forked from M-Labs/nalgebra
924d8269d8
This adds the Pnt{1,2,3,4,5,6} structures. This adds the traits: − AnyPnt − FloatPnt − PntExt − FloatPntExt − Orig (to return the zero point) − PntAsVec − VecAsPnt This adds operator overloading: − Pnt + Vec − Pnt - Vec − Pnt * Scalar − Pnt / Scalar − Pnt + Scalar − Pnt - Scalar − Iso * Pnt − Rot * Pnt − Pnt * Iso − Pnt * Rot This changes some behavior: − Iso multiplication with a Vec does not translate the vector any more. − ToHomogeneous adds a 0.0 at the end of a Vec and a 1.0 at the end of a Pnt. − FromHomogeneous performs w-normalization on a Pnt, but not on a Vec. − The Translate<Vec> trait is never implemented (i-e. a Vec is not to be translated). cc #25
951 lines
22 KiB
Rust
951 lines
22 KiB
Rust
/*!
|
||
# nalgebra
|
||
|
||
**nalgebra** is a linear algebra library written for Rust targeting:
|
||
|
||
* general-purpose linear algebra (still lacks a lot of features…).
|
||
* real time computer graphics.
|
||
* real time computer physics.
|
||
|
||
An on-line version of this documentation is available [here](http://nalgebra.org).
|
||
|
||
## Using **nalgebra**
|
||
All the functionalities of **nalgebra** are grouped in one place: the root `nalgebra::` module.
|
||
This module re-exports everything and includes free functions for all traits methods doing
|
||
out-of-place modifications.
|
||
|
||
* You can import the whole prelude using:
|
||
|
||
```.ignore
|
||
use nalgebra::*;
|
||
```
|
||
|
||
The preferred way to use **nalgebra** is to import types and traits explicitly, and call
|
||
free-functions using the `na::` prefix:
|
||
|
||
```.rust
|
||
extern crate "nalgebra" as na;
|
||
use na::{Vec3, Rot3, Rotation};
|
||
|
||
fn main() {
|
||
let a = Vec3::new(1.0f64, 1.0, 1.0);
|
||
let mut b = Rot3::new(na::zero());
|
||
|
||
b.append_rotation(&a);
|
||
|
||
assert!(na::approx_eq(&na::rotation(&b), &a));
|
||
}
|
||
```
|
||
|
||
## Features
|
||
**nalgebra** is meant to be a general-purpose linear algebra library (but is very far from that…),
|
||
and keeps an optimized set of tools for computational graphics and physics. Those features include:
|
||
|
||
* Vectors with static sizes: `Vec0`, `Vec1`, `Vec2`, `Vec3`, `Vec4`, `Vec5`, `Vec6`.
|
||
* Square matrices with static sizes: `Mat1`, `Mat2`, `Mat3`, `Mat4`, `Mat5`, `Mat6 `.
|
||
* Rotation matrices: `Rot2`, `Rot3`, `Rot4`.
|
||
* Isometries: `Iso2`, `Iso3`, `Iso4`.
|
||
* Dynamically sized vector: `DVec`.
|
||
* Dynamically sized (square or rectangular) matrix: `DMat`.
|
||
* A few methods for data analysis: `Cov`, `Mean`.
|
||
* Almost one trait per functionality: useful for generic programming.
|
||
* Operator overloading using the double trait dispatch
|
||
[trick](http://smallcultfollowing.com/babysteps/blog/2012/10/04/refining-traits-slash-impls/).
|
||
For example, the following works:
|
||
|
||
```rust
|
||
extern crate "nalgebra" as na;
|
||
use na::{Vec3, Mat3};
|
||
|
||
fn main() {
|
||
let v: Vec3<f64> = na::zero();
|
||
let m: Mat3<f64> = na::one();
|
||
|
||
let _ = m * v; // matrix-vector multiplication.
|
||
let _ = v * m; // vector-matrix multiplication.
|
||
let _ = m * m; // matrix-matrix multiplication.
|
||
let _ = v * 2.0f64; // vector-scalar multiplication.
|
||
}
|
||
```
|
||
|
||
## Compilation
|
||
You will need the last nightly build of the [rust compiler](http://www.rust-lang.org)
|
||
and the official package manager: [cargo](https://github.com/rust-lang/cargo).
