nalgebra/src/base/ops.rs

855 lines
30 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use num::{One, Zero};
use std::iter;
use std::ops::{
Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedNeg, ClosedSub};
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
use crate::base::blas_uninit::gemm_uninit;
use crate::base::constraint::{
AreMultipliable, DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint,
};
use crate::base::dimension::{Dim, DimMul, DimName, DimProd, Dyn};
use crate::base::storage::{Storage, StorageMut};
use crate::base::uninit::Uninit;
use crate::base::{DefaultAllocator, Matrix, MatrixSum, OMatrix, Scalar, VectorView};
use crate::storage::IsContiguous;
use crate::uninit::{Init, InitStatus};
use crate::{RawStorage, RawStorageMut, SimdComplexField};
use std::mem::MaybeUninit;
/*
*
* Indexing.
*
*/
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Index<usize> for Matrix<T, R, C, S> {
type Output = T;
#[inline]
fn index(&self, i: usize) -> &Self::Output {
let ij = self.vector_to_matrix_index(i);
&self[ij]
}
}
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Index<(usize, usize)> for Matrix<T, R, C, S> {
type Output = T;
#[inline]
fn index(&self, ij: (usize, usize)) -> &Self::Output {
let shape = self.shape();
assert!(
ij.0 < shape.0 && ij.1 < shape.1,
"Matrix index out of bounds."
);
unsafe { self.get_unchecked((ij.0, ij.1)) }
}
}
// Mutable versions.
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> IndexMut<usize> for Matrix<T, R, C, S> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut T {
let ij = self.vector_to_matrix_index(i);
&mut self[ij]
}
}
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> IndexMut<(usize, usize)> for Matrix<T, R, C, S> {
#[inline]
fn index_mut(&mut self, ij: (usize, usize)) -> &mut T {
let shape = self.shape();
assert!(
ij.0 < shape.0 && ij.1 < shape.1,
"Matrix index out of bounds."
);
unsafe { self.get_unchecked_mut((ij.0, ij.1)) }
}
}
/*
*
* Neg
*
*/
impl<T, R: Dim, C: Dim, S> Neg for Matrix<T, R, C, S>
where
T: Scalar + ClosedNeg,
S: Storage<T, R, C>,
DefaultAllocator: Allocator<R, C>,
{
type Output = OMatrix<T, R, C>;
#[inline]
fn neg(self) -> Self::Output {
let mut res = self.into_owned();
res.neg_mut();
res
}
}
impl<'a, T, R: Dim, C: Dim, S> Neg for &'a Matrix<T, R, C, S>
where
T: Scalar + ClosedNeg,
S: Storage<T, R, C>,
DefaultAllocator: Allocator<R, C>,
{
type Output = OMatrix<T, R, C>;
#[inline]
fn neg(self) -> Self::Output {
-self.clone_owned()
}
}
impl<T, R: Dim, C: Dim, S> Matrix<T, R, C, S>
where
T: Scalar + ClosedNeg,
S: StorageMut<T, R, C>,
{
/// Negates `self` in-place.
#[inline]
pub fn neg_mut(&mut self) {
for e in self.iter_mut() {
*e = -e.clone()
}
}
}
/*
*
* Addition & Subtraction
*
*/
macro_rules! componentwise_binop_impl(
($Trait: ident, $method: ident, $bound: ident;
$TraitAssign: ident, $method_assign: ident, $method_assign_statically_unchecked: ident,
$method_assign_statically_unchecked_rhs: ident;
$method_to: ident, $method_to_statically_unchecked_uninit: ident) => {
impl<T, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>> Matrix<T, R1, C1, SA>
where T: Scalar + $bound {
/*
*
* Methods without dimension checking at compile-time.
* This is useful for code reuse because the sum representative system does not plays
* easily with static checks.
