forked from M-Labs/nalgebra
417 lines
14 KiB
Rust
417 lines
14 KiB
Rust
//! TODO
|
|
use std::ops::Add;
|
|
|
|
use num_traits::Zero;
|
|
|
|
use nalgebra::{ClosedAdd, Dim, DMatrix, Matrix, Scalar};
|
|
use nalgebra::storage::Storage;
|
|
|
|
use crate::coo::CooMatrix;
|
|
use crate::cs;
|
|
use crate::csc::CscMatrix;
|
|
use crate::csr::CsrMatrix;
|
|
|
|
/// TODO
|
|
pub fn convert_dense_coo<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CooMatrix<T>
|
|
where
|
|
T: Scalar + Zero,
|
|
R: Dim,
|
|
C: Dim,
|
|
S: Storage<T, R, C>
|
|
{
|
|
let mut coo = CooMatrix::new(dense.nrows(), dense.ncols());
|
|
|
|
for (index, v) in dense.iter().enumerate() {
|
|
if v != &T::zero() {
|
|
// We use the fact that matrix iteration is guaranteed to be column-major
|
|
let i = index % dense.nrows();
|
|
let j = index / dense.nrows();
|
|
coo.push(i, j, v.inlined_clone());
|
|
}
|
|
}
|
|
|
|
coo
|
|
}
|
|
|
|
/// TODO
|
|
///
|
|
/// TODO: What should the actual trait bounds be?
|
|
pub fn convert_coo_dense<T>(coo: &CooMatrix<T>) -> DMatrix<T>
|
|
where
|
|
T: Scalar + Zero + ClosedAdd,
|
|
{
|
|
let mut output = DMatrix::repeat(coo.nrows(), coo.ncols(), T::zero());
|
|
for (i, j, v) in coo.triplet_iter() {
|
|
output[(i, j)] += v.inlined_clone();
|
|
}
|
|
output
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_coo_csr<T>(coo: &CooMatrix<T>) -> CsrMatrix<T>
|
|
where
|
|
T: Scalar + Zero
|
|
{
|
|
let (offsets, indices, values) = convert_coo_cs(coo.nrows(),
|
|
coo.row_indices(),
|
|
coo.col_indices(),
|
|
coo.values());
|
|
|
|
// TODO: Avoid "try_from" since it validates the data? (requires unsafe, should benchmark
|
|
// to see if it can be justified for performance reasons)
|
|
CsrMatrix::try_from_csr_data(coo.nrows(), coo.ncols(), offsets, indices, values)
|
|
.expect("Internal error: Invalid CSR data during COO->CSR conversion")
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_csr_coo<T: Scalar>(csr: &CsrMatrix<T>) -> CooMatrix<T>
|
|
{
|
|
let mut result = CooMatrix::new(csr.nrows(), csr.ncols());
|
|
for (i, j, v) in csr.triplet_iter() {
|
|
result.push(i, j, v.inlined_clone());
|
|
}
|
|
result
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_csr_dense<T>(csr:& CsrMatrix<T>) -> DMatrix<T>
|
|
where
|
|
T: Scalar + ClosedAdd + Zero
|
|
{
|
|
let mut output = DMatrix::zeros(csr.nrows(), csr.ncols());
|
|
|
|
for (i, j, v) in csr.triplet_iter() {
|
|
output[(i, j)] += v.inlined_clone();
|
|
}
|
|
|
|
output
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_dense_csr<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CsrMatrix<T>
|
|
where
|
|
T: Scalar + Zero,
|
|
R: Dim,
|
|
C: Dim,
|
|
S: Storage<T, R, C>
|
|
{
|
|
let mut row_offsets = Vec::with_capacity(dense.nrows() + 1);
|
|
let mut col_idx = Vec::new();
|
|
let mut values = Vec::new();
|
|
|
|
// We have to iterate row-by-row to build the CSR matrix, which is at odds with
|
|
// nalgebra's column-major storage. The alternative would be to perform an initial sweep
|
|
// to count number of non-zeros per row.