|
||
|
||
Simply add the following to your `Cargo.toml` file:
|
||
|
||
```.ignore
|
||
[dependencies.nalgebra]
|
||
git = "https://github.com/sebcrozet/nalgebra"
|
||
```
|
||
|
||
|
||
## **nalgebra** in use
|
||
Here are some projects using **nalgebra**.
|
||
Feel free to add your project to this list if you happen to use **nalgebra**!
|
||
|
||
* [nphysics](https://github.com/sebcrozet/nphysics): a real-time physics engine.
|
||
* [ncollide](https://github.com/sebcrozet/ncollide): a collision detection library.
|
||
* [kiss3d](https://github.com/sebcrozet/kiss3d): a minimalistic graphics engine.
|
||
* [frog](https://github.com/natal/frog): a machine learning library.
|
||
*/
|
||
|
||
#![deny(non_camel_case_types)]
|
||
#![deny(unnecessary_parens)]
|
||
#![deny(non_uppercase_statics)]
|
||
#![deny(unnecessary_qualification)]
|
||
#![deny(unused_result)]
|
||
#![warn(missing_doc)]
|
||
#![feature(macro_rules)]
|
||
#![feature(globs)]
|
||
#![doc(html_root_url = "http://nalgebra.org/doc")]
|
||
|
||
extern crate rand;
|
||
extern crate serialize;
|
||
|
||
#[cfg(test)]
|
||
extern crate test;
|
||
#[cfg(test)]
|
||
extern crate debug;
|
||
|
||
use std::num::{Zero, One, FloatMath};
|
||
use std::cmp;
|
||
pub use traits::{PartialLess, PartialEqual, PartialGreater, NotComparable};
|
||
pub use traits::{
|
||
Absolute,
|
||
AbsoluteRotate,
|
||
AnyVec,
|
||
AnyPnt,
|
||
ApproxEq,
|
||
Basis,
|
||
Cast,
|
||
Col,
|
||
ColSlice, RowSlice,
|
||
Cov,
|
||
Cross,
|
||
CrossMatrix,
|
||
Det,
|
||
Diag,
|
||
Dim,
|
||
Dot,
|
||
Eye,
|
||
FloatPnt,
|
||
FloatPntExt,
|
||
FloatVec,
|
||
FloatVecExt,
|
||
FromHomogeneous,
|
||
Indexable,
|
||
Inv,
|
||
Iterable,
|
||
IterableMut,
|
||
LMul,
|
||
Mat,
|
||
Mean,
|
||
Norm,
|
||
Orig,
|
||
Outer,
|
||
PartialOrd,
|
||
PartialOrdering,
|
||
PntAsVec,
|
||
PntExt,
|
||
Projector,
|
||
RMul,
|
||
Rotate, Rotation, RotationMatrix, RotationWithTranslation,
|
||
Row,
|
||
ScalarAdd, ScalarSub,
|
||
ScalarMul, ScalarDiv,
|
||
ToHomogeneous,
|
||
Transform, Transformation,
|
||
Translate, Translation,
|
||
Transpose,
|
||
UniformSphereSample,
|
||
VecAsPnt,
|
||
VecExt
|
||
};
|
||
|
||
pub use structs::{
|
||
Identity,
|
||
DMat,
|
||
DVec, DVec1, DVec2, DVec3, DVec4, DVec5, DVec6,
|
||
Iso2, Iso3, Iso4,
|
||
Mat1, Mat2, Mat3, Mat4,
|
||
Mat5, Mat6,
|
||
Rot2, Rot3, Rot4,
|
||
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6,
|
||
Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6
|
||
};
|
||
|
||
pub use linalg::{
|
||
qr,
|
||
eigen_qr,
|
||
householder_matrix
|
||
};
|
||
|
||
#[deprecated = "use the root module `nalgebra::` directly instead of the `nalgebra::na::` module (you may create an alias `extern crate \"nalgebra\" as na;` when importing the crate)"]
|
||
pub mod na;
|
||
mod structs;
|
||
mod traits;
|
||
mod linalg;
|
||
|
||
// mod lower_triangular;
|
||
// mod chol;
|
||
|
||
/*
|
||
* Reexport everything.
|
||
*/
|
||
/// Traits to work around the language limitations related to operator overloading.
|
||
///
|
||
/// The trait names are formed by:
|
||
///
|
||
/// * a type name (eg. Vec1, Vec2, Mat3, Mat4, etc.).