*
*/
#[inline]
fn $method_to_statically_unchecked_uninit<Status, R2: Dim, C2: Dim, SB,
R3: Dim, C3: Dim, SC>(&self,
_status: Status,
rhs: &Matrix<T, R2, C2, SB>,
out: &mut Matrix<Status::Value, R3, C3, SC>)
where Status: InitStatus<T>,
SB: RawStorage<T, R2, C2>,
SC: RawStorageMut<Status::Value, R3, C3> {
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
assert_eq!(self.shape(), out.shape(), "Matrix addition/subtraction output dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// TODO: use specialization instead?
unsafe {
if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
let arr1 = self.data.as_slice_unchecked();
let arr2 = rhs.data.as_slice_unchecked();
let out = out.data.as_mut_slice_unchecked();
for i in 0 .. arr1.len() {
Status::init(out.get_unchecked_mut(i), arr1.get_unchecked(i).clone().$method(arr2.get_unchecked(i).clone()));
}
} else {
for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() {
let val = self.get_unchecked((i, j)).clone().$method(rhs.get_unchecked((i, j)).clone());
Status::init(out.get_unchecked_mut((i, j)), val);
}
}
}
}
}
#[inline]
fn $method_assign_statically_unchecked<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
where R2: Dim,
C2: Dim,
SA: StorageMut<T, R1, C1>,
SB: Storage<T, R2, C2> {
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// TODO: use specialization instead?
unsafe {
if self.data.is_contiguous() && rhs.data.is_contiguous() {
let arr1 = self.data.as_mut_slice_unchecked();
let arr2 = rhs.data.as_slice_unchecked();
for i in 0 .. arr2.len() {
arr1.get_unchecked_mut(i).$method_assign(arr2.get_unchecked(i).clone());
}
} else {
for j in 0 .. rhs.ncols() {
for i in 0 .. rhs.nrows() {
self.get_unchecked_mut((i, j)).$method_assign(rhs.get_unchecked((i, j)).clone())
}
}
}
}
}
#[inline]
fn $method_assign_statically_unchecked_rhs<R2, C2, SB>(&self, rhs: &mut Matrix<T, R2, C2, SB>)
where R2: Dim,
C2: Dim,
SB: StorageMut<T, R2, C2> {
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
// This is the most common case and should be deduced at compile-time.
// TODO: use specialization instead?
unsafe {
if self.data.is_contiguous() && rhs.data.is_contiguous() {
let arr1 = self.data.as_slice_unchecked();
let arr2 = rhs.data.as_mut_slice_unchecked();
for i in 0 .. arr1.len() {
let res = arr1.get_unchecked(i).clone().$method(arr2.get_unchecked(i).clone());
*arr2.get_unchecked_mut(i) = res;
}
} else {
for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() {
let r = rhs.get_unchecked_mut((i, j));
*r = self.get_unchecked((i, j)).clone().$method(r.clone())
}
}
}
}
}
/*
*
* Methods without dimension checking at compile-time.
* This is useful for code reuse because the sum representative system does not plays
* easily with static checks.
*
*/
/// Equivalent to `self + rhs` but stores the result into `out` to avoid allocations.
#[inline]
pub fn $method_to<R2: Dim, C2: Dim, SB,
R3: Dim, C3: Dim, SC>(&self,
rhs: &Matrix<T, R2, C2, SB>,
out: &mut Matrix<T, R3, C3, SC>)
where SB: Storage<T, R2, C2>,
SC: StorageMut<T, R3, C3>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> +
SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3> {
self.$method_to_statically_unchecked_uninit(Init, rhs, out)
}
}
impl<'b, T, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
T: Scalar + $bound,
SA: Storage<T, R1, C1>,
SB: Storage<T, R2, C2>,
DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
type Output = MatrixSum<T, R1, C1, R2, C2>;
#[inline]
fn $method(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
let mut res = self.into_owned_sum::<R2, C2>();
res.$method_assign_statically_unchecked(rhs);
res
}
}
impl<'a, T, R1, C1, R2, C2, SA, SB> $Trait<Matrix<T, R2, C2, SB>> for &'a Matrix<T, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
T: Scalar + $bound,
SA: Storage<T, R1, C1>,
SB: Storage<T, R2, C2>,
DefaultAllocator: SameShapeAllocator<R2, C2, R1, C1>,
ShapeConstraint: SameNumberOfRows<R2, R1> + SameNumberOfColumns<C2, C1> {
type Output = MatrixSum<T, R2, C2, R1, C1>;
#[inline]
fn $method(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
let mut rhs = rhs.into_owned_sum::<R1, C1>();
assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
self.$method_assign_statically_unchecked_rhs(&mut rhs);
rhs
}
}
impl<T, R1, C1, R2, C2, SA, SB> $Trait<Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
T: Scalar + $bound,
SA: Storage<T, R1, C1>,
SB: Storage<T, R2, C2>,
DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
type Output = MatrixSum<T, R1, C1, R2, C2>;
#[inline]
fn $method(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
self.$method(&rhs)
}
}
impl<'a, 'b, T, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<T, R2, C2, SB>> for &'a Matrix<T, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
T: Scalar + $bound,
SA: Storage<T, R1, C1>,
SB: Storage<T, R2, C2>,
DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
type Output = MatrixSum<T, R1, C1, R2, C2>;
#[inline]
fn $method(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
let (nrows, ncols) = self.shape();
let nrows: SameShapeR<R1, R2> = Dim::from_usize(nrows);
let ncols: SameShapeC<C1, C2> = Dim::from_usize(ncols);
let mut res = Matrix::uninit(nrows, ncols);
self.$method_to_statically_unchecked_uninit(Uninit, rhs, &mut res);
// SAFETY: the output has been initialized above.
