nalgebra/src/base/matrix_alga.rs
2019-03-25 11:21:41 +01:00

422 lines
12 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;
use num::{One, Zero};
use alga::general::{
AbstractGroup, AbstractGroupAbelian, AbstractLoop, AbstractMagma, AbstractModule,
AbstractMonoid, AbstractQuasigroup, AbstractSemigroup, Additive, ClosedAdd, ClosedMul,
ClosedNeg, Field, Identity, TwoSidedInverse, JoinSemilattice, Lattice, MeetSemilattice, Module,
Multiplicative, RingCommutative, ComplexField
};
use alga::linear::{
FiniteDimInnerSpace, FiniteDimVectorSpace, InnerSpace, NormedSpace, VectorSpace,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimName};
use crate::base::storage::{Storage, StorageMut};
use crate::base::{DefaultAllocator, MatrixMN, MatrixN, Scalar};
/*
*
* Additive structures.
*
*/
impl<N, R: DimName, C: DimName> Identity<Additive> for MatrixMN<N, R, C>
where
N: Scalar + Zero,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn identity() -> Self {
Self::from_element(N::zero())
}
}
impl<N, R: DimName, C: DimName> AbstractMagma<Additive> for MatrixMN<N, R, C>
where
N: Scalar + ClosedAdd,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn operate(&self, other: &Self) -> Self {
self + other
}
}
impl<N, R: DimName, C: DimName> TwoSidedInverse<Additive> for MatrixMN<N, R, C>
where
N: Scalar + ClosedNeg,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn two_sided_inverse(&self) -> Self {
-self
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
*self = -self.clone()
}
}
macro_rules! inherit_additive_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, R: DimName, C: DimName> $marker<$operator> for MatrixMN<N, R, C>
where N: Scalar + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, R, C> { }
)*}
);
inherit_additive_structure!(
AbstractSemigroup<Additive> + ClosedAdd,
AbstractMonoid<Additive> + Zero + ClosedAdd,
AbstractQuasigroup<Additive> + ClosedAdd + ClosedNeg,
AbstractLoop<Additive> + Zero + ClosedAdd + ClosedNeg,
AbstractGroup<Additive> + Zero + ClosedAdd + ClosedNeg,
AbstractGroupAbelian<Additive> + Zero + ClosedAdd + ClosedNeg
);
impl<N, R: DimName, C: DimName> AbstractModule for MatrixMN<N, R, C>
where
N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>,
{
type AbstractRing = N;
#[inline]
fn multiply_by(&self, n: N) -> Self {
self * n
}
}
impl<N, R: DimName, C: DimName> Module for MatrixMN<N, R, C>
where
N: Scalar + RingCommutative,
DefaultAllocator: Allocator<N, R, C>,
{
type Ring = N;
}
impl<N, R: DimName, C: DimName> VectorSpace for MatrixMN<N, R, C>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>,
{
type Field = N;
}
impl<N, R: DimName, C: DimName> FiniteDimVectorSpace for MatrixMN<N, R, C>
where
N: Scalar + Field,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn dimension() -> usize {
R::dim() * C::dim()
}
#[inline]
fn canonical_basis_element(i: usize) -> Self {
assert!(i < Self::dimension(), "Index out of bound.");
let mut res = Self::zero();
unsafe {
*res.data.get_unchecked_linear_mut(i) = N::one();
}
res
}
#[inline]
fn dot(&self, other: &Self) -> N {
self.dot(other)
}
#[inline]
unsafe fn component_unchecked(&self, i: usize) -> &N {
self.data.get_unchecked_linear(i)
}
#[inline]
unsafe fn component_unchecked_mut(&mut self, i: usize) -> &mut N {
self.data.get_unchecked_linear_mut(i)
}
}
impl<N: ComplexField, R: DimName, C: DimName> NormedSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
type RealField = N::RealField;
type ComplexField = N;
#[inline]
fn norm_squared(&self) -> N::RealField {
self.norm_squared()
}
#[inline]
fn norm(&self) -> N::RealField {
self.norm()
}
#[inline]
fn normalize(&self) -> Self {
self.normalize()
}
#[inline]
fn normalize_mut(&mut self) -> N::RealField {
self.normalize_mut()
}
#[inline]
fn try_normalize(&self, min_norm: N::RealField) -> Option<Self> {
self.try_normalize(min_norm)
}
#[inline]
fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
self.try_normalize_mut(min_norm)
}
}
impl<N: ComplexField, R: DimName, C: DimName> InnerSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
#[inline]
fn angle(&self, other: &Self) -> N::RealField {
self.angle(other)
}
#[inline]
fn inner_product(&self, other: &Self) -> N {
self.dotc(other)
}
}
// FIXME: specialization will greatly simplify this implementation in the future.
