forked from M-Labs/nalgebra
375 lines
13 KiB
Rust
375 lines
13 KiB
Rust
#[cfg(feature = "serde-serialize-no-std")]
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use crate::allocator::Allocator;
|
|
use crate::base::{DefaultAllocator, Matrix, OMatrix, OVector, Unit};
|
|
use crate::dimension::{Const, Dim, DimDiff, DimMin, DimMinimum, DimSub, U1};
|
|
use crate::storage::Storage;
|
|
use simba::scalar::ComplexField;
|
|
|
|
use crate::geometry::Reflection;
|
|
use crate::linalg::householder;
|
|
|
|
/// The bidiagonalization of a general matrix.
|
|
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize-no-std",
|
|
serde(bound(serialize = "DimMinimum<R, C>: DimSub<U1>,
|
|
DefaultAllocator: Allocator<T, R, C> +
|
|
Allocator<T, DimMinimum<R, C>> +
|
|
Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
|
|
OMatrix<T, R, C>: Serialize,
|
|
OVector<T, DimMinimum<R, C>>: Serialize,
|
|
OVector<T, DimDiff<DimMinimum<R, C>, U1>>: Serialize"))
|
|
)]
|
|
#[cfg_attr(
|
|
feature = "serde-serialize-no-std",
|
|
serde(bound(deserialize = "DimMinimum<R, C>: DimSub<U1>,
|
|
DefaultAllocator: Allocator<T, R, C> +
|
|
Allocator<T, DimMinimum<R, C>> +
|
|
Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
|
|
OMatrix<T, R, C>: Deserialize<'de>,
|
|
OVector<T, DimMinimum<R, C>>: Deserialize<'de>,
|
|
OVector<T, DimDiff<DimMinimum<R, C>, U1>>: Deserialize<'de>"))
|
|
)]
|
|
#[derive(Clone, Debug)]
|
|
pub struct Bidiagonal<T: ComplexField, R: DimMin<C>, C: Dim>
|
|
where
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
DefaultAllocator: Allocator<T, R, C>
|
|
+ Allocator<T, DimMinimum<R, C>>
|
|
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
|
|
{
|
|
// TODO: perhaps we should pack the axes into different vectors so that axes for `v_t` are
|
|
// contiguous. This prevents some useless copies.
|
|
uv: OMatrix<T, R, C>,
|
|
/// The diagonal elements of the decomposed matrix.
|
|
diagonal: OVector<T, DimMinimum<R, C>>,
|
|
/// The off-diagonal elements of the decomposed matrix.
|
|
off_diagonal: OVector<T, DimDiff<DimMinimum<R, C>, U1>>,
|
|
upper_diagonal: bool,
|
|
}
|
|
|
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for Bidiagonal<T, R, C>
|
|
where
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
DefaultAllocator: Allocator<T, R, C>
|
|
+ Allocator<T, DimMinimum<R, C>>
|
|
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
|
|
OMatrix<T, R, C>: Copy,
|
|
OVector<T, DimMinimum<R, C>>: Copy,
|
|
OVector<T, DimDiff<DimMinimum<R, C>, U1>>: Copy,
|
|
{
|
|
}
|
|
|
|
impl<T: ComplexField, R: DimMin<C>, C: Dim> Bidiagonal<T, R, C>
|
|
where
|
|
DimMinimum<R, C>: DimSub<U1>,
|
|
DefaultAllocator: Allocator<T, R, C>
|
|
+ Allocator<T, C>
|
|
+ Allocator<T, R>
|
|
+ Allocator<T, DimMinimum<R, C>>
|
|
+ Allocator<T, DimDiff<DimMinimum<R, C>, U1>>,
|
|
{
|
|
/// Computes the Bidiagonal decomposition using householder reflections.
|
|
pub fn new(mut matrix: OMatrix<T, R, C>) -> Self {
|
|
let (nrows, ncols) = matrix.data.shape();
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
let dim = min_nrows_ncols.value();
|
|
assert!(
|
|
dim != 0,
|
|
"Cannot compute the bidiagonalization of an empty matrix."