unsafe { res.assume_init() }
}
}
impl<'b, T, R1, C1, R2, C2, SA, SB> $TraitAssign<&'b Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
T: Scalar + $bound,
SA: StorageMut<T, R1, C1>,
SB: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
#[inline]
fn $method_assign(&mut self, rhs: &'b Matrix<T, R2, C2, SB>) {
self.$method_assign_statically_unchecked(rhs)
}
}
impl<T, R1, C1, R2, C2, SA, SB> $TraitAssign<Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
T: Scalar + $bound,
SA: StorageMut<T, R1, C1>,
SB: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
#[inline]
fn $method_assign(&mut self, rhs: Matrix<T, R2, C2, SB>) {
self.$method_assign(&rhs)
}
}
}
);
componentwise_binop_impl!(Add, add, ClosedAdd;
AddAssign, add_assign, add_assign_statically_unchecked, add_assign_statically_unchecked_mut;
add_to, add_to_statically_unchecked_uninit);
componentwise_binop_impl!(Sub, sub, ClosedSub;
SubAssign, sub_assign, sub_assign_statically_unchecked, sub_assign_statically_unchecked_mut;
sub_to, sub_to_statically_unchecked_uninit);
impl<T, R: DimName, C: DimName> iter::Sum for OMatrix<T, R, C>
where
T: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<R, C>,
{
fn sum<I: Iterator<Item = OMatrix<T, R, C>>>(iter: I) -> OMatrix<T, R, C> {
iter.fold(Matrix::zero(), |acc, x| acc + x)
}
}
impl<T, C: Dim> iter::Sum for OMatrix<T, Dyn, C>
where
T: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<Dyn, C>,
{
/// # Example
/// ```
/// # use nalgebra::DVector;
/// assert_eq!(vec![DVector::repeat(3, 1.0f64),
/// DVector::repeat(3, 1.0f64),
/// DVector::repeat(3, 1.0f64)].into_iter().sum::<DVector<f64>>(),
/// DVector::repeat(3, 1.0f64) + DVector::repeat(3, 1.0f64) + DVector::repeat(3, 1.0f64));
/// ```
///
/// # Panics
/// Panics if the iterator is empty:
/// ```should_panic
/// # use std::iter;
/// # use nalgebra::DMatrix;
/// iter::empty::<DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
/// ```
fn sum<I: Iterator<Item = OMatrix<T, Dyn, C>>>(mut iter: I) -> OMatrix<T, Dyn, C> {
if let Some(first) = iter.next() {
iter.fold(first, |acc, x| acc + x)
} else {
panic!("Cannot compute `sum` of empty iterator.")
}
}
}
impl<'a, T, R: DimName, C: DimName> iter::Sum<&'a OMatrix<T, R, C>> for OMatrix<T, R, C>
where
T: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<R, C>,
{
fn sum<I: Iterator<Item = &'a OMatrix<T, R, C>>>(iter: I) -> OMatrix<T, R, C> {
iter.fold(Matrix::zero(), |acc, x| acc + x)
}
}
impl<'a, T, C: Dim> iter::Sum<&'a OMatrix<T, Dyn, C>> for OMatrix<T, Dyn, C>
where
T: Scalar + ClosedAdd + Zero,
DefaultAllocator: Allocator<Dyn, C>,
{
/// # Example
/// ```
/// # use nalgebra::DVector;
/// let v = &DVector::repeat(3, 1.0f64);
///
/// assert_eq!(vec![v, v, v].into_iter().sum::<DVector<f64>>(),
/// v + v + v);
/// ```
///
/// # Panics
/// Panics if the iterator is empty:
/// ```should_panic
/// # use std::iter;
/// # use nalgebra::DMatrix;
/// iter::empty::<&DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
/// ```
fn sum<I: Iterator<Item = &'a OMatrix<T, Dyn, C>>>(mut iter: I) -> OMatrix<T, Dyn, C> {
if let Some(first) = iter.next() {
iter.fold(first.clone(), |acc, x| acc + x)
} else {
panic!("Cannot compute `sum` of empty iterator.")
