nalgebra/nalgebra-lapack/src/generalized_eigenvalues.rs

400 lines
12 KiB
Rust

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
use num::Zero;
use num_complex::Complex;
use simba::scalar::RealField;
use crate::ComplexHelper;
use na::allocator::Allocator;
use na::dimension::{Const, Dim};
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices.
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(serialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Serialize,
OMatrix<T, D, D>: Serialize")
)
)]
#[cfg_attr(
feature = "serde-serialize",
serde(
bound(deserialize = "DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OVector<T, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>")
)
)]
#[derive(Clone, Debug)]
pub struct GE<T: Scalar, D: Dim>
where
DefaultAllocator: Allocator<T, D> + Allocator<T, D, D>,
{
alphar: OVector<T, D>,
alphai: OVector<T, D>,
beta: OVector<T, D>,
vsl: OMatrix<T, D, D>,
vsr: OMatrix<T, D, D>,
}
impl<T: Scalar + Copy, D: Dim> Copy for GE<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
OMatrix<T, D, D>: Copy,
OVector<T, D>: Copy,
{
}
impl<T: GEScalar + RealField + Copy, D: Dim> GE<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
{
/// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors
/// via the raw returns from LAPACK's dggev and sggev routines
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
///
/// Panics if the method did not converge.
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
Self::try_new(a, b).expect("Calculation of generalized eigenvalues failed.")
}
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
/// dggev and sggev routines
///
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
///
/// Returns `None` if the method did not converge.
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
assert!(
a.is_square() && b.is_square(),
"Unable to compute the generalized eigenvalues of non-square matrices."
);
assert!(
a.shape_generic() == b.shape_generic(),
"Unable to compute the generalized eigenvalues of two square matrices of different dimensions."
);
let (nrows, ncols) = a.shape_generic();
let n = nrows.value();
let mut info = 0;
let mut alphar = Matrix::zeros_generic(nrows, Const::<1>);
let mut alphai = Matrix::zeros_generic(nrows, Const::<1>);
let mut beta = Matrix::zeros_generic(nrows, Const::<1>);
let mut vsl = Matrix::zeros_generic(nrows, ncols);
let mut vsr = Matrix::zeros_generic(nrows, ncols);
let lwork = T::xggev_work_size(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut info,
);
lapack_check!(info);
let mut work = vec![T::zero(); lwork as usize];
T::xggev(
b'V',
b'V',
n as i32,
a.as_mut_slice(),
n as i32,
b.as_mut_slice(),
n as i32,
alphar.as_mut_slice(),
alphai.as_mut_slice(),
beta.as_mut_slice(),
vsl.as_mut_slice(),
n as i32,
vsr.as_mut_slice(),
n as i32,
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
Some(GE {
alphar,
alphai,
beta,
vsl,
vsr,
})
}
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
/// Outputs two matrices, the first one containing the left eigenvectors of the generalized eigenvalues
/// as columns and the second matrix contains the right eigenvectors of the generalized eigenvalues
/// as columns
///
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// A * v(j) = lambda(j) * B * v(j).
///
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
/// of (A,B) satisfies
///
/// u(j)**H * A = lambda(j) * u(j)**H * B .
/// where u(j)**H is the conjugate-transpose of u(j).
///
/// What is going on below?
/// If the j-th and (j+1)-th eigenvalues form a complex conjugate pair,
/// then u(j) = VSL(:,j)+i*VSL(:,j+1) and u(j+1) = VSL(:,j)-i*VSL(:,j+1).
/// and then v(j) = VSR(:,j)+i*VSR(:,j+1) and v(j+1) = VSR(:,j)-i*VSR(:,j+1).
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
where
DefaultAllocator:
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
{
let n = self.vsl.shape().0;
let mut l = self
.vsl
.clone()
.map(|x| Complex::new(x, T::RealField::zero()));
let mut r = self
.vsr
.clone()
.map(|x| Complex::new(x, T::RealField::zero()));
let eigenvalues = &self.eigenvalues();
let mut c = 0;
let epsilon = T::RealField::default_epsilon();
while c < n {
if eigenvalues[c].im.abs() > epsilon && c + 1 < n && {
let e_conj = eigenvalues[c].conj();
let e = eigenvalues[c + 1];
(&e_conj.re).ulps_eq(&e.re, epsilon, 6) && (&e_conj.im).ulps_eq(&e.im, epsilon, 6)
} {
// taking care of the left eigenvector matrix
l.column_mut(c).zip_apply(&self.vsl.column(c + 1), |r, i| {
*r = Complex::new(r.re.clone(), i.clone());
});
l.column_mut(c + 1).zip_apply(&self.vsl.column(c), |i, r| {
*i = Complex::new(r.clone(), -i.re.clone());
});
// taking care of the right eigenvector matrix
r.column_mut(c).zip_apply(&self.vsr.column(c + 1), |r, i| {
*r = Complex::new(r.re.clone(), i.clone());
});
r.column_mut(c + 1).zip_apply(&self.vsr.column(c), |i, r| {
*i = Complex::new(r.clone(), -i.re.clone());
});
c += 2;
} else {
c += 1;
}
}
(l, r)
}
/// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation
/// determinant(A - lambda* B) = 0
#[must_use]
pub fn eigenvalues(&self) -> OVector<Complex<T>, D>
where
DefaultAllocator: Allocator<Complex<T>, D>,
{
let mut out = Matrix::zeros_generic(self.vsl.shape_generic().0, Const::<1>);
for i in 0..out.len() {
out[i] = if self.beta[i].clone().abs() < T::RealField::default_epsilon() {
Complex::zero()
} else {
Complex::new(self.alphar[i].clone(), self.alphai[i].clone())
* (Complex::new(self.beta[i].clone(), T::RealField::zero()).inv())
}
}
out
}
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta)
/// straight from LAPACK
#[must_use]
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
where
DefaultAllocator: Allocator<(Complex<T>, T), D>,
{
let mut out = Matrix::from_element_generic(
self.vsl.shape_generic().0,
Const::<1>,
(Complex::zero(), T::RealField::zero()),
);
for i in 0..out.len() {
out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i])
}
out
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the RealField GE decomposition.
pub trait GEScalar: Scalar {
#[allow(missing_docs)]
fn xggev(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xggev_work_size(
jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [Self],
lda: i32,
b: &mut [Self],
ldb: i32,
alphar: &mut [Self],
alphai: &mut [Self],
beta: &mut [Self],
vsl: &mut [Self],
ldvsl: i32,
vsr: &mut [Self],
ldvsr: i32,
info: &mut i32,
) -> i32;
}
macro_rules! real_eigensystem_scalar_impl (
($N: ty, $xggev: path) => (
impl GEScalar for $N {
#[inline]
fn xggev(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
work: &mut [$N],
lwork: i32,
info: &mut i32) {
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, info); }
}
#[inline]
fn xggev_work_size(jobvsl: u8,
jobvsr: u8,
n: i32,
a: &mut [$N],
lda: i32,
b: &mut [$N],
ldb: i32,
alphar: &mut [$N],
alphai: &mut [$N],
beta : &mut [$N],
vsl: &mut [$N],
ldvsl: i32,
vsr: &mut [$N],
ldvsr: i32,
info: &mut i32)
-> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xggev(jobvsl, jobvsr, n, a, lda, b, ldb, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, &mut work, lwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
real_eigensystem_scalar_impl!(f32, lapack::sggev);
real_eigensystem_scalar_impl!(f64, lapack::dggev);