nalgebra/src/geometry/isometry_alga.rs
sebcrozet 38ef0cbf7b Merge branch 'dev' into complex
# Conflicts:
#	src/base/ops.rs
#	src/geometry/isometry.rs
#	src/geometry/quaternion.rs
#	src/geometry/quaternion_construction.rs
#	src/geometry/rotation.rs
#	src/geometry/similarity.rs
#	src/geometry/transform.rs
#	src/geometry/translation.rs
#	src/geometry/unit_complex.rs
2019-03-31 10:48:59 +02:00

203 lines
4.9 KiB
Rust
Executable File

use alga::general::{
AbstractGroup, AbstractLoop, AbstractMagma, AbstractMonoid, AbstractQuasigroup,
AbstractSemigroup, Id, Identity, TwoSidedInverse, Multiplicative, RealField,
};
use alga::linear::Isometry as AlgaIsometry;
use alga::linear::{
AffineTransformation, DirectIsometry, ProjectiveTransformation, Rotation, Similarity,
Transformation,
};
use crate::base::allocator::Allocator;
use crate::base::dimension::DimName;
use crate::base::{DefaultAllocator, VectorN};
use crate::geometry::{Isometry, Point, Translation};
/*
*
* Algebraic structures.
*
*/
impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
}
impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn operate(&self, rhs: &Self) -> Self {
self * rhs
}
}
macro_rules! impl_multiplicative_structures(
($($marker: ident<$operator: ident>),* $(,)*) => {$(
impl<N: RealField, D: DimName, R> $marker<$operator> for Isometry<N, D, R>
where R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D> { }
)*}
);
impl_multiplicative_structures!(
AbstractSemigroup<Multiplicative>,
AbstractMonoid<Multiplicative>,
AbstractQuasigroup<Multiplicative>,
AbstractLoop<Multiplicative>,
AbstractGroup<Multiplicative>
);
/*
*
* Transformation groups.
*
*/
impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.transform_point(pt)
}
#[inline]
fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.transform_vector(v)
}
}
impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
#[inline]
fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D> {
self.inverse_transform_point(pt)
}
#[inline]
fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D> {
self.inverse_transform_vector(v)
}
}
impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
type Rotation = R;
type NonUniformScaling = Id;
type Translation = Translation<N, D>;
#[inline]
fn decompose(&self) -> (Self::Translation, R, Id, R) {
(
self.translation.clone(),
self.rotation.clone(),
Id::new(),
R::identity(),
)
}
#[inline]
fn append_translation(&self, t: &Self::Translation) -> Self {
t * self
}
#[inline]
fn prepend_translation(&self, t: &Self::Translation) -> Self {
self * t
}
#[inline]
fn append_rotation(&self, r: &Self::Rotation) -> Self {
let shift = r.transform_vector(&self.translation.vector);
Isometry::from_parts(Translation::from(shift), r.clone() * self.rotation.clone())
}
#[inline]
fn prepend_rotation(&self, r: &Self::Rotation) -> Self {
self * r
}
#[inline]
fn append_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn prepend_scaling(&self, _: &Self::NonUniformScaling) -> Self {
self.clone()
}
#[inline]
fn append_rotation_wrt_point(&self, r: &Self::Rotation, p: &Point<N, D>) -> Option<Self> {
let mut res = self.clone();
res.append_rotation_wrt_point_mut(r, p);
Some(res)
}
}
impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R>
where
R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D>,
{
type Scaling = Id;
#[inline]
fn translation(&self) -> Translation<N, D> {
self.translation.clone()
}
#[inline]
fn rotation(&self) -> R {
self.rotation.clone()
}
#[inline]
fn scaling(&self) -> Id {
Id::new()
}
}
macro_rules! marker_impl(
($($Trait: ident),*) => {$(
impl<N: RealField, D: DimName, R> $Trait<Point<N, D>> for Isometry<N, D, R>
where R: Rotation<Point<N, D>>,
DefaultAllocator: Allocator<N, D> { }
)*}
);
marker_impl!(AlgaIsometry, DirectIsometry);