}
}
}
/*
*
* Multiplication
*
*/
// Matrix × Scalar
// Matrix / Scalar
macro_rules! componentwise_scalarop_impl(
($Trait: ident, $method: ident, $bound: ident;
$TraitAssign: ident, $method_assign: ident) => {
impl<T, R: Dim, C: Dim, S> $Trait<T> for Matrix<T, R, C, S>
where T: Scalar + $bound,
S: Storage<T, R, C>,
DefaultAllocator: Allocator<R, C> {
type Output = OMatrix<T, R, C>;
#[inline]
fn $method(self, rhs: T) -> Self::Output {
let mut res = self.into_owned();
// XXX: optimize our iterator!
//
// Using our own iterator prevents loop unrolling, which breaks some optimization
// (like SIMD). On the other hand, using the slice iterator is 4x faster.
// for left in res.iter_mut() {
for left in res.as_mut_slice().iter_mut() {
*left = left.clone().$method(rhs.clone())
}
res
}
}
impl<'a, T, R: Dim, C: Dim, S> $Trait<T> for &'a Matrix<T, R, C, S>
where T: Scalar + $bound,
S: Storage<T, R, C>,
DefaultAllocator: Allocator<R, C> {
type Output = OMatrix<T, R, C>;
#[inline]
fn $method(self, rhs: T) -> Self::Output {
self.clone_owned().$method(rhs)
}
}
impl<T, R: Dim, C: Dim, S> $TraitAssign<T> for Matrix<T, R, C, S>
where T: Scalar + $bound,
S: StorageMut<T, R, C> {
#[inline]
fn $method_assign(&mut self, rhs: T) {
for j in 0 .. self.ncols() {
for i in 0 .. self.nrows() {
unsafe { self.get_unchecked_mut((i, j)).$method_assign(rhs.clone()) };
}
}
}
}
}
);
componentwise_scalarop_impl!(Mul, mul, ClosedMul; MulAssign, mul_assign);
componentwise_scalarop_impl!(Div, div, ClosedDiv; DivAssign, div_assign);
macro_rules! left_scalar_mul_impl(
($($T: ty),* $(,)*) => {$(
impl<R: Dim, C: Dim, S: Storage<$T, R, C>> Mul<Matrix<$T, R, C, S>> for $T
where DefaultAllocator: Allocator<R, C> {
type Output = OMatrix<$T, R, C>;
#[inline]
fn mul(self, rhs: Matrix<$T, R, C, S>) -> Self::Output {
let mut res = rhs.into_owned();
// XXX: optimize our iterator!
//
// Using our own iterator prevents loop unrolling, which breaks some optimization
// (like SIMD). On the other hand, using the slice iterator is 4x faster.
// for rhs in res.iter_mut() {
for rhs in res.as_mut_slice().iter_mut() {
*rhs *= self
}
res
}
}
impl<'b, R: Dim, C: Dim, S: Storage<$T, R, C>> Mul<&'b Matrix<$T, R, C, S>> for $T
where DefaultAllocator: Allocator<R, C> {
type Output = OMatrix<$T, R, C>;
#[inline]
fn mul(self, rhs: &'b Matrix<$T, R, C, S>) -> Self::Output {
self * rhs.clone_owned()
}
}
)*}
);
left_scalar_mul_impl!(u8, u16, u32, u64, usize, i8, i16, i32, i64, isize, f32, f64);
// Matrix × Matrix
impl<'a, 'b, T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<T, R2, C2, SB>>
for &'a Matrix<T, R1, C1, SA>
where
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SA: Storage<T, R1, C1>,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
type Output = OMatrix<T, R1, C2>;
#[inline]
fn mul(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
let mut res = Matrix::uninit(self.shape_generic().0, rhs.shape_generic().1);
unsafe {
// SAFETY: this is OK because status = Uninit && bevy == 0
gemm_uninit(Uninit, &mut res, T::one(), self, rhs, T::zero());
res.assume_init()
}
}
}
impl<'a, T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<T, R2, C2, SB>>
for &'a Matrix<T, R1, C1, SA>
where
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<T, R2, C2>,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
type Output = OMatrix<T, R1, C2>;
#[inline]
fn mul(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
self * &rhs
}
}
impl<'b, T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<T, R2, C2, SB>>
for Matrix<T, R1, C1, SA>
where
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<T, R2, C2>,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
type Output = OMatrix<T, R1, C2>;
#[inline]
fn mul(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
&self * rhs
}
}
impl<T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<T, R2, C2, SB>>
for Matrix<T, R1, C1, SA>
where
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<T, R2, C2>,
SA: Storage<T, R1, C1>,
DefaultAllocator: Allocator<R1, C2>,
ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
type Output = OMatrix<T, R1, C2>;
#[inline]
fn mul(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
&self * &rhs
}
}
// TODO: this is too restrictive:
// we can't use `a *= b` when `a` is a mutable slice.
