forked from M-Labs/nalgebra
264 lines
8.5 KiB
Rust
264 lines
8.5 KiB
Rust
#![cfg(feature = "arbitrary")]
|
||
#![allow(non_snake_case)]
|
||
|
||
use na::{
|
||
Isometry2, Isometry3, Point2, Point3, Rotation2, Rotation3, Translation2, Translation3,
|
||
UnitComplex, UnitQuaternion, Vector2, Vector3,
|
||
};
|
||
|
||
quickcheck!(
|
||
fn append_rotation_wrt_point_to_id(r: UnitQuaternion<f64>, p: Point3<f64>) -> bool {
|
||
let mut iso = Isometry3::identity();
|
||
iso.append_rotation_wrt_point_mut(&r, &p);
|
||
|
||
iso == Isometry3::rotation_wrt_point(r, p)
|
||
}
|
||
|
||
fn rotation_wrt_point_invariance(r: UnitQuaternion<f64>, p: Point3<f64>) -> bool {
|
||
let iso = Isometry3::rotation_wrt_point(r, p);
|
||
|
||
relative_eq!(iso * p, p, epsilon = 1.0e-7)
|
||
}
|
||
|
||
fn look_at_rh_3(eye: Point3<f64>, target: Point3<f64>, up: Vector3<f64>) -> bool {
|
||
let viewmatrix = Isometry3::look_at_rh(&eye, &target, &up);
|
||
|
||
let origin = Point3::origin();
|
||
relative_eq!(viewmatrix * eye, origin, epsilon = 1.0e-7)
|
||
&& relative_eq!(
|
||
(viewmatrix * (target - eye)).normalize(),
|
||
-Vector3::z(),
|
||
epsilon = 1.0e-7
|
||
)
|
||
}
|
||
|
||
fn observer_frame_3(eye: Point3<f64>, target: Point3<f64>, up: Vector3<f64>) -> bool {
|
||
let observer = Isometry3::face_towards(&eye, &target, &up);
|
||
|
||
let origin = Point3::origin();
|
||
relative_eq!(observer * origin, eye, epsilon = 1.0e-7)
|
||
&& relative_eq!(
|
||
observer * Vector3::z(),
|
||
(target - eye).normalize(),
|
||
epsilon = 1.0e-7
|
||
)
|
||
}
|
||
|
||
fn inverse_is_identity(i: Isometry3<f64>, p: Point3<f64>, v: Vector3<f64>) -> bool {
|
||
let ii = i.inverse();
|
||
|
||
relative_eq!(i * ii, Isometry3::identity(), epsilon = 1.0e-7)
|
||
&& relative_eq!(ii * i, Isometry3::identity(), epsilon = 1.0e-7)
|
||
&& relative_eq!((i * ii) * p, p, epsilon = 1.0e-7)
|
||
&& relative_eq!((ii * i) * p, p, epsilon = 1.0e-7)
|
||
&& relative_eq!((i * ii) * v, v, epsilon = 1.0e-7)
|
||
&& relative_eq!((ii * i) * v, v, epsilon = 1.0e-7)
|
||
}
|
||
|
||
fn inverse_is_parts_inversion(t: Translation3<f64>, r: UnitQuaternion<f64>) -> bool {
|
||
let i = t * r;
|
||
i.inverse() == r.inverse() * t.inverse()
|
||
}
|
||
|
||
fn multiply_equals_alga_transform(i: Isometry3<f64>, v: Vector3<f64>, p: Point3<f64>) -> bool {
|
||
i * v == i.transform_vector(&v)
|
||
&& i * p == i.transform_point(&p)
|
||
&& relative_eq!(
|
||
i.inverse() * v,
|
||
i.inverse_transform_vector(&v),
|
||
epsilon = 1.0e-7
|
||
)
|
||
&& relative_eq!(
|
||
i.inverse() * p,
|
||
i.inverse_transform_point(&p),
|
||
epsilon = 1.0e-7
|
||
)
|
||
}
|
||
|
||
fn composition2(
|
||
i: Isometry2<f64>,
|
||
uc: UnitComplex<f64>,
|
||
r: Rotation2<f64>,
|
||
t: Translation2<f64>,
|
||
v: Vector2<f64>,
|
||
p: Point2<f64>,
|
||
) -> bool {
|
||
// (rotation × translation) * point = rotation × (translation * point)
|
||
relative_eq!((uc * t) * v, uc * v, epsilon = 1.0e-7) &&
|
||
relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) &&
|
||
relative_eq!((uc * t) * p, uc * (t * p), epsilon = 1.0e-7) &&
|
||
relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × rotation) * point = translation × (rotation * point)
|
||
(t * uc) * v == uc * v &&
|
||
(t * r) * v == r * v &&
|
||
(t * uc) * p == t * (uc * p) &&
|
||
(t * r) * p == t * (r * p) &&
|
||
|
||
// (rotation × isometry) * point = rotation × (isometry * point)
|
||
relative_eq!((uc * i) * v, uc * (i * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((uc * i) * p, uc * (i * p), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × rotation) * point = isometry × (rotation * point)
|
||
relative_eq!((i * uc) * v, i * (uc * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((i * uc) * p, i * (uc * p), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × isometry) * point = translation × (isometry * point)
|
||
relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × translation) * point = isometry × (translation * point)
