forked from M-Labs/nalgebra
ae4afa3d2c
# Conflicts: # Cargo.toml # src/base/matrix.rs # src/geometry/quaternion.rs
387 lines
13 KiB
Rust
387 lines
13 KiB
Rust
/*
|
||
*
|
||
* Computer-graphics specific implementations.
|
||
* Currently, it is mostly implemented for homogeneous matrices in 2- and 3-space.
|
||
*
|
||
*/
|
||
|
||
use num::One;
|
||
|
||
use crate::base::allocator::Allocator;
|
||
use crate::base::dimension::{DimName, DimNameDiff, DimNameSub, U1};
|
||
use crate::base::storage::{Storage, StorageMut};
|
||
use crate::base::{
|
||
DefaultAllocator, Matrix3, Matrix4, MatrixN, Scalar, SquareMatrix, Unit, Vector, Vector3,
|
||
VectorN,
|
||
};
|
||
use crate::geometry::{
|
||
Isometry, IsometryMatrix3, Orthographic3, Perspective3, Point, Point3, Rotation2, Rotation3,
|
||
};
|
||
|
||
use alga::general::{RealField, Ring};
|
||
use alga::linear::Transformation;
|
||
|
||
impl<N, D: DimName> MatrixN<N, D>
|
||
where
|
||
N: Scalar + Ring,
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
/// Creates a new homogeneous matrix that applies the same scaling factor on each dimension.
|
||
#[inline]
|
||
pub fn new_scaling(scaling: N) -> Self {
|
||
let mut res = Self::from_diagonal_element(scaling);
|
||
res[(D::dim() - 1, D::dim() - 1)] = N::one();
|
||
|
||
res
|
||
}
|
||
|
||
/// Creates a new homogeneous matrix that applies a distinct scaling factor for each dimension.
|
||
#[inline]
|
||
pub fn new_nonuniform_scaling<SB>(scaling: &Vector<N, DimNameDiff<D, U1>, SB>) -> Self
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
{
|
||
let mut res = Self::one();
|
||
for i in 0..scaling.len() {
|
||
res[(i, i)] = scaling[i];
|
||
}
|
||
|
||
res
|
||
}
|
||
|
||
/// Creates a new homogeneous matrix that applies a pure translation.
|
||
#[inline]
|
||
pub fn new_translation<SB>(translation: &Vector<N, DimNameDiff<D, U1>, SB>) -> Self
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
{
|
||
let mut res = Self::one();
|
||
res.fixed_slice_mut::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1)
|
||
.copy_from(translation);
|
||
|
||
res
|
||
}
|
||
}
|
||
|
||
impl<N: RealField> Matrix3<N> {
|
||
/// Builds a 2 dimensional homogeneous rotation matrix from an angle in radian.
|
||
#[inline]
|
||
pub fn new_rotation(angle: N) -> Self {
|
||
Rotation2::new(angle).to_homogeneous()
|
||
}
|
||
}
|
||
|
||
impl<N: RealField> Matrix4<N> {
|
||
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
|
||
///
|
||
/// Returns the identity matrix if the given argument is zero.
|
||
#[inline]
|
||
pub fn new_rotation(axisangle: Vector3<N>) -> Self {
|
||
Rotation3::new(axisangle).to_homogeneous()
|
||
}
|
||
|
||
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
|
||
///
|
||
/// Returns the identity matrix if the given argument is zero.
|
||
#[inline]
|
||
pub fn new_rotation_wrt_point(axisangle: Vector3<N>, pt: Point3<N>) -> Self {
|
||
let rot = Rotation3::from_scaled_axis(axisangle);
|
||
Isometry::rotation_wrt_point(rot, pt).to_homogeneous()
|
||
}
|
||
|
||
/// Builds a 3D homogeneous rotation matrix from an axis and an angle (multiplied together).
|
||
///
|
||
/// Returns the identity matrix if the given argument is zero.
|
||
/// This is identical to `Self::new_rotation`.
|
||
#[inline]
|
||
pub fn from_scaled_axis(axisangle: Vector3<N>) -> Self {
|
||
Rotation3::from_scaled_axis(axisangle).to_homogeneous()
|
||
}
|
||
|
||
/// Creates a new rotation from Euler angles.
|
||
///
|
||
/// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
|
||
pub fn from_euler_angles(roll: N, pitch: N, yaw: N) -> Self {
|
||
Rotation3::from_euler_angles(roll, pitch, yaw).to_homogeneous()
|
||
}
|
||
|
||
/// Builds a 3D homogeneous rotation matrix from an axis and a rotation angle.
|
||
pub fn from_axis_angle(axis: &Unit<Vector3<N>>, angle: N) -> Self {
|
||
Rotation3::from_axis_angle(axis, angle).to_homogeneous()
|
||
}
|
||
|
||
/// Creates a new homogeneous matrix for an orthographic projection.
|
||
#[inline]
|
||
pub fn new_orthographic(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self {
|
||
Orthographic3::new(left, right, bottom, top, znear, zfar).into_inner()
|
||
}
|
||
|
||
/// Creates a new homogeneous matrix for a perspective projection.