|
|
row_offsets.push(0);
|
|
for i in 0 .. dense.nrows() {
|
|
for j in 0 .. dense.ncols() {
|
|
let v = dense.index((i, j));
|
|
if v != &T::zero() {
|
|
col_idx.push(j);
|
|
values.push(v.inlined_clone());
|
|
}
|
|
}
|
|
row_offsets.push(col_idx.len());
|
|
}
|
|
|
|
// TODO: Consider circumventing the data validity check here
|
|
// (would require unsafe, should benchmark)
|
|
CsrMatrix::try_from_csr_data(dense.nrows(), dense.ncols(), row_offsets, col_idx, values)
|
|
.expect("Internal error: Invalid CsrMatrix format during dense-> CSR conversion")
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_coo_csc<T>(coo: &CooMatrix<T>) -> CscMatrix<T>
|
|
where
|
|
T: Scalar + Zero
|
|
{
|
|
let (offsets, indices, values) = convert_coo_cs(coo.ncols(),
|
|
coo.col_indices(),
|
|
coo.row_indices(),
|
|
coo.values());
|
|
|
|
// TODO: Avoid "try_from" since it validates the data? (requires unsafe, should benchmark
|
|
// to see if it can be justified for performance reasons)
|
|
CscMatrix::try_from_csc_data(coo.nrows(), coo.ncols(), offsets, indices, values)
|
|
.expect("Internal error: Invalid CSC data during COO->CSC conversion")
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_csc_coo<T>(csc: &CscMatrix<T>) -> CooMatrix<T>
|
|
where
|
|
T: Scalar
|
|
{
|
|
let mut coo = CooMatrix::new(csc.nrows(), csc.ncols());
|
|
for (i, j, v) in csc.triplet_iter() {
|
|
coo.push(i, j, v.inlined_clone());
|
|
}
|
|
coo
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_csc_dense<T>(csc: &CscMatrix<T>) -> DMatrix<T>
|
|
where
|
|
T: Scalar + ClosedAdd + Zero
|
|
{
|
|
let mut output = DMatrix::zeros(csc.nrows(), csc.ncols());
|
|
|
|
for (i, j, v) in csc.triplet_iter() {
|
|
output[(i, j)] += v.inlined_clone();
|
|
}
|
|
|
|
output
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_dense_csc<T, R, C, S>(dense: &Matrix<T, R, C, S>) -> CscMatrix<T>
|
|
where
|
|
T: Scalar + Zero,
|
|
R: Dim,
|
|
C: Dim,
|
|
S: Storage<T, R, C>
|
|
{
|
|
let mut col_offsets = Vec::with_capacity(dense.ncols() + 1);
|
|
let mut row_idx = Vec::new();
|
|
let mut values = Vec::new();
|
|
|
|
col_offsets.push(0);
|
|
for j in 0 .. dense.ncols() {
|
|
for i in 0 .. dense.nrows() {
|
|
let v = dense.index((i, j));
|
|
if v != &T::zero() {
|
|
row_idx.push(i);
|
|
values.push(v.inlined_clone());
|
|
}
|
|
}
|
|
col_offsets.push(row_idx.len());
|
|
}
|
|
|
|
// TODO: Consider circumventing the data validity check here
|
|
// (would require unsafe, should benchmark)
|
|
CscMatrix::try_from_csc_data(dense.nrows(), dense.ncols(), col_offsets, row_idx, values)
|
|
.expect("Internal error: Invalid CscMatrix format during dense-> CSC conversion")
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_csr_csc<T>(csr: &CsrMatrix<T>) -> CscMatrix<T>
|
|
where
|
|
T: Scalar
|
|
{
|
|
let (offsets, indices, values) = cs::transpose_cs(csr.nrows(),
|
|
csr.ncols(),
|
|
csr.row_offsets(),
|
|
csr.col_indices(),
|
|
csr.values());
|
|
|
|
// TODO: Avoid data validity check?
|
|
CscMatrix::try_from_csc_data(csr.nrows(), csr.ncols(), offsets, indices, values)
|
|
.expect("Internal error: Invalid CSC data during CSR->CSC conversion")
|
|
}
|
|
|
|
/// TODO
|
|
pub fn convert_csc_csr<T>(csc: &CscMatrix<T>) -> CsrMatrix<T>
|
|
where
|
|
T: Scalar
|
|
{
|
|
let (offsets, indices, values) = cs::transpose_cs(csc.ncols(),
|
|
csc.nrows(),
|
|
csc.col_offsets(),
|
|
csc.row_indices(),
|
|
csc.values());
|
|
|
|
// TODO: Avoid data validity check?