|
|
);
|
|
|
|
let mut diagonal =
|
|
unsafe { crate::unimplemented_or_uninitialized_generic!(min_nrows_ncols, Const::<1>) };
|
|
let mut off_diagonal = unsafe {
|
|
crate::unimplemented_or_uninitialized_generic!(
|
|
min_nrows_ncols.sub(Const::<1>),
|
|
Const::<1>
|
|
)
|
|
};
|
|
let mut axis_packed =
|
|
unsafe { crate::unimplemented_or_uninitialized_generic!(ncols, Const::<1>) };
|
|
let mut work = unsafe { crate::unimplemented_or_uninitialized_generic!(nrows, Const::<1>) };
|
|
|
|
let upper_diagonal = nrows.value() >= ncols.value();
|
|
if upper_diagonal {
|
|
for ite in 0..dim - 1 {
|
|
householder::clear_column_unchecked(&mut matrix, &mut diagonal[ite], ite, 0, None);
|
|
householder::clear_row_unchecked(
|
|
&mut matrix,
|
|
&mut off_diagonal[ite],
|
|
&mut axis_packed,
|
|
&mut work,
|
|
ite,
|
|
1,
|
|
);
|
|
}
|
|
|
|
householder::clear_column_unchecked(
|
|
&mut matrix,
|
|
&mut diagonal[dim - 1],
|
|
dim - 1,
|
|
0,
|
|
None,
|
|
);
|
|
} else {
|
|
for ite in 0..dim - 1 {
|
|
householder::clear_row_unchecked(
|
|
&mut matrix,
|
|
&mut diagonal[ite],
|
|
&mut axis_packed,
|
|
&mut work,
|
|
ite,
|
|
0,
|
|
);
|
|
householder::clear_column_unchecked(
|
|
&mut matrix,
|
|
&mut off_diagonal[ite],
|
|
ite,
|
|
1,
|
|
None,
|
|
);
|
|
}
|
|
|
|
householder::clear_row_unchecked(
|
|
&mut matrix,
|
|
&mut diagonal[dim - 1],
|
|
&mut axis_packed,
|
|
&mut work,
|
|
dim - 1,
|
|
0,
|
|
);
|
|
}
|
|
|
|
Bidiagonal {
|
|
uv: matrix,
|
|
diagonal,
|
|
off_diagonal,
|
|
upper_diagonal,
|
|
}
|
|
}
|
|
|
|
/// Indicates whether this decomposition contains an upper-diagonal matrix.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn is_upper_diagonal(&self) -> bool {
|
|
self.upper_diagonal
|
|
}
|
|
|
|
#[inline]
|
|
fn axis_shift(&self) -> (usize, usize) {
|
|
if self.upper_diagonal {
|
|
(0, 1)
|
|
} else {
|
|
(1, 0)
|
|
}
|
|
}
|
|
|
|
/// Unpacks this decomposition into its three matrix factors `(U, D, V^t)`.
|
|
///
|
|
/// The decomposed matrix `M` is equal to `U * D * V^t`.
|
|
#[inline]
|
|
pub fn unpack(
|
|
self,
|
|
) -> (
|
|
OMatrix<T, R, DimMinimum<R, C>>,
|
|
OMatrix<T, DimMinimum<R, C>, DimMinimum<R, C>>,
|
|
OMatrix<T, DimMinimum<R, C>, C>,
|
|
)
|
|
where
|
|
DefaultAllocator: Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
|
+ Allocator<T, R, DimMinimum<R, C>>
|
|
+ Allocator<T, DimMinimum<R, C>, C>,
|
|
{
|
|
// TODO: optimize by calling a reallocator.
