nalgebra/src/geometry/translation_conversion.rs
2019-03-25 11:21:41 +01:00

175 lines
5.0 KiB
Rust

use num::{One, Zero};
use alga::general::{RealField, SubsetOf, SupersetOf};
use alga::linear::Rotation;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimName, DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, MatrixN, Scalar, VectorN};
use crate::geometry::{Isometry, Point, Similarity, SuperTCategoryOf, TAffine, Transform, Translation};
/*
* This file provides the following conversions:
* =============================================
*
* Translation -> Translation
* Translation -> Isometry
* Translation -> Similarity
* Translation -> Transform
* Translation -> Matrix (homogeneous)
*/
impl<N1, N2, D: DimName> SubsetOf<Translation<N2, D>> for Translation<N1, D>
where
N1: Scalar,
N2: Scalar + SupersetOf<N1>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Translation<N2, D> {
Translation::from(self.vector.to_superset())
}
#[inline]
fn is_in_subset(rot: &Translation<N2, D>) -> bool {
crate::is_convertible::<_, VectorN<N1, D>>(&rot.vector)
}
#[inline]
unsafe fn from_superset_unchecked(rot: &Translation<N2, D>) -> Self {
Translation {
vector: rot.vector.to_subset_unchecked(),
}
}
}
impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Isometry<N2, D, R> {
Isometry::from_parts(self.to_superset(), R::identity())
}
#[inline]
fn is_in_subset(iso: &Isometry<N2, D, R>) -> bool {
iso.rotation == R::identity()
}
#[inline]
unsafe fn from_superset_unchecked(iso: &Isometry<N2, D, R>) -> Self {
Self::from_superset_unchecked(&iso.translation)
}
}
impl<N1, N2, D: DimName, R> SubsetOf<Similarity<N2, D, R>> for Translation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
R: Rotation<Point<N2, D>>,
DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>,
{
#[inline]
fn to_superset(&self) -> Similarity<N2, D, R> {
Similarity::from_parts(self.to_superset(), R::identity(), N2::one())
}
#[inline]
fn is_in_subset(sim: &Similarity<N2, D, R>) -> bool {
sim.isometry.rotation == R::identity() && sim.scaling() == N2::one()
}
#[inline]
unsafe fn from_superset_unchecked(sim: &Similarity<N2, D, R>) -> Self {
Self::from_superset_unchecked(&sim.isometry.translation)
}
}
impl<N1, N2, D, C> SubsetOf<Transform<N2, D, C>> for Translation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
C: SuperTCategoryOf<TAffine>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D>
+ Allocator<N2, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn to_superset(&self) -> Transform<N2, D, C> {
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
}
#[inline]
fn is_in_subset(t: &Transform<N2, D, C>) -> bool {
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
}
#[inline]
unsafe fn from_superset_unchecked(t: &Transform<N2, D, C>) -> Self {
Self::from_superset_unchecked(t.matrix())
}
}
impl<N1, N2, D> SubsetOf<MatrixN<N2, DimNameSum<D, U1>>> for Translation<N1, D>
where
N1: RealField,
N2: RealField + SupersetOf<N1>,
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N1, D>
+ Allocator<N2, D>
+ Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>>
+ Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn to_superset(&self) -> MatrixN<N2, DimNameSum<D, U1>> {
self.to_homogeneous().to_superset()
}
#[inline]
fn is_in_subset(m: &MatrixN<N2, DimNameSum<D, U1>>) -> bool {
let id = m.fixed_slice::<DimNameSum<D, U1>, D>(0, 0);
// Scalar types agree.
m.iter().all(|e| SupersetOf::<N1>::is_in_subset(e)) &&
// The block part does nothing.
id.is_identity(N2::zero()) &&
// The normalization factor is one.
m[(D::dim(), D::dim())] == N2::one()
}
#[inline]
unsafe fn from_superset_unchecked(m: &MatrixN<N2, DimNameSum<D, U1>>) -> Self {
let t = m.fixed_slice::<D, U1>(0, D::dim());
Self {
vector: crate::convert_unchecked(t.into_owned()),
}
}
}
impl<N: Scalar + Zero + One, D: DimName> From<Translation<N, D>> for MatrixN<N, DimNameSum<D, U1>>
where
D: DimNameAdd<U1>,
DefaultAllocator: Allocator<N, D> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>,
{
#[inline]
fn from(t: Translation<N, D>) -> Self {
t.to_homogeneous()
}
}
impl<N: Scalar, D: DimName> From<VectorN<N, D>> for Translation<N, D>
where DefaultAllocator: Allocator<N, D>
{
#[inline]
fn from(vector: VectorN<N, D>) -> Self {
Translation { vector }
}
}