|
|
CsrMatrix::try_from_csr_data(csc.nrows(), csc.ncols(), offsets, indices, values)
|
|
.expect("Internal error: Invalid CSR data during CSC->CSR conversion")
|
|
}
|
|
|
|
fn convert_coo_cs<T>(major_dim: usize,
|
|
major_indices: &[usize],
|
|
minor_indices: &[usize],
|
|
values: &[T])
|
|
-> (Vec<usize>, Vec<usize>, Vec<T>)
|
|
where
|
|
T: Scalar + Zero
|
|
{
|
|
assert_eq!(major_indices.len(), minor_indices.len());
|
|
assert_eq!(minor_indices.len(), values.len());
|
|
let nnz = major_indices.len();
|
|
|
|
let (unsorted_major_offsets, unsorted_minor_idx, unsorted_vals) = {
|
|
let mut offsets = vec![0usize; major_dim + 1];
|
|
let mut minor_idx = vec![0usize; nnz];
|
|
let mut vals = vec![T::zero(); nnz];
|
|
coo_to_unsorted_cs(
|
|
&mut offsets,
|
|
&mut minor_idx,
|
|
&mut vals,
|
|
major_dim,
|
|
major_indices,
|
|
minor_indices,
|
|
values,
|
|
);
|
|
(offsets, minor_idx, vals)
|
|
};
|
|
|
|
// TODO: If input is sorted and/or without duplicates, we can avoid additional allocations
|
|
// and work. Might want to take advantage of this.
|
|
|
|
// At this point, assembly is essentially complete. However, we must ensure
|
|
// that minor indices are sorted within each lane and without duplicates.
|
|
let mut sorted_major_offsets = Vec::new();
|
|
let mut sorted_minor_idx = Vec::new();
|
|
let mut sorted_vals = Vec::new();
|
|
|
|
sorted_major_offsets.push(0);
|
|
|
|
// We need some temporary storage when working with each lane. Since lanes often have a
|
|
// very small number of non-zero entries, we try to amortize allocations across
|
|
// lanes by reusing workspace vectors
|
|
let mut idx_workspace = Vec::new();
|
|
let mut perm_workspace = Vec::new();
|
|
let mut values_workspace = Vec::new();
|
|
|
|
for lane in 0..major_dim {
|
|
let begin = unsorted_major_offsets[lane];
|
|
let end = unsorted_major_offsets[lane + 1];
|
|
let count = end - begin;
|
|
let range = begin..end;
|
|
|
|
// Ensure that workspaces can hold enough data
|
|
perm_workspace.resize(count, 0);
|
|
idx_workspace.resize(count, 0);
|
|
values_workspace.resize(count, T::zero());
|
|
sort_lane(
|
|
&mut idx_workspace[..count],
|
|
&mut values_workspace[..count],
|
|
&unsorted_minor_idx[range.clone()],
|
|
&unsorted_vals[range.clone()],
|
|
&mut perm_workspace[..count],
|
|
);
|
|
|
|
let sorted_ja_current_len = sorted_minor_idx.len();
|
|
|
|
combine_duplicates(
|
|
|idx| sorted_minor_idx.push(idx),
|
|
|val| sorted_vals.push(val),
|
|
&idx_workspace[..count],
|
|
&values_workspace[..count],
|
|
&Add::add,
|
|
);
|
|
|
|
let new_col_count = sorted_minor_idx.len() - sorted_ja_current_len;
|
|
sorted_major_offsets.push(sorted_major_offsets.last().unwrap() + new_col_count);
|
|
}
|
|
|
|
(sorted_major_offsets, sorted_minor_idx, sorted_vals)
|
|
}
|
|
|
|
/// Converts matrix data given in triplet format to unsorted CSR/CSC, retaining any duplicated
|
|
/// indices.
|
|
///
|
|
/// Here `major/minor` is `row/col` for CSR and `col/row` for CSC.