|
|
(self.u(), self.d(), self.v_t())
|
|
}
|
|
|
|
/// Retrieves the upper trapezoidal submatrix `R` of this decomposition.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn d(&self) -> OMatrix<T, DimMinimum<R, C>, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.uv.data.shape();
|
|
|
|
let d = nrows.min(ncols);
|
|
let mut res = OMatrix::identity_generic(d, d);
|
|
res.set_partial_diagonal(self.diagonal.iter().map(|e| T::from_real(e.modulus())));
|
|
|
|
let start = self.axis_shift();
|
|
res.slice_mut(start, (d.value() - 1, d.value() - 1))
|
|
.set_partial_diagonal(self.off_diagonal.iter().map(|e| T::from_real(e.modulus())));
|
|
res
|
|
}
|
|
|
|
/// Computes the orthogonal matrix `U` of this `U * D * V` decomposition.
|
|
// TODO: code duplication with householder::assemble_q.
|
|
// Except that we are returning a rectangular matrix here.
|
|
#[must_use]
|
|
pub fn u(&self) -> OMatrix<T, R, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Allocator<T, R, DimMinimum<R, C>>,
|
|
{
|
|
let (nrows, ncols) = self.uv.data.shape();
|
|
|
|
let mut res = Matrix::identity_generic(nrows, nrows.min(ncols));
|
|
let dim = self.diagonal.len();
|
|
let shift = self.axis_shift().0;
|
|
|
|
for i in (0..dim - shift).rev() {
|
|
let axis = self.uv.slice_range(i + shift.., i);
|
|
// TODO: sometimes, the axis might have a zero magnitude.
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
|
|
|
let mut res_rows = res.slice_range_mut(i + shift.., i..);
|
|
|
|
let sign = if self.upper_diagonal {
|
|
self.diagonal[i].signum()
|
|
} else {
|
|
self.off_diagonal[i].signum()
|
|
};
|
|
|
|
refl.reflect_with_sign(&mut res_rows, sign);
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
/// Computes the orthogonal matrix `V_t` of this `U * D * V_t` decomposition.
|
|
#[must_use]
|
|
pub fn v_t(&self) -> OMatrix<T, DimMinimum<R, C>, C>
|
|
where
|
|
DefaultAllocator: Allocator<T, DimMinimum<R, C>, C>,
|
|
{
|
|
let (nrows, ncols) = self.uv.data.shape();
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
let mut res = Matrix::identity_generic(min_nrows_ncols, ncols);
|
|
let mut work =
|
|
unsafe { crate::unimplemented_or_uninitialized_generic!(min_nrows_ncols, Const::<1>) };
|
|
let mut axis_packed =
|
|
unsafe { crate::unimplemented_or_uninitialized_generic!(ncols, Const::<1>) };
|
|
|
|
let shift = self.axis_shift().1;
|
|
|
|
for i in (0..min_nrows_ncols.value() - shift).rev() {
|
|
let axis = self.uv.slice_range(i, i + shift..);
|
|
let mut axis_packed = axis_packed.rows_range_mut(i + shift..);
|
|
axis_packed.tr_copy_from(&axis);
|
|
// TODO: sometimes, the axis might have a zero magnitude.
|
|
let refl = Reflection::new(Unit::new_unchecked(axis_packed), T::zero());
|
|
|
|
let mut res_rows = res.slice_range_mut(i.., i + shift..);
|
|
|
|
let sign = if self.upper_diagonal {
|
|
self.off_diagonal[i].signum()
|
|
} else {
|
|
self.diagonal[i].signum()
|
|
};
|
|
|
|
refl.reflect_rows_with_sign(&mut res_rows, &mut work.rows_range_mut(i..), sign);
|
|
}
|
|
|
|
res
|
|
}
|
|
|
|
/// The diagonal part of this decomposed matrix.
|
|
#[must_use]
|
|
pub fn diagonal(&self) -> OVector<T::RealField, DimMinimum<R, C>>
|
|
where
|
|
DefaultAllocator: Allocator<T::RealField, DimMinimum<R, C>>,
|
|
{
|
|
self.diagonal.map(|e| e.modulus())
|
|
}
|
|
|
|
/// The off-diagonal part of this decomposed matrix.