|
||
/// * the name of a binary operation (eg. Mul, Div, Add, Sub, etc.).
|
||
/// * the word `Rhs`.
|
||
///
|
||
/// When implemented by the type `T`, the trait makes it possible to overload the binary operator
|
||
/// between `T` and the type name given by the trait.
|
||
///
|
||
/// # Examples:
|
||
///
|
||
/// * `Vec3MulRhs` will allow the overload of the `*` operator between the implementor type and
|
||
/// `Vec3`. The `Vec3` being the first argument of the multiplication.
|
||
/// * `Mat4DivRhs` will allow the overload of the `/` operator between the implementor type and
|
||
/// `Mat4`. The `Mat4` being the first argument of the division.
|
||
pub mod overload {
|
||
pub use structs::{Vec1MulRhs, Vec2MulRhs, Vec3MulRhs, Vec4MulRhs, Vec5MulRhs, Vec6MulRhs,
|
||
Vec1DivRhs, Vec2DivRhs, Vec3DivRhs, Vec4DivRhs, Vec5DivRhs, Vec6DivRhs,
|
||
Vec1AddRhs, Vec2AddRhs, Vec3AddRhs, Vec4AddRhs, Vec5AddRhs, Vec6AddRhs,
|
||
Vec1SubRhs, Vec2SubRhs, Vec3SubRhs, Vec4SubRhs, Vec5SubRhs, Vec6SubRhs,
|
||
Mat1MulRhs, Mat2MulRhs, Mat3MulRhs, Mat4MulRhs, Mat5MulRhs, Mat6MulRhs,
|
||
Mat1DivRhs, Mat2DivRhs, Mat3DivRhs, Mat4DivRhs, Mat5DivRhs, Mat6DivRhs,
|
||
Mat1AddRhs, Mat2AddRhs, Mat3AddRhs, Mat4AddRhs, Mat5AddRhs, Mat6AddRhs,
|
||
Mat1SubRhs, Mat2SubRhs, Mat3SubRhs, Mat4SubRhs, Mat5SubRhs, Mat6SubRhs};
|
||
}
|
||
|
||
/// Change the input value to ensure it is on the range `[min, max]`.
|
||
#[inline(always)]
|
||
pub fn clamp<T: cmp::PartialOrd>(val: T, min: T, max: T) -> T {
|
||
if val > min {
|
||
if val < max {
|
||
val
|
||
}
|
||
else {
|
||
max
|
||
}
|
||
}
|
||
else {
|
||
min
|
||
}
|
||
}
|
||
|
||
/// Same as `cmp::max`.
|
||
#[inline(always)]
|
||
pub fn max<T: Ord>(a: T, b: T) -> T {
|
||
cmp::max(a, b)
|
||
}
|
||
|
||
/// Same as `cmp::min`.
|
||
#[inline(always)]
|
||
pub fn min<T: Ord>(a: T, b: T) -> T {
|
||
cmp::min(a, b)
|
||
}
|
||
|
||
/// Returns the infimum of `a` and `b`.
|
||
#[inline(always)]
|
||
pub fn inf<T: PartialOrd>(a: &T, b: &T) -> T {
|
||
PartialOrd::inf(a, b)
|
||
}
|
||
|
||
/// Returns the supremum of `a` and `b`.
|
||
#[inline(always)]
|
||
pub fn sup<T: PartialOrd>(a: &T, b: &T) -> T {
|
||
PartialOrd::sup(a, b)
|
||
}
|
||
|
||
/// Compare `a` and `b` using a partial ordering relation.
|
||
#[inline(always)]
|
||
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> PartialOrdering {
|
||
PartialOrd::partial_cmp(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
|
||
#[inline(always)]
|
||
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
PartialOrd::partial_lt(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
|
||
#[inline(always)]
|
||
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
PartialOrd::partial_le(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
|
||
#[inline(always)]
|
||
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
PartialOrd::partial_gt(a, b)
|
||
}
|
||
|
||
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
|
||
#[inline(always)]
|
||
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
|
||
PartialOrd::partial_ge(a, b)
|
||
}
|
||
|
||
/// Return the minimum of `a` and `b` if they are comparable.
|
||
#[inline(always)]
|
||
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||
PartialOrd::partial_min(a, b)
|
||
}
|
||
|
||
/// Return the maximum of `a` and `b` if they are comparable.