// we can't use `a *= b` when C2 is not equal to C1.
impl<T, R1, C1, R2, SA, SB> MulAssign<Matrix<T, R2, C1, SB>> for Matrix<T, R1, C1, SA>
where
R1: Dim,
C1: Dim,
R2: Dim,
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<T, R2, C1>,
SA: StorageMut<T, R1, C1> + IsContiguous + Clone, // TODO: get rid of the IsContiguous
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
DefaultAllocator: Allocator<R1, C1, Buffer<T> = SA>,
{
#[inline]
fn mul_assign(&mut self, rhs: Matrix<T, R2, C1, SB>) {
*self = &*self * rhs
}
}
impl<'b, T, R1, C1, R2, SA, SB> MulAssign<&'b Matrix<T, R2, C1, SB>> for Matrix<T, R1, C1, SA>
where
R1: Dim,
C1: Dim,
R2: Dim,
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SB: Storage<T, R2, C1>,
SA: StorageMut<T, R1, C1> + IsContiguous + Clone, // TODO: get rid of the IsContiguous
ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
// TODO: this is too restrictive. See comments for the non-ref version.
DefaultAllocator: Allocator<R1, C1, Buffer<T> = SA>,
{
#[inline]
fn mul_assign(&mut self, rhs: &'b Matrix<T, R2, C1, SB>) {
*self = &*self * rhs
}
}
/// # Special multiplications.
impl<T, R1: Dim, C1: Dim, SA> Matrix<T, R1, C1, SA>
where
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
SA: Storage<T, R1, C1>,
{
/// Equivalent to `self.transpose() * rhs`.
#[inline]
#[must_use]
pub fn tr_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> OMatrix<T, C1, C2>
where
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<C1, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2>,
{
let mut res = Matrix::uninit(self.shape_generic().1, rhs.shape_generic().1);
self.xx_mul_to_uninit(Uninit, rhs, &mut res, |a, b| a.dot(b));
// SAFETY: this is OK because the result is now initialized.
unsafe { res.assume_init() }
}
/// Equivalent to `self.adjoint() * rhs`.
#[inline]
#[must_use]
pub fn ad_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> OMatrix<T, C1, C2>
where
T: SimdComplexField,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<C1, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2>,
{
let mut res = Matrix::uninit(self.shape_generic().1, rhs.shape_generic().1);
self.xx_mul_to_uninit(Uninit, rhs, &mut res, |a, b| a.dotc(b));
// SAFETY: this is OK because the result is now initialized.
unsafe { res.assume_init() }
}
#[inline(always)]
fn xx_mul_to_uninit<Status, R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
&self,
_status: Status,
rhs: &Matrix<T, R2, C2, SB>,
out: &mut Matrix<Status::Value, R3, C3, SC>,
dot: impl Fn(
&VectorView<'_, T, R1, SA::RStride, SA::CStride>,
&VectorView<'_, T, R2, SB::RStride, SB::CStride>,
) -> T,
) where
Status: InitStatus<T>,
SB: RawStorage<T, R2, C2>,
SC: RawStorageMut<Status::Value, R3, C3>,
ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
{
let (nrows1, ncols1) = self.shape();
let (nrows2, ncols2) = rhs.shape();
let (nrows3, ncols3) = out.shape();
assert!(
nrows1 == nrows2,
"Matrix multiplication dimensions mismatch {:?} and {:?}: left rows != right rows.",
self.shape(),
rhs.shape()
);
assert!(
ncols1 == nrows3,
"Matrix multiplication output dimensions mismatch {:?} and {:?}: left cols != right rows.",
self.shape(),
out.shape()
);
assert!(
ncols2 == ncols3,
"Matrix multiplication output dimensions mismatch {:?} and {:?}: left cols != right cols",
rhs.shape(),
out.shape()
);
for i in 0..ncols1 {
for j in 0..ncols2 {
let dot = dot(&self.column(i), &rhs.column(j));
let elt = unsafe { out.get_unchecked_mut((i, j)) };
Status::init(elt, dot);
}
}
}
/// Equivalent to `self.transpose() * rhs` but stores the result into `out` to avoid
/// allocations.
