forked from M-Labs/nalgebra
99b6181b1e
See comments on #207 for details.
78 lines
2.7 KiB
Rust
78 lines
2.7 KiB
Rust
// Non-convensional componentwise operators.
|
|
|
|
use num::Signed;
|
|
|
|
use alga::general::{ClosedMul, ClosedDiv};
|
|
|
|
use core::{Scalar, Matrix, OwnedMatrix, MatrixSum};
|
|
use core::dimension::Dim;
|
|
use core::storage::{Storage, StorageMut};
|
|
use core::allocator::SameShapeAllocator;
|
|
use core::constraint::{ShapeConstraint, SameNumberOfRows, SameNumberOfColumns};
|
|
|
|
|
|
/// The type of the result of a matrix componentwise operation.
|
|
pub type MatrixComponentOp<N, R1, C1, R2, C2, SA> = MatrixSum<N, R1, C1, R2, C2, SA>;
|
|
|
|
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|
/// Computes the componentwise absolute value.
|
|
#[inline]
|
|
pub fn abs(&self) -> OwnedMatrix<N, R, C, S::Alloc>
|
|
where N: Signed {
|
|
let mut res = self.clone_owned();
|
|
|
|
for e in res.iter_mut() {
|
|
*e = e.abs();
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
// FIXME: add other operators like component_ln, component_pow, etc. ?
|
|
}
|
|
|
|
macro_rules! component_binop_impl(
|
|
($($binop: ident, $binop_mut: ident, $Trait: ident . $binop_assign: ident);* $(;)*) => {$(
|
|
impl<N: Scalar, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
|
|
/// Componentwise matrix multiplication.
|
|
#[inline]
|
|
pub fn $binop<R2, C2, SB>(&self, rhs: &Matrix<N, R2, C2, SB>) -> MatrixComponentOp<N, R, C, R2, C2, S>
|
|
where N: $Trait,
|
|
R2: Dim, C2: Dim,
|
|
SB: Storage<N, R2, C2>,
|
|
S::Alloc: SameShapeAllocator<N, R, C, R2, C2, S>,
|
|
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
|
|
|
|
let mut res = self.clone_owned_sum();
|
|
|
|
for (res, rhs) in res.iter_mut().zip(rhs.iter()) {
|
|
res.$binop_assign(*rhs);
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
impl<N: Scalar, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
|
|
/// Componentwise matrix multiplication.
|
|
#[inline]
|
|
pub fn $binop_mut<R2, C2, SB>(&mut self, rhs: &Matrix<N, R2, C2, SB>)
|
|
where N: $Trait,
|
|
R2: Dim,
|
|
C2: Dim,
|
|
SB: Storage<N, R2, C2>,
|
|
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
|
|
for (me, rhs) in self.iter_mut().zip(rhs.iter()) {
|
|
me.$binop_assign(*rhs);
|
|
}
|
|
}
|
|
}
|
|
)*}
|
|
);
|
|
|
|
component_binop_impl!(
|
|
component_mul, component_mul_mut, ClosedMul.mul_assign;
|
|
component_div, component_div_mut, ClosedDiv.div_assign;
|
|
// FIXME: add other operators like bitshift, etc. ?
|
|
);
|