|
||
#[inline(always)]
|
||
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
|
||
PartialOrd::partial_max(a, b)
|
||
}
|
||
|
||
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
|
||
/// `min` or `max`.
|
||
#[inline(always)]
|
||
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
|
||
PartialOrd::partial_clamp(value, min, max)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Constructors
|
||
//
|
||
//
|
||
|
||
/// Create a special identity object.
|
||
///
|
||
/// Same as `Identity::new()`.
|
||
#[inline(always)]
|
||
pub fn identity() -> Identity {
|
||
Identity::new()
|
||
}
|
||
|
||
/// Create a zero-valued value.
|
||
///
|
||
/// This is the same as `std::num::zero()`.
|
||
#[inline(always)]
|
||
pub fn zero<T: Zero>() -> T {
|
||
Zero::zero()
|
||
}
|
||
|
||
/// Create a one-valued value.
|
||
///
|
||
/// This is the same as `std::num::one()`.
|
||
#[inline(always)]
|
||
pub fn one<T: One>() -> T {
|
||
One::one()
|
||
}
|
||
|
||
//
|
||
//
|
||
// Geometry
|
||
//
|
||
//
|
||
|
||
/// Returns the trivial origin of an affine space.
|
||
#[inline(always)]
|
||
pub fn orig<T: Orig>() -> T {
|
||
Orig::orig()
|
||
}
|
||
|
||
/*
|
||
* FloatPnt
|
||
*/
|
||
/// Returns the distance between two points.
|
||
#[inline(always)]
|
||
pub fn dist<N: Float, P: FloatPnt<N, V>, V: Norm<N>>(a: &P, b: &P) -> N {
|
||
FloatPnt::<N, V>::dist(a, b)
|
||
}
|
||
|
||
/// Returns the squared distance between two points.
|
||
#[inline(always)]
|
||
pub fn sqdist<N: Float, P: FloatPnt<N, V>, V: Norm<N>>(a: &P, b: &P) -> N {
|
||
FloatPnt::<N, V>::sqdist(a, b)
|
||
}
|
||
|
||
/*
|
||
* Perspective
|
||
*/
|
||
/// Computes a projection matrix given the frustrum near plane width, height, the field of
|
||
/// view, and the distance to the clipping planes (`znear` and `zfar`).
|
||
pub fn perspective3d<N: FloatMath + Cast<f32> + Zero + One>(width: N, height: N, fov: N, znear: N, zfar: N) -> Mat4<N> {
|
||
let aspect = width / height;
|
||
|
||
let _1: N = one();
|
||
let sy = _1 / (fov * cast(0.5)).tan();
|
||
let sx = -sy / aspect;
|
||
let sz = -(zfar + znear) / (znear - zfar);
|
||
let tz = zfar * znear * cast(2.0) / (znear - zfar);
|
||
|
||
Mat4::new(
|
||
sx, zero(), zero(), zero(),
|
||
zero(), sy, zero(), zero(),
|
||
zero(), zero(), sz, tz,
|
||
zero(), zero(), one(), zero())
|
||
}
|
||
|
||
/*
|
||
* Translation<V>
|
||
*/
|
||
|
||
/// Gets the translation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let trans = na::translation(&t);
|
||
///
|
||
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
|
||
m.translation()
|
||
}
|
||
|
||
/// Gets the inverse translation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let itrans = na::inv_translation(&t);
|
||
///
|
||
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
|
||
m.inv_translation()
|
||
}
|
||
|
||
/// Applies the translation `v` to a copy of `m`.