|
||
relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7) &&
|
||
relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7)
|
||
}
|
||
|
||
fn composition3(
|
||
i: Isometry3<f64>,
|
||
uq: UnitQuaternion<f64>,
|
||
r: Rotation3<f64>,
|
||
t: Translation3<f64>,
|
||
v: Vector3<f64>,
|
||
p: Point3<f64>,
|
||
) -> bool {
|
||
// (rotation × translation) * point = rotation × (translation * point)
|
||
relative_eq!((uq * t) * v, uq * v, epsilon = 1.0e-7) &&
|
||
relative_eq!((r * t) * v, r * v, epsilon = 1.0e-7) &&
|
||
relative_eq!((uq * t) * p, uq * (t * p), epsilon = 1.0e-7) &&
|
||
relative_eq!((r * t) * p, r * (t * p), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × rotation) * point = translation × (rotation * point)
|
||
(t * uq) * v == uq * v &&
|
||
(t * r) * v == r * v &&
|
||
(t * uq) * p == t * (uq * p) &&
|
||
(t * r) * p == t * (r * p) &&
|
||
|
||
// (rotation × isometry) * point = rotation × (isometry * point)
|
||
relative_eq!((uq * i) * v, uq * (i * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((uq * i) * p, uq * (i * p), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × rotation) * point = isometry × (rotation * point)
|
||
relative_eq!((i * uq) * v, i * (uq * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((i * uq) * p, i * (uq * p), epsilon = 1.0e-7) &&
|
||
|
||
// (translation × isometry) * point = translation × (isometry * point)
|
||
relative_eq!((t * i) * v, (i * v), epsilon = 1.0e-7) &&
|
||
relative_eq!((t * i) * p, t * (i * p), epsilon = 1.0e-7) &&
|
||
|
||
// (isometry × translation) * point = isometry × (translation * point)
|
||
relative_eq!((i * t) * v, i * v, epsilon = 1.0e-7) &&
|
||
relative_eq!((i * t) * p, i * (t * p), epsilon = 1.0e-7)
|
||
}
|
||
|
||
fn all_op_exist(
|
||
i: Isometry3<f64>,
|
||
uq: UnitQuaternion<f64>,
|
||
t: Translation3<f64>,
|
||
v: Vector3<f64>,
|
||
p: Point3<f64>,
|
||
r: Rotation3<f64>,
|
||
) -> bool {
|
||
let iMi = i * i;
|
||
let iMuq = i * uq;
|
||
let iDi = i / i;
|
||
let iDuq = i / uq;
|
||
|
||
let iMp = i * p;
|
||
let iMv = i * v;
|
||
|
||
let iMt = i * t;
|
||
let tMi = t * i;
|
||
|
||
let tMr = t * r;
|
||
let tMuq = t * uq;
|
||
|
||
let uqMi = uq * i;
|
||
let uqDi = uq / i;
|
||
|
||
let rMt = r * t;
|
||
let uqMt = uq * t;
|
||
|
||
let mut iMt1 = i;
|
||
let mut iMt2 = i;
|
||
|
||
let mut iMi1 = i;
|
||
let mut iMi2 = i;
|
||
|
||
let mut iMuq1 = i;
|
||
let mut iMuq2 = i;
|
||
|
||
let mut iDi1 = i;
|
||
let mut iDi2 = i;
|
||
|
||
let mut iDuq1 = i;
|
||
let mut iDuq2 = i;
|
||
|
||
iMt1 *= t;
|
||
iMt2 *= &t;
|
||
|
||
iMi1 *= i;
|
||
iMi2 *= &i;
|
||
|
||
iMuq1 *= uq;
|
||
iMuq2 *= &uq;
|
||
|
||
iDi1 /= i;
|
||
iDi2 /= &i;
|
||
|
||
iDuq1 /= uq;
|
||
iDuq2 /= &uq;
|
||
|
||
iMt == iMt1
|
||
&& iMt == iMt2
|
||
&& iMi == iMi1
|
||
&& iMi == iMi2
|
||
&& iMuq == iMuq1
|
||
&& iMuq == iMuq2
|
||
&& iDi == iDi1
|
||
&& iDi == iDi2
|
||
&& iDuq == iDuq1
|
||
&& iDuq == iDuq2
|
||
&& iMi == &i * &i
|
||
&& iMi == i * &i
|
||
&& iMi == &i * i
|
||
&& iMuq == &i * &uq
|
||
&& iMuq == i * &uq
|
||
&& iMuq == &i * uq
|
||
&& iDi == &i / &i
|
||
&& iDi == i / &i
|
||
&& iDi == &i / i
|
||
&& iDuq == &i / &uq
|
||
&& iDuq == i / &uq
|
||
&& iDuq == &i / uq
|
||
&& iMp == &i * &p
|
||
&& iMp == i * &p
|
||
&& iMp == &i * p
|
||
&& iMv == &i * &v
|
||
&& iMv == i * &v
|
||
&& iMv == &i * v
|
||
&& iMt == &i * &t
|
||
&& iMt == i * &t
|
||
&& iMt == &i * t
|
||
&& tMi == &t * &i
|
||
&& tMi == t * &i
|
||
&& tMi == &t * i
|
||
&& tMr == &t * &r
|
||
&& tMr == t * &r
|
||
&& tMr == &t * r
|
||
&& tMuq == &t * &uq
|
||
&& tMuq == t * &uq
|
||
&& tMuq == &t * uq
|
||
&& uqMi == &uq * &i
|
||
&& uqMi == uq * &i
|
||
&& uqMi == &uq * i
|
||
&& uqDi == &uq / &i
|
||
&& uqDi == uq / &i
|
||
&& uqDi == &uq / i
|
||
&& rMt == &r * &t
|
||
&& rMt == r * &t
|
||
&& rMt == &r * t
|
||
&& uqMt == &uq * &t
|
||
&& uqMt == uq * &t
|
||
&& uqMt == &uq * t
|
||
}
|
||
);
|