|
||
#[inline]
|
||
pub fn new_perspective(aspect: N, fovy: N, znear: N, zfar: N) -> Self {
|
||
Perspective3::new(aspect, fovy, znear, zfar).into_inner()
|
||
}
|
||
|
||
/// Creates an isometry that corresponds to the local frame of an observer standing at the
|
||
/// point `eye` and looking toward `target`.
|
||
///
|
||
/// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
|
||
/// `eye`.
|
||
#[inline]
|
||
pub fn face_towards(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
|
||
IsometryMatrix3::face_towards(eye, target, up).to_homogeneous()
|
||
}
|
||
|
||
/// Deprecated: Use [Matrix4::face_towards] instead.
|
||
#[deprecated(note="renamed to `face_towards`")]
|
||
pub fn new_observer_frame(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
|
||
Matrix4::face_towards(eye, target, up)
|
||
}
|
||
|
||
/// Builds a right-handed look-at view matrix.
|
||
#[inline]
|
||
pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
|
||
IsometryMatrix3::look_at_rh(eye, target, up).to_homogeneous()
|
||
}
|
||
|
||
/// Builds a left-handed look-at view matrix.
|
||
#[inline]
|
||
pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self {
|
||
IsometryMatrix3::look_at_lh(eye, target, up).to_homogeneous()
|
||
}
|
||
}
|
||
|
||
impl<N: Scalar + Ring, D: DimName, S: Storage<N, D, D>> SquareMatrix<N, D, S> {
|
||
/// Computes the transformation equal to `self` followed by an uniform scaling factor.
|
||
#[inline]
|
||
pub fn append_scaling(&self, scaling: N) -> MatrixN<N, D>
|
||
where
|
||
D: DimNameSub<U1>,
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
let mut res = self.clone_owned();
|
||
res.append_scaling_mut(scaling);
|
||
res
|
||
}
|
||
|
||
/// Computes the transformation equal to an uniform scaling factor followed by `self`.
|
||
#[inline]
|
||
pub fn prepend_scaling(&self, scaling: N) -> MatrixN<N, D>
|
||
where
|
||
D: DimNameSub<U1>,
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
let mut res = self.clone_owned();
|
||
res.prepend_scaling_mut(scaling);
|
||
res
|
||
}
|
||
|
||
/// Computes the transformation equal to `self` followed by a non-uniform scaling factor.
|
||
#[inline]
|
||
pub fn append_nonuniform_scaling<SB>(
|
||
&self,
|
||
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
|
||
) -> MatrixN<N, D>
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
let mut res = self.clone_owned();
|
||
res.append_nonuniform_scaling_mut(scaling);
|
||
res
|
||
}
|
||
|
||
/// Computes the transformation equal to a non-uniform scaling factor followed by `self`.
|
||
#[inline]
|
||
pub fn prepend_nonuniform_scaling<SB>(
|
||
&self,
|
||
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
|
||
) -> MatrixN<N, D>
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
let mut res = self.clone_owned();
|
||
res.prepend_nonuniform_scaling_mut(scaling);
|
||
res
|
||
}
|
||
|
||
/// Computes the transformation equal to `self` followed by a translation.
|
||
#[inline]
|
||
pub fn append_translation<SB>(&self, shift: &Vector<N, DimNameDiff<D, U1>, SB>) -> MatrixN<N, D>
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
DefaultAllocator: Allocator<N, D, D>,
|
||
{
|
||
let mut res = self.clone_owned();
|
||
res.append_translation_mut(shift);
|
||
res
|
||
}
|
||
|
||
/// Computes the transformation equal to a translation followed by `self`.
|
||
#[inline]
|
||
pub fn prepend_translation<SB>(
|
||
&self,
|
||
shift: &Vector<N, DimNameDiff<D, U1>, SB>,
|
||
) -> MatrixN<N, D>
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
DefaultAllocator: Allocator<N, D, D> + Allocator<N, DimNameDiff<D, U1>>,
|
||
{
|
||
let mut res = self.clone_owned();
|
||
res.prepend_translation_mut(shift);
|
||
res
|
||
}
|
||
}
|
||
|
||
impl<N: Scalar + Ring, D: DimName, S: StorageMut<N, D, D>> SquareMatrix<N, D, S> {
|
||
/// Computes in-place the transformation equal to `self` followed by an uniform scaling factor.
|
||
#[inline]
|
||
pub fn append_scaling_mut(&mut self, scaling: N)
|
||
where D: DimNameSub<U1> {
|
||
let mut to_scale = self.fixed_rows_mut::<DimNameDiff<D, U1>>(0);
|
||
to_scale *= scaling;
|
||
}
|
||
|
||
/// Computes in-place the transformation equal to an uniform scaling factor followed by `self`.
|
||
#[inline]
|
||
pub fn prepend_scaling_mut(&mut self, scaling: N)
|
||
where D: DimNameSub<U1> {
|
||
let mut to_scale = self.fixed_columns_mut::<DimNameDiff<D, U1>>(0);
|
||
to_scale *= scaling;
|
||
}
|
||
|
||
/// Computes in-place the transformation equal to `self` followed by a non-uniform scaling factor.