|
||
#[inline(always)]
|
||
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
|
||
Translation::append_translation_cpy(m, v)
|
||
}
|
||
|
||
/*
|
||
* Translate<P>
|
||
*/
|
||
|
||
/// Applies a translation to a point.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Pnt3, Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let p = Pnt3::new(2.0, 2.0, 2.0);
|
||
///
|
||
/// let tp = na::translate(&t, &p);
|
||
///
|
||
/// assert!(tp == Pnt3::new(3.0, 3.0, 3.0))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn translate<P, M: Translate<P>>(m: &M, p: &P) -> P {
|
||
m.translate(p)
|
||
}
|
||
|
||
/// Applies an inverse translation to a point.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Pnt3, Vec3, Iso3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Iso3::new(Vec3::new(1.0f64, 1.0, 1.0), na::zero());
|
||
/// let p = Pnt3::new(2.0, 2.0, 2.0);
|
||
///
|
||
/// let tp = na::inv_translate(&t, &p);
|
||
///
|
||
/// assert!(na::approx_eq(&tp, &Pnt3::new(1.0, 1.0, 1.0)))
|
||
/// }
|
||
#[inline(always)]
|
||
pub fn inv_translate<P, M: Translate<P>>(m: &M, p: &P) -> P {
|
||
m.inv_translate(p)
|
||
}
|
||
|
||
/*
|
||
* Rotation<V>
|
||
*/
|
||
|
||
/// Gets the rotation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||
///
|
||
/// assert!(na::approx_eq(&na::rotation(&t), &Vec3::new(1.0, 1.0, 1.0)));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||
m.rotation()
|
||
}
|
||
|
||
|
||
/// Gets the inverse rotation applicable by `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(1.0f64, 1.0, 1.0));
|
||
///
|
||
/// assert!(na::approx_eq(&na::inv_rotation(&t), &Vec3::new(-1.0, -1.0, -1.0)));
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
|
||
m.inv_rotation()
|
||
}
|
||
|
||
// FIXME: this example is a bit shity
|
||
/// Applies the rotation `v` to a copy of `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||
/// let rt = na::append_rotation(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||
Rotation::append_rotation_cpy(m, v)
|
||
}
|
||
|
||
// FIXME: this example is a bit shity
|
||
/// Pre-applies the rotation `v` to a copy of `m`.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use na::{Vec3, Rot3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.0));
|
||
/// let v = Vec3::new(1.0, 1.0, 1.0);
|
||
/// let rt = na::prepend_rotation(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&na::rotation(&rt), &Vec3::new(1.0, 1.0, 1.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn prepend_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
|
||
Rotation::prepend_rotation_cpy(m, v)
|
||
}
|
||
|
||
/*
|
||
* Rotate<V>
|
||
*/
|
||
|
||
/// Applies a rotation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use std::num::Float;
|
||
/// use na::{Rot3, Vec3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
|
||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||
///
|
||
/// let tv = na::rotate(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, 1.0, 0.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||
m.rotate(v)
|
||
}
|
||
|
||
|
||
/// Applies an inverse rotation to a vector.
|
||
///
|
||
/// ```rust
|
||
/// extern crate "nalgebra" as na;
|
||
/// use std::num::Float;
|
||
/// use na::{Rot3, Vec3};
|
||
///
|
||
/// fn main() {
|
||
/// let t = Rot3::new(Vec3::new(0.0f64, 0.0, 0.5 * Float::pi()));
|
||
/// let v = Vec3::new(1.0, 0.0, 0.0);
|
||
///
|
||
/// let tv = na::inv_rotate(&t, &v);
|
||
///
|
||
/// assert!(na::approx_eq(&tv, &Vec3::new(0.0, -1.0, 0.0)))
|
||
/// }
|
||
/// ```
|
||
#[inline(always)]
|
||
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
|
||
m.inv_rotate(v)
|
||
}
|
||
|
||
/*
|
||
* RotationWithTranslation<LV, AV>
|
||
*/
|
||
|
||
/// Rotates a copy of `m` by `amount` using `center` as the pivot point.
|
||
#[inline(always)]
|
||
pub fn append_rotation_wrt_point<LV: Neg<LV>,
|
||
AV,
|
||
M: RotationWithTranslation<LV, AV>>(
|
||
m: &M,
|
||
amount: &AV,
|
||
center: &LV) -> M {
|
||
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
|
||
}
|
||
|
||
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
|
||
#[inline(always)]
|
||
pub fn append_rotation_wrt_center<LV: Neg<LV>,
|
||
AV,
|
||
M: RotationWithTranslation<LV, AV>>(
|
||
m: &M,
|
||
amount: &AV) -> M {
|
||
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
|
||
}
|
||
|
||
/*
|
||
* RotationMatrix<LV, AV, R>
|
||
*/
|
||
|
||
/// Builds a rotation matrix from `r`.
|
||
#[inline(always)]
|
||
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
|
||
r.to_rot_mat()
|
||
}
|
||
|
||
/*
|
||
* AbsoluteRotate<V>
|
||
*/
|
||
|
||
/// Applies a rotation using the absolute values of its components.
|
||
#[inline(always)]
|
||
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
|
||
m.absolute_rotate(v)
|
||
}
|
||
|
||
/*
|
||
* Transformation<T>
|
||
*/
|
||
|
||
/// Gets the transformation applicable by `m`.