// In particular:
// use `x()` instead of `::canonical_basis_element`
// use `::new(x, y, z)` instead of `::from_slice`
impl<N: ComplexField, R: DimName, C: DimName> FiniteDimInnerSpace for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
#[inline]
fn orthonormalize(vs: &mut [Self]) -> usize {
let mut nbasis_elements = 0;
for i in 0..vs.len() {
{
let (elt, basis) = vs[..i + 1].split_last_mut().unwrap();
for basis_element in &basis[..nbasis_elements] {
*elt -= &*basis_element * elt.dot(basis_element)
}
}
if vs[i].try_normalize_mut(N::RealField::zero()).is_some() {
// FIXME: this will be efficient on dynamically-allocated vectors but for
// statically-allocated ones, `.clone_from` would be better.
vs.swap(nbasis_elements, i);
nbasis_elements += 1;
// All the other vectors will be dependent.
if nbasis_elements == Self::dimension() {
break;
}
}
}
nbasis_elements
}
#[inline]
fn orthonormal_subspace_basis<F>(vs: &[Self], mut f: F)
where F: FnMut(&Self) -> bool {
// FIXME: is this necessary?
assert!(
vs.len() <= Self::dimension(),
"The given set of vectors has no chance of being a free family."
);
match Self::dimension() {
1 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0));
}
}
2 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1));
} else if vs.len() == 1 {
let v = &vs[0];
let res = Self::from_column_slice(&[-v[1], v[0]]);
let _ = f(&res.normalize());
}
// Otherwise, nothing.
}
3 => {
if vs.len() == 0 {
let _ = f(&Self::canonical_basis_element(0))
&& f(&Self::canonical_basis_element(1))
&& f(&Self::canonical_basis_element(2));
} else if vs.len() == 1 {
let v = &vs[0];
let mut a;
if v[0].norm1() > v[1].norm1() {
a = Self::from_column_slice(&[v[2], N::zero(), -v[0]]);
} else {
a = Self::from_column_slice(&[N::zero(), -v[2], v[1]]);
};
let _ = a.normalize_mut();
if f(&a.cross(v)) {
let _ = f(&a);
}
} else if vs.len() == 2 {
let _ = f(&vs[0].cross(&vs[1]).normalize());
}
}
_ => {
#[cfg(any(feature = "std", feature = "alloc"))]
{
// XXX: use a GenericArray instead.
let mut known_basis = Vec::new();
for v in vs.iter() {
known_basis.push(v.normalize())
}
for i in 0..Self::dimension() - vs.len() {
let mut elt = Self::canonical_basis_element(i);
for v in &known_basis {
elt -= v * elt.dot(v)
}
if let Some(subsp_elt) = elt.try_normalize(N::RealField::zero()) {
if !f(&subsp_elt) {
return;
};
known_basis.push(subsp_elt);
}
}
}
#[cfg(all(not(feature = "std"), not(feature = "alloc")))]
{
panic!("Cannot compute the orthogonal subspace basis of a vector with a dimension greater than 3 \
if #![no_std] is enabled and the 'alloc' feature is not enabled.")
}
}
}
}
}
/*
*
*
* Multiplicative structures.
*
*
*/
impl<N, D: DimName> Identity<Multiplicative> for MatrixN<N, D>
where
N: Scalar + Zero + One,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N, D: DimName> AbstractMagma<Multiplicative> for MatrixN<N, D>
where
N: Scalar + Zero + One + ClosedAdd + ClosedMul,
DefaultAllocator: Allocator<N, D, D>,
{
#[inline]
fn operate(&self, other: &Self) -> Self {
self * other
}
}
macro_rules! impl_multiplicative_structure(
($($marker: ident<$operator: ident> $(+ $bounds: ident)*),* $(,)*) => {$(
impl<N, D: DimName> $marker<$operator> for MatrixN<N, D>
where N: Scalar + Zero + One + ClosedAdd + ClosedMul + $marker<$operator> $(+ $bounds)*,
DefaultAllocator: Allocator<N, D, D> { }
)*}
);
impl_multiplicative_structure!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative> + One
);
/*
*
* Ordering
*
*/
impl<N, R: Dim, C: Dim> MeetSemilattice for MatrixMN<N, R, C>
where
N: Scalar + MeetSemilattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn meet(&self, other: &Self) -> Self {
self.zip_map(other, |a, b| a.meet(&b))
}
}
impl<N, R: Dim, C: Dim> JoinSemilattice for MatrixMN<N, R, C>
where
N: Scalar + JoinSemilattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn join(&self, other: &Self) -> Self {
self.zip_map(other, |a, b| a.join(&b))
}
}
impl<N, R: Dim, C: Dim> Lattice for MatrixMN<N, R, C>
where
N: Scalar + Lattice,
DefaultAllocator: Allocator<N, R, C>,
{
#[inline]
fn meet_join(&self, other: &Self) -> (Self, Self) {
let shape = self.data.shape();
assert!(
shape == other.data.shape(),
"Matrix meet/join error: mismatched dimensions."
);
let mut mres = unsafe { Self::new_uninitialized_generic(shape.0, shape.1) };
let mut jres = unsafe { Self::new_uninitialized_generic(shape.0, shape.1) };
for i in 0..shape.0.value() * shape.1.value() {
unsafe {
let mj = self
.data
.get_unchecked_linear(i)
.meet_join(other.data.get_unchecked_linear(i));
*mres.data.get_unchecked_linear_mut(i) = mj.0;
*jres.data.get_unchecked_linear_mut(i) = mj.1;
}
}
(mres, jres)
}
}