#[inline]
pub fn tr_mul_to<R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
&self,
rhs: &Matrix<T, R2, C2, SB>,
out: &mut Matrix<T, R3, C3, SC>,
) where
SB: Storage<T, R2, C2>,
SC: StorageMut<T, R3, C3>,
ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
{
self.xx_mul_to_uninit(Init, rhs, out, |a, b| a.dot(b))
}
/// Equivalent to `self.adjoint() * rhs` but stores the result into `out` to avoid
/// allocations.
#[inline]
pub fn ad_mul_to<R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
&self,
rhs: &Matrix<T, R2, C2, SB>,
out: &mut Matrix<T, R3, C3, SC>,
) where
T: SimdComplexField,
SB: Storage<T, R2, C2>,
SC: StorageMut<T, R3, C3>,
ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
{
self.xx_mul_to_uninit(Init, rhs, out, |a, b| a.dotc(b))
}
/// Equivalent to `self * rhs` but stores the result into `out` to avoid allocations.
#[inline]
pub fn mul_to<R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
&self,
rhs: &Matrix<T, R2, C2, SB>,
out: &mut Matrix<T, R3, C3, SC>,
) where
SB: Storage<T, R2, C2>,
SC: StorageMut<T, R3, C3>,
ShapeConstraint: SameNumberOfRows<R3, R1>
+ SameNumberOfColumns<C3, C2>
+ AreMultipliable<R1, C1, R2, C2>,
{
out.gemm(T::one(), self, rhs, T::zero());
}
/// The kronecker product of two matrices (aka. tensor product of the corresponding linear
/// maps).
#[must_use]
pub fn kronecker<R2: Dim, C2: Dim, SB>(
&self,
rhs: &Matrix<T, R2, C2, SB>,
) -> OMatrix<T, DimProd<R1, R2>, DimProd<C1, C2>>
where
T: ClosedMul,
R1: DimMul<R2>,
C1: DimMul<C2>,
SB: Storage<T, R2, C2>,
DefaultAllocator: Allocator<DimProd<R1, R2>, DimProd<C1, C2>>,
{
let (nrows1, ncols1) = self.shape_generic();
let (nrows2, ncols2) = rhs.shape_generic();
let mut res = Matrix::uninit(nrows1.mul(nrows2), ncols1.mul(ncols2));
let mut data_res = res.data.ptr_mut();
unsafe {
for j1 in 0..ncols1.value() {
for j2 in 0..ncols2.value() {
for i1 in 0..nrows1.value() {
let coeff = self.get_unchecked((i1, j1)).clone();
for i2 in 0..nrows2.value() {
*data_res = MaybeUninit::new(
coeff.clone() * rhs.get_unchecked((i2, j2)).clone(),
);
data_res = data_res.offset(1);
}
}
}
}
// SAFETY: the result matrix has been initialized by the loop above.
res.assume_init()
}
}
}
impl<T, D: DimName> iter::Product for OMatrix<T, D, D>
where
T: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<D, D>,
{
fn product<I: Iterator<Item = OMatrix<T, D, D>>>(iter: I) -> OMatrix<T, D, D> {
iter.fold(Matrix::one(), |acc, x| acc * x)
}
}
impl<'a, T, D: DimName> iter::Product<&'a OMatrix<T, D, D>> for OMatrix<T, D, D>
where
T: Scalar + Zero + One + ClosedMul + ClosedAdd,
DefaultAllocator: Allocator<D, D>,
{
fn product<I: Iterator<Item = &'a OMatrix<T, D, D>>>(iter: I) -> OMatrix<T, D, D> {
iter.fold(Matrix::one(), |acc, x| acc * x)
}
}