|
||
#[inline(always)]
|
||
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||
m.transformation()
|
||
}
|
||
|
||
/// Gets the inverse transformation applicable by `m`.
|
||
#[inline(always)]
|
||
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
|
||
m.inv_transformation()
|
||
}
|
||
|
||
/// Gets a transformed copy of `m`.
|
||
#[inline(always)]
|
||
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
|
||
Transformation::append_transformation_cpy(m, t)
|
||
}
|
||
|
||
/*
|
||
* Transform<V>
|
||
*/
|
||
|
||
/// Applies a transformation to a vector.
|
||
#[inline(always)]
|
||
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||
m.transform(v)
|
||
}
|
||
|
||
/// Applies an inverse transformation to a vector.
|
||
#[inline(always)]
|
||
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
|
||
m.inv_transform(v)
|
||
}
|
||
|
||
/*
|
||
* Dot<N>
|
||
*/
|
||
|
||
/// Computes the dot product of two vectors.
|
||
#[inline(always)]
|
||
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
|
||
Dot::dot(a, b)
|
||
}
|
||
|
||
/*
|
||
* Norm<N>
|
||
*/
|
||
|
||
/// Computes the L2 norm of a vector.
|
||
#[inline(always)]
|
||
pub fn norm<V: Norm<N>, N: Float>(v: &V) -> N {
|
||
Norm::norm(v)
|
||
}
|
||
|
||
/// Computes the squared L2 norm of a vector.
|
||
#[inline(always)]
|
||
pub fn sqnorm<V: Norm<N>, N: Float>(v: &V) -> N {
|
||
Norm::sqnorm(v)
|
||
}
|
||
|
||
/// Gets the normalized version of a vector.
|
||
#[inline(always)]
|
||
pub fn normalize<V: Norm<N>, N: Float>(v: &V) -> V {
|
||
Norm::normalize_cpy(v)
|
||
}
|
||
|
||
/*
|
||
* Det<N>
|
||
*/
|
||
/// Computes the determinant of a square matrix.
|
||
#[inline(always)]
|
||
pub fn det<M: Det<N>, N>(m: &M) -> N {
|
||
Det::det(m)
|
||
}
|
||
|
||
/*
|
||
* Cross<V>
|
||
*/
|
||
|
||
/// Computes the cross product of two vectors.
|
||
#[inline(always)]
|
||
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
|
||
Cross::cross(a, b)
|
||
}
|
||
|
||
/*
|
||
* CrossMatrix<M>
|
||
*/
|
||
|
||
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
|
||
/// product.
|
||
#[inline(always)]
|
||
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
|
||
CrossMatrix::cross_matrix(v)
|
||
}
|
||
|
||
/*
|
||
* ToHomogeneous<U>
|
||
*/
|
||
|
||
/// Converts a matrix or vector to homogeneous coordinates.
|
||
#[inline(always)]
|
||
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
|
||
ToHomogeneous::to_homogeneous(m)
|
||
}
|
||
|
||
/*
|
||
* FromHomogeneous<U>
|
||
*/
|
||
|
||
/// Converts a matrix or vector from homogeneous coordinates.
|
||
///
|
||
/// w-normalization is appied.
|
||
#[inline(always)]
|
||
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
|
||
FromHomogeneous::from(m)
|
||
}
|
||
|
||
/*
|
||
* UniformSphereSample
|
||
*/
|
||
|
||
/// Samples the unit sphere living on the dimension as the samples types.
|
||
///
|
||
/// The number of sampling point is implementation-specific. It is always uniform.
|
||
#[inline(always)]
|
||
pub fn sample_sphere<V: UniformSphereSample>(f: |V| -> ()) {
|
||
UniformSphereSample::sample(f)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Operations
|
||
//
|
||
//
|
||
|
||
/*
|
||
* AproxEq<N>
|
||
*/
|
||
/// Tests approximate equality.
|
||
#[inline(always)]
|
||
pub fn approx_eq<T: ApproxEq<N>, N>(a: &T, b: &T) -> bool {
|
||
ApproxEq::approx_eq(a, b)
|
||
}
|
||
|
||
/// Tests approximate equality using a custom epsilon.