|
||
#[inline]
|
||
pub fn append_nonuniform_scaling_mut<SB>(&mut self, scaling: &Vector<N, DimNameDiff<D, U1>, SB>)
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
{
|
||
for i in 0..scaling.len() {
|
||
let mut to_scale = self.fixed_rows_mut::<U1>(i);
|
||
to_scale *= scaling[i];
|
||
}
|
||
}
|
||
|
||
/// Computes in-place the transformation equal to a non-uniform scaling factor followed by `self`.
|
||
#[inline]
|
||
pub fn prepend_nonuniform_scaling_mut<SB>(
|
||
&mut self,
|
||
scaling: &Vector<N, DimNameDiff<D, U1>, SB>,
|
||
) where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
{
|
||
for i in 0..scaling.len() {
|
||
let mut to_scale = self.fixed_columns_mut::<U1>(i);
|
||
to_scale *= scaling[i];
|
||
}
|
||
}
|
||
|
||
/// Computes the transformation equal to `self` followed by a translation.
|
||
#[inline]
|
||
pub fn append_translation_mut<SB>(&mut self, shift: &Vector<N, DimNameDiff<D, U1>, SB>)
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
{
|
||
for i in 0..D::dim() {
|
||
for j in 0..D::dim() - 1 {
|
||
let add = shift[j] * self[(D::dim() - 1, i)];
|
||
self[(j, i)] += add;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Computes the transformation equal to a translation followed by `self`.
|
||
#[inline]
|
||
pub fn prepend_translation_mut<SB>(&mut self, shift: &Vector<N, DimNameDiff<D, U1>, SB>)
|
||
where
|
||
D: DimNameSub<U1>,
|
||
SB: Storage<N, DimNameDiff<D, U1>>,
|
||
DefaultAllocator: Allocator<N, DimNameDiff<D, U1>>,
|
||
{
|
||
let scale = self
|
||
.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0)
|
||
.tr_dot(&shift);
|
||
let post_translation =
|
||
self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0) * shift;
|
||
|
||
self[(D::dim() - 1, D::dim() - 1)] += scale;
|
||
|
||
let mut translation = self.fixed_slice_mut::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1);
|
||
translation += post_translation;
|
||
}
|
||
}
|
||
|
||
impl<N: RealField, D: DimNameSub<U1>, S: Storage<N, D, D>> SquareMatrix<N, D, S>
|
||
where DefaultAllocator: Allocator<N, D, D>
|
||
+ Allocator<N, DimNameDiff<D, U1>>
|
||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
|
||
{
|
||
/// Transforms the given vector, assuming the matrix `self` uses homogeneous coordinates.
|
||
#[inline]
|
||
pub fn transform_vector(
|
||
&self,
|
||
v: &VectorN<N, DimNameDiff<D, U1>>,
|
||
) -> VectorN<N, DimNameDiff<D, U1>>
|
||
{
|
||
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
|
||
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
|
||
let n = normalizer.tr_dot(&v);
|
||
|
||
if !n.is_zero() {
|
||
return transform * (v / n);
|
||
}
|
||
|
||
transform * v
|
||
}
|
||
|
||
/// Transforms the given point, assuming the matrix `self` uses homogeneous coordinates.
|
||
#[inline]
|
||
pub fn transform_point(
|
||
&self,
|
||
pt: &Point<N, DimNameDiff<D, U1>>,
|
||
) -> Point<N, DimNameDiff<D, U1>>
|
||
{
|
||
let transform = self.fixed_slice::<DimNameDiff<D, U1>, DimNameDiff<D, U1>>(0, 0);
|
||
let translation = self.fixed_slice::<DimNameDiff<D, U1>, U1>(0, D::dim() - 1);
|
||
let normalizer = self.fixed_slice::<U1, DimNameDiff<D, U1>>(D::dim() - 1, 0);
|
||
let n = normalizer.tr_dot(&pt.coords)
|
||
+ unsafe { *self.get_unchecked((D::dim() - 1, D::dim() - 1)) };
|
||
|
||
if !n.is_zero() {
|
||
return transform * (pt / n) + translation;
|
||
}
|
||
|
||
transform * pt + translation
|
||
}
|
||
}
|
||
|
||
impl<N: RealField, D: DimNameSub<U1>> Transformation<Point<N, DimNameDiff<D, U1>>> for MatrixN<N, D>
|
||
where DefaultAllocator: Allocator<N, D, D>
|
||
+ Allocator<N, DimNameDiff<D, U1>>
|
||
+ Allocator<N, DimNameDiff<D, U1>, DimNameDiff<D, U1>>
|
||
{
|
||
#[inline]
|
||
fn transform_vector(
|
||
&self,
|
||
v: &VectorN<N, DimNameDiff<D, U1>>,
|
||
) -> VectorN<N, DimNameDiff<D, U1>>
|
||
{
|
||
self.transform_vector(v)
|
||
}
|
||
|
||
#[inline]
|
||
fn transform_point(&self, pt: &Point<N, DimNameDiff<D, U1>>) -> Point<N, DimNameDiff<D, U1>> {
|
||
self.transform_point(pt)
|
||
}
|
||
}
|