nalgebra/src/geometry/isometry.rs
Sébastien Crozet fac012a775
Merge pull request #558 from tpdickso/geometric-transform-point
Add the `transform` methods as inherent methods on geometric types
2019-03-16 10:06:00 +01:00

490 lines
16 KiB
Rust
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use std::marker::PhantomData;
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use alga::general::{Real, SubsetOf};
use alga::linear::Rotation;
use base::allocator::Allocator;
use base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use base::storage::Owned;
use base::{DefaultAllocator, MatrixN, VectorN};
use geometry::{Point, Translation};
/// A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(serialize = "R: Serialize,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(deserialize = "R: Deserialize<'de>,
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Deserialize<'de>"))
)]
pub struct Isometry<N: Real, D: DimName, R>
where DefaultAllocator: Allocator<N, D>
{
/// The pure rotational part of this isometry.
pub rotation: R,
/// The pure translational part of this isometry.
pub translation: Translation<N, D>,
// One dummy private field just to prevent explicit construction.
#[cfg_attr(
feature = "serde-serialize",
serde(skip_serializing, skip_deserializing)
)]
_noconstruct: PhantomData<N>,
}
#[cfg(feature = "abomonation-serialize")]
impl<N, D, R> Abomonation for Isometry<N, D, R>
where
N: Real,
D: DimName,
R: Abomonation,
Translation<N, D>: Abomonation,
DefaultAllocator: Allocator<N, D>,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.rotation.entomb(writer)?;
self.translation.entomb(writer)
}
fn extent(&self) -> usize {
self.rotation.extent() + self.translation.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.rotation
.exhume(bytes)
.and_then(|bytes| self.translation.exhume(bytes))
}
}
impl<N: Real + hash::Hash, D: DimName + hash::Hash, R: hash::Hash> hash::Hash for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.translation.hash(state);
self.rotation.hash(state);
}
}
impl<N: Real, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R>
where
DefaultAllocator: Allocator<N, D>,
Owned<N, D>: Copy,
{
}
impl<N: Real, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn clone(&self) -> Self {
Self::from_parts(self.translation.clone(), self.rotation.clone())
}
}
impl<N: Real, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
/// Creates a new isometry from its rotational and translational parts.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn from_parts(translation: Translation<N, D>, rotation: R) -> Self {
Self {
rotation: rotation,
translation: translation,
_noconstruct: PhantomData,
}
}
/// Inverts `self`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let inv = iso.inverse();
/// let pt = Point2::new(1.0, 2.0);
///
/// assert_eq!(inv * (iso * pt), pt);
/// ```
#[inline]
pub fn inverse(&self) -> Self {
let mut res = self.clone();
res.inverse_mut();
res
}
/// Inverts `self` in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Point2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 2.0);
/// let transformed_pt = iso * pt;
/// iso.inverse_mut();
///
/// assert_eq!(iso * transformed_pt, pt);
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.rotation.two_sided_inverse_mut();
self.translation.inverse_mut();
self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
}
/// Appends to `self` the given translation in-place.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let tra = Translation2::new(3.0, 4.0);
/// // Same as `iso = tra * iso`.
/// iso.append_translation_mut(&tra);
///
/// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
/// ```
#[inline]
pub fn append_translation_mut(&mut self, t: &Translation<N, D>) {
self.translation.vector += &t.vector
}
/// Appends to `self` the given rotation in-place.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
/// let rot = UnitComplex::new(f32::consts::PI / 2.0);
/// // Same as `iso = rot * iso`.
/// iso.append_rotation_mut(&rot);
///
/// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_mut(&mut self, r: &R) {
self.rotation = self.rotation.append_rotation(&r);
self.translation.vector = r.transform_vector(&self.translation.vector);
}
/// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
/// lets `p` invariant.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// let pt = Point2::new(1.0, 0.0);
/// iso.append_rotation_wrt_point_mut(&rot, &pt);
///
/// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>) {
self.translation.vector -= &p.coords;
self.append_rotation_mut(r);
self.translation.vector += &p.coords;
}
/// Appends in-place to `self` a rotation centered at the point with coordinates
/// `self.translation`.
///
/// # Example
///
/// ```
/// # use std::f32;
/// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
/// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
/// iso.append_rotation_wrt_center_mut(&rot);
///
/// // The translation part should not have changed.
/// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
/// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
/// ```
#[inline]
pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
self.rotation = self.rotation.append_rotation(r);
}
/// Transform the given point by this isometry.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self * pt
}
/// Transform the given vector by this isometry, ignoring the translation
/// component of the isometry.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self * v
}
/// Transform the given point by the inverse of this isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.rotation
.inverse_transform_point(&(pt - &self.translation.vector))
}
/// Transform the given vector by the inverse of this isometry, ignoring the
/// translation component of the isometry. This may be
/// less expensive than computing the entire isometry inverse and then
/// transforming the point.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
/// let tra = Translation3::new(0.0, 0.0, 3.0);
/// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
/// let iso = Isometry3::from_parts(tra, rot);
///
/// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
/// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.rotation.inverse_transform_vector(v)
}
}
// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
impl<N: Real, D: DimName, R> Isometry<N, D, R>
where DefaultAllocator: Allocator<N, D>
{
/// Converts this isometry into its equivalent homogeneous transformation matrix.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Isometry2, Vector2, Matrix3};
/// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 10.0,
/// 0.5, 0.8660254, 20.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>>
where
D: DimNameAdd<U1>,
R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
let mut res: MatrixN<N, _> = ::convert_ref(&self.rotation);
res.fixed_slice_mut::<D, U1>(0, D::dim())
.copy_from(&self.translation.vector);
res
}
}
impl<N: Real, D: DimName, R> Eq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + Eq,
DefaultAllocator: Allocator<N, D>,
{
}
impl<N: Real, D: DimName, R> PartialEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + PartialEq,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn eq(&self, right: &Self) -> bool {
self.translation == right.translation && self.rotation == right.rotation
}
}
impl<N: Real, D: DimName, R> AbsDiffEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
type Epsilon = N::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.translation.abs_diff_eq(&other.translation, epsilon)
&& self.rotation.abs_diff_eq(&other.rotation, epsilon)
}
}
impl<N: Real, D: DimName, R> RelativeEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
{
self.translation
.relative_eq(&other.translation, epsilon, max_relative)
&& self
.rotation
.relative_eq(&other.rotation, epsilon, max_relative)
}
}
impl<N: Real, D: DimName, R> UlpsEq for Isometry<N, D, R>
where
R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
DefaultAllocator: Allocator<N, D>,
N::Epsilon: Copy,
{
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.translation
.ulps_eq(&other.translation, epsilon, max_ulps)
&& self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<N: Real + fmt::Display, D: DimName, R> fmt::Display for Isometry<N, D, R>
where
R: fmt::Display,
DefaultAllocator: Allocator<N, D> + Allocator<usize, D>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
try!(writeln!(f, "Isometry {{"));
try!(write!(f, "{:.*}", precision, self.translation));
try!(write!(f, "{:.*}", precision, self.rotation));
writeln!(f, "}}")
}
}