|
||
#[inline(always)]
|
||
pub fn approx_eq_eps<T: ApproxEq<N>, N>(a: &T, b: &T, eps: &N) -> bool {
|
||
ApproxEq::approx_eq_eps(a, b, eps)
|
||
}
|
||
|
||
|
||
/*
|
||
* Absolute<A>
|
||
*/
|
||
|
||
/// Computes a component-wise absolute value.
|
||
#[inline(always)]
|
||
pub fn abs<M: Absolute<Res>, Res>(m: &M) -> Res {
|
||
Absolute::abs(m)
|
||
}
|
||
|
||
/*
|
||
* Inv
|
||
*/
|
||
|
||
/// Gets an inverted copy of a matrix.
|
||
#[inline(always)]
|
||
pub fn inv<M: Inv>(m: &M) -> Option<M> {
|
||
Inv::inv_cpy(m)
|
||
}
|
||
|
||
/*
|
||
* Transpose
|
||
*/
|
||
|
||
/// Gets a transposed copy of a matrix.
|
||
#[inline(always)]
|
||
pub fn transpose<M: Transpose>(m: &M) -> M {
|
||
Transpose::transpose_cpy(m)
|
||
}
|
||
|
||
/*
|
||
* Outer<M>
|
||
*/
|
||
|
||
/// Computes the outer product of two vectors.
|
||
#[inline(always)]
|
||
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
|
||
Outer::outer(a, b)
|
||
}
|
||
|
||
/*
|
||
* Cov<M>
|
||
*/
|
||
|
||
/// Computes the covariance of a set of observations.
|
||
#[inline(always)]
|
||
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
|
||
Cov::cov(observations)
|
||
}
|
||
|
||
/*
|
||
* Mean<N>
|
||
*/
|
||
|
||
/// Computes the mean of a set of observations.
|
||
#[inline(always)]
|
||
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
|
||
Mean::mean(observations)
|
||
}
|
||
|
||
//
|
||
//
|
||
// Structure
|
||
//
|
||
//
|
||
|
||
/*
|
||
* Eye
|
||
*/
|
||
/// Construct the identity matrix for a given dimension
|
||
#[inline(always)]
|
||
pub fn new_identity<M: Eye>(dim: uint) -> M {
|
||
Eye::new_identity(dim)
|
||
}
|
||
|
||
/*
|
||
* Basis
|
||
*/
|
||
|
||
/// Computes the canonical basis for a given dimension.
|
||
#[inline(always)]
|
||
pub fn canonical_basis<V: Basis>(f: |V| -> bool) {
|
||
Basis::canonical_basis(f)
|
||
}
|
||
|
||
/// Computes the basis of the orthonormal subspace of a given vector.
|
||
#[inline(always)]
|
||
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: |V| -> bool) {
|
||
Basis::orthonormal_subspace_basis(v, f)
|
||
}
|
||
|
||
/*
|
||
* Row<R>
|
||
*/
|
||
|
||
/*
|
||
* Col<C>
|
||
*/
|
||
|
||
/*
|
||
* Diag<V>
|
||
*/
|
||
/// Gets the diagonal of a square matrix.
|
||
#[inline(always)]
|
||
pub fn diag<M: Diag<V>, V>(m: &M) -> V {
|
||
m.diag()
|
||
}
|
||
|
||
/*
|
||
* Dim
|
||
*/
|
||
/// Gets the dimension an object lives in.
|
||
///
|
||
/// Same as `Dim::dim::(None::<V>)`.
|
||
#[inline(always)]
|
||
pub fn dim<V: Dim>() -> uint {
|
||
Dim::dim(None::<V>)
|
||
}
|
||
|
||
/*
|
||
* Cast<T>
|
||
*/
|
||
/// Converts an object from one type to another.
|
||
///
|
||
/// For primitive types, this is the same as the `as` keywords.
|
||
/// The following properties are preserved by a cast:
|
||
///
|
||
/// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3<f64> to Rot3<i64> is
|
||
/// not possible)
|
||
/// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat<f64> to
|
||
/// Rot3<f64> is not possible)
|
||
/// * For primitive types an unbounded cast is done using the `as` keyword (this is different from
|
||
/// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the
|
||
/// range of an i32 when a cast from i64 to i32 is done).
|
||
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
|
||
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
|
||
#[inline(always)]
|
||
pub fn cast<T, U: Cast<T>>(t: T) -> U {
|
||
Cast::from(t)
|
||
}
|
||
|
||
/*
|
||
* Indexable
|
||
*/
|