|
|
fn coo_to_unsorted_cs<T: Clone>(
|
|
major_offsets: &mut [usize],
|
|
cs_minor_idx: &mut [usize],
|
|
cs_values: &mut [T],
|
|
major_dim: usize,
|
|
major_indices: &[usize],
|
|
minor_indices: &[usize],
|
|
coo_values: &[T],
|
|
) {
|
|
assert_eq!(major_offsets.len(), major_dim + 1);
|
|
assert_eq!(cs_minor_idx.len(), cs_values.len());
|
|
assert_eq!(cs_values.len(), major_indices.len());
|
|
assert_eq!(major_indices.len(), minor_indices.len());
|
|
assert_eq!(minor_indices.len(), coo_values.len());
|
|
|
|
// Count the number of occurrences of each row
|
|
for major_idx in major_indices {
|
|
major_offsets[*major_idx] += 1;
|
|
}
|
|
|
|
cs::convert_counts_to_offsets(major_offsets);
|
|
|
|
{
|
|
// TODO: Instead of allocating a whole new vector storing the current counts,
|
|
// I think it's possible to be a bit more clever by storing each count
|
|
// in the last of the column indices for each row
|
|
let mut current_counts = vec![0usize; major_dim + 1];
|
|
let triplet_iter = major_indices.iter().zip(minor_indices).zip(coo_values);
|
|
for ((i, j), value) in triplet_iter {
|
|
let current_offset = major_offsets[*i] + current_counts[*i];
|
|
cs_minor_idx[current_offset] = *j;
|
|
cs_values[current_offset] = value.clone();
|
|
current_counts[*i] += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sort the indices of the given lane.
|
|
///
|
|
/// The indices and values in `minor_idx` and `values` are sorted according to the
|
|
/// minor indices and stored in `minor_idx_result` and `values_result` respectively.
|
|
///
|
|
/// All input slices are expected to be of the same length. The contents of mutable slices
|
|
/// can be arbitrary, as they are anyway overwritten.
|
|
fn sort_lane<T: Clone>(
|
|
minor_idx_result: &mut [usize],
|
|
values_result: &mut [T],
|
|
minor_idx: &[usize],
|
|
values: &[T],
|
|
workspace: &mut [usize],
|
|
) {
|
|
assert_eq!(minor_idx_result.len(), values_result.len());
|
|
assert_eq!(values_result.len(), minor_idx.len());
|
|
assert_eq!(minor_idx.len(), values.len());
|
|
assert_eq!(values.len(), workspace.len());
|
|
|
|
let permutation = workspace;
|
|
// Set permutation to identity
|
|
for (i, p) in permutation.iter_mut().enumerate() {
|
|
*p = i;
|
|
}
|
|
|
|
// Compute permutation needed to bring minor indices into sorted order
|
|
// Note: Using sort_unstable here avoids internal allocations, which is crucial since
|
|
// each lane might have a small number of elements
|
|
permutation.sort_unstable_by_key(|idx| minor_idx[*idx]);
|
|
|
|
apply_permutation(minor_idx_result, minor_idx, permutation);
|
|
apply_permutation(values_result, values, permutation);
|
|
}
|
|
|
|
// TODO: Move this into `utils` or something?
|
|
fn apply_permutation<T: Clone>(out_slice: &mut [T], in_slice: &[T], permutation: &[usize]) {
|
|
assert_eq!(out_slice.len(), in_slice.len());
|
|
assert_eq!(out_slice.len(), permutation.len());
|
|
for (out_element, old_pos) in out_slice.iter_mut().zip(permutation) {
|
|
*out_element = in_slice[*old_pos].clone();
|
|
}
|
|
}
|
|
|
|
/// Given *sorted* indices and corresponding scalar values, combines duplicates with the given
|
|
/// associative combiner and calls the provided produce methods with combined indices and values.
|
|
fn combine_duplicates<T: Clone>(
|
|
mut produce_idx: impl FnMut(usize),
|
|
mut produce_value: impl FnMut(T),
|
|
idx_array: &[usize],
|
|
values: &[T],
|
|
combiner: impl Fn(T, T) -> T,
|
|
) {
|
|
assert_eq!(idx_array.len(), values.len());
|
|
|
|
let mut i = 0;
|
|
while i < idx_array.len() {
|
|
let idx = idx_array[i];
|
|
let mut combined_value = values[i].clone();
|
|
let mut j = i + 1;
|
|
while j < idx_array.len() && idx_array[j] == idx {
|
|
let j_val = values[j].clone();
|
|
combined_value = combiner(combined_value, j_val);
|
|
j += 1;
|
|
}
|
|
produce_idx(idx);
|
|
produce_value(combined_value);
|
|
i = j;
|
|
}
|
|
} |