|
|
#[must_use]
|
|
pub fn off_diagonal(&self) -> OVector<T::RealField, DimDiff<DimMinimum<R, C>, U1>>
|
|
where
|
|
DefaultAllocator: Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,
|
|
{
|
|
self.off_diagonal.map(|e| e.modulus())
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
pub fn uv_internal(&self) -> &OMatrix<T, R, C> {
|
|
&self.uv
|
|
}
|
|
}
|
|
|
|
// impl<T: ComplexField, D: DimMin<D, Output = D> + DimSub<Dynamic>> Bidiagonal<T, D, D>
|
|
// where DefaultAllocator: Allocator<T, D, D> +
|
|
// Allocator<T, D> {
|
|
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
// pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<T, R2, C2, S2>) -> OMatrix<T, R2, C2>
|
|
// where S2: StorageMut<T, R2, C2>,
|
|
// ShapeConstraint: SameNumberOfRows<R2, D> {
|
|
// let mut res = b.clone_owned();
|
|
// self.solve_mut(&mut res);
|
|
// res
|
|
// }
|
|
//
|
|
// /// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
// pub fn solve_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>)
|
|
// where S2: StorageMut<T, R2, C2>,
|
|
// ShapeConstraint: SameNumberOfRows<R2, D> {
|
|
//
|
|
// assert_eq!(self.uv.nrows(), b.nrows(), "Bidiagonal solve matrix dimension mismatch.");
|
|
// assert!(self.uv.is_square(), "Bidiagonal solve: unable to solve a non-square system.");
|
|
//
|
|
// self.q_tr_mul(b);
|
|
// self.solve_upper_triangular_mut(b);
|
|
// }
|
|
//
|
|
// // TODO: duplicate code from the `solve` module.
|
|
// fn solve_upper_triangular_mut<R2: Dim, C2: Dim, S2>(&self, b: &mut Matrix<T, R2, C2, S2>)
|
|
// where S2: StorageMut<T, R2, C2>,
|
|
// ShapeConstraint: SameNumberOfRows<R2, D> {
|
|
//
|
|
// let dim = self.uv.nrows();
|
|
//
|
|
// for k in 0 .. b.ncols() {
|
|
// let mut b = b.column_mut(k);
|
|
// for i in (0 .. dim).rev() {
|
|
// let coeff;
|
|
//
|
|
// unsafe {
|
|
// let diag = *self.diag.vget_unchecked(i);
|
|
// coeff = *b.vget_unchecked(i) / diag;
|
|
// *b.vget_unchecked_mut(i) = coeff;
|
|
// }
|
|
//
|
|
// b.rows_range_mut(.. i).axpy(-coeff, &self.uv.slice_range(.. i, i), T::one());
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// /// Computes the inverse of the decomposed matrix.
|
|
// pub fn inverse(&self) -> OMatrix<T, D, D> {
|
|
// assert!(self.uv.is_square(), "Bidiagonal inverse: unable to compute the inverse of a non-square matrix.");
|
|
//
|
|
// // TODO: is there a less naive method ?
|
|
// let (nrows, ncols) = self.uv.data.shape();
|
|
// let mut res = OMatrix::identity_generic(nrows, ncols);
|
|
// self.solve_mut(&mut res);
|
|
// res
|
|
// }
|
|
//
|
|
// // /// Computes the determinant of the decomposed matrix.
|
|
// // pub fn determinant(&self) -> T {
|
|
// // let dim = self.uv.nrows();
|
|
// // assert!(self.uv.is_square(), "Bidiagonal determinant: unable to compute the determinant of a non-square matrix.");
|
|
//
|
|
// // let mut res = T::one();
|
|
// // for i in 0 .. dim {
|
|
// // res *= unsafe { *self.diag.vget_unchecked(i) };
|
|
// // }
|
|
//
|
|
// // res self.q_determinant()
|
|
// // }
|
|
// }
|