a *= b` when `a` is a mutable slice.
// we can't use `a *= b` when C2 is not equal to C1.
impl<N, R1, C1, R2, SA, SB> MulAssign<Matrix<N, R2, C1, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim,
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C1>,
SA: ContiguousStorageMut<N, R1, C1> + Clone,
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
DefaultAllocator: Allocator<N, R1, C1, Buffer = SA> {
#[inline]
fn mul_assign(&mut self, rhs: Matrix<N, R2, C1, SB>) {
*self = &*self * rhs
}
}
impl<'b, N, R1, C1, R2, SA, SB> MulAssign<&'b Matrix<N, R2, C1, SB>> for Matrix<N, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim,
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<N, R2, C1>,
SA: ContiguousStorageMut<N, R1, C1> + Clone,
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
// FIXME: this is too restrictive. See comments for the non-ref version.
DefaultAllocator: Allocator<N, R1, C1, Buffer = SA> {
#[inline]
fn mul_assign(&mut self, rhs: &'b Matrix<N, R2, C1, SB>) {
*self = &*self * rhs
}
}
// Transpose-multiplication.
impl<N, R1: Dim, C1: Dim, SA> Matrix<N, R1, C1, SA>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul,
SA: Storage<N, R1, C1> {
/// Equivalent to `self.transpose() * rhs`.
#[inline]
pub fn tr_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixMN<N, C1, C2>
where SB: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, C1, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> {
let mut res = unsafe {
Matrix::new_uninitialized_generic(self.data.shape().1, rhs.data.shape().1)
};
self.tr_mul_to(rhs, &mut res);
res
}
/// Equivalent to `self.transpose() * rhs` but stores the result into `out` to avoid
/// allocations.
#[inline]
pub fn tr_mul_to<R2: Dim, C2: Dim, SB,
R3: Dim, C3: Dim, SC>(&self,
rhs: &Matrix<N, R2, C2, SB>,
out: &mut Matrix<N, R3, C3, SC>)
where SB: Storage<N, R2, C2>,
SC: StorageMut<N, R3, C3>,
ShapeConstraint: SameNumberOfRows<R1, R2> +
DimEq<C1, R3> +
DimEq<C2, C3> {
let (nrows1, ncols1) = self.shape();
let (nrows2, ncols2) = rhs.shape();
let (nrows3, ncols3) = out.shape();
assert!(nrows1 == nrows2, "Matrix multiplication dimensions mismatch.");
assert!(nrows3 == ncols1 && ncols3 == ncols2, "Matrix multiplication output dimensions mismatch.");
for i in 0 .. ncols1 {
for j in 0 .. ncols2 {
let dot = self.column(i).dot(&rhs.column(j));
unsafe { *out.get_unchecked_mut(i, j) = dot };
}
}
}
/// Equivalent to `self * rhs` but stores the result into `out` to avoid allocations.
#[inline]
pub fn mul_to<R2: Dim, C2: Dim, SB,
R3: Dim, C3: Dim, SC>(&self,
rhs: &Matrix<N, R2, C2, SB>,
out: &mut Matrix<N, R3, C3, SC>)
where SB: Storage<N, R2, C2>,
SC: StorageMut<N, R3, C3>,
ShapeConstraint: SameNumberOfRows<R3, R1> +
SameNumberOfColumns<C3, C2> +
AreMultipliable<R1, C1, R2, C2> {
out.gemm(N::one(), self, rhs, N::zero());
}
/// The kronecker product of two matrices (aka. tensor product of the corresponding linear
/// maps).
pub fn kronecker<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<N, R2, C2, SB>)
-> MatrixMN<N, DimProd<R1, R2>, DimProd<C1, C2>>
where N: ClosedMul,
R1: DimMul<R2>,
C1: DimMul<C2>,
SB: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, DimProd<R1, R2>, DimProd<C1, C2>> {
let (nrows1, ncols1) = self.data.shape();
let (nrows2, ncols2) = rhs.data.shape();
let mut res = unsafe { Matrix::new_uninitialized_generic(nrows1.mul(nrows2), ncols1.mul(ncols2)) };
{
let mut data_res = res.data.ptr_mut();
for j1 in 0 .. ncols1.value() {
for j2 in 0 .. ncols2.value() {
for i1 in 0 .. nrows1.value() {
unsafe {
let coeff = *self.get_unchecked(i1, j1);
for i2 in 0 .. nrows2.value() {
*data_res = coeff * *rhs.get_unchecked(i2, j2);
data_res = data_res.offset(1);
}
}
}
}
}
}
res
}
}
impl<N: Scalar + ClosedAdd, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Adds a scalar to `self`.
#[inline]
pub fn add_scalar(&self, rhs: N) -> MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C> {
let mut res = self.clone_owned();
res.add_scalar_mut(rhs);
res
}
/// Adds a scalar to `self` in-place.
#[inline]
pub fn add_scalar_mut(&mut self, rhs: N)
where S: StorageMut<N, R, C> {
for e in self.iter_mut() {
*e += rhs
}
}
}
impl<N, D: DimName> iter::Product for MatrixN<N, D>
where N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>
{
fn product<I: Iterator<Item = MatrixN<N, D>>>(iter: I) -> MatrixN<N, D> {
iter.fold(Matrix::one(), |acc, x| acc * x)
}
}
impl<'a, N, D: DimName> iter::Product<&'a MatrixN<N, D>> for MatrixN<N, D>
where N: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<N, D, D>
{
fn product<I: Iterator<Item = &'a MatrixN<N, D>>>(iter: I) -> MatrixN<N, D> {
iter.fold(Matrix::one(), |acc, x| acc * x)
}
}
impl<N: Scalar + PartialOrd + Signed, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Returns the absolute value of the coefficient with the largest absolute value.
#[inline]
pub fn amax(&self) -> N {
let mut max = N::zero();
for e in self.iter() {
let ae = e.abs();
if ae > max {
max = ae;
}
}
max
}
/// Returns the absolute value of the coefficient with the smallest absolute value.
#[inline]
pub fn amin(&self) -> N {
let mut it = self.iter();
let mut min = it.next().expect("amin: empty matrices not supported.").abs();
for e in it {
let ae = e.abs();
if ae < min {
min = ae;
}
}
min
}
}