nalgebra/nalgebra-sparse/src/factorization/cholesky.rs
2021-08-04 17:34:25 +02:00

377 lines
13 KiB
Rust

use crate::csc::CscMatrix;
use crate::ops::serial::spsolve_csc_lower_triangular;
use crate::ops::Op;
use crate::pattern::SparsityPattern;
use core::{iter, mem};
use nalgebra::{DMatrix, DMatrixSlice, DMatrixSliceMut, RealField, Scalar};
use std::fmt::{Display, Formatter};
/// A symbolic sparse Cholesky factorization of a CSC matrix.
///
/// The symbolic factorization computes the sparsity pattern of `L`, the Cholesky factor.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CscSymbolicCholesky {
// Pattern of the original matrix that was decomposed
m_pattern: SparsityPattern,
l_pattern: SparsityPattern,
// u in this context is L^T, so that M = L L^T
u_pattern: SparsityPattern,
}
impl CscSymbolicCholesky {
/// Compute the symbolic factorization for a sparsity pattern belonging to a CSC matrix.
///
/// The sparsity pattern must be symmetric. However, this is not enforced, and it is the
/// responsibility of the user to ensure that this property holds.
///
/// # Panics
///
/// Panics if the sparsity pattern is not square.
pub fn factor(pattern: SparsityPattern) -> Self {
assert_eq!(
pattern.major_dim(),
pattern.minor_dim(),
"Major and minor dimensions must be the same (square matrix)."
);
let (l_pattern, u_pattern) = nonzero_pattern(&pattern);
Self {
m_pattern: pattern,
l_pattern,
u_pattern,
}
}
/// The pattern of the Cholesky factor `L`.
#[must_use]
pub fn l_pattern(&self) -> &SparsityPattern {
&self.l_pattern
}
}
/// A sparse Cholesky factorization `A = L L^T` of a [`CscMatrix`].
///
/// The factor `L` is a sparse, lower-triangular matrix. See the article on [Wikipedia] for
/// more information.
///
/// The implementation is a port of the `CsCholesky` implementation in `nalgebra`. It is similar
/// to Tim Davis' [`CSparse`]. The current implementation performs no fill-in reduction, and can
/// therefore be expected to produce much too dense Cholesky factors for many matrices.
/// It is therefore not currently recommended to use this implementation for serious projects.
///
/// [`CSparse`]: https://epubs.siam.org/doi/book/10.1137/1.9780898718881
/// [Wikipedia]: https://en.wikipedia.org/wiki/Cholesky_decomposition
// TODO: We should probably implement PartialEq/Eq, but in that case we'd probably need a
// custom implementation, due to the need to exclude the workspace arrays
#[derive(Debug, Clone)]
pub struct CscCholesky<T> {
// Pattern of the original matrix
m_pattern: SparsityPattern,
l_factor: CscMatrix<T>,
u_pattern: SparsityPattern,
work_x: Vec<T>,
work_c: Vec<usize>,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[non_exhaustive]
/// Possible errors produced by the Cholesky factorization.
pub enum CholeskyError {
/// The matrix is not positive definite.
NotPositiveDefinite,
}
impl Display for CholeskyError {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "Matrix is not positive definite")
}
}
impl std::error::Error for CholeskyError {}
impl<T: RealField> CscCholesky<T> {
/// Computes the numerical Cholesky factorization associated with the given
/// symbolic factorization and the provided values.
///
/// The values correspond to the non-zero values of the CSC matrix for which the
/// symbolic factorization was computed.
///
/// # Errors
///
/// Returns an error if the numerical factorization fails. This can occur if the matrix is not
/// symmetric positive definite.
///
/// # Panics
///
/// Panics if the number of values differ from the number of non-zeros of the sparsity pattern
/// of the matrix that was symbolically factored.
pub fn factor_numerical(
symbolic: CscSymbolicCholesky,
values: &[T],
) -> Result<Self, CholeskyError> {
assert_eq!(
symbolic.l_pattern.nnz(),
symbolic.u_pattern.nnz(),
"u is just the transpose of l, so should have the same nnz"
);
let l_nnz = symbolic.l_pattern.nnz();
let l_values = vec![T::zero(); l_nnz];
let l_factor =
CscMatrix::try_from_pattern_and_values(symbolic.l_pattern, l_values).unwrap();
let (nrows, ncols) = (l_factor.nrows(), l_factor.ncols());
let mut factorization = CscCholesky {
m_pattern: symbolic.m_pattern,
l_factor,
u_pattern: symbolic.u_pattern,
work_x: vec![T::zero(); nrows],
// Fill with MAX so that things hopefully totally fail if values are not
// overwritten. Might be easier to debug this way
work_c: vec![usize::MAX, ncols],
};
factorization.refactor(values)?;
Ok(factorization)
}
/// Computes the Cholesky factorization of the provided matrix.
///
/// The matrix must be symmetric positive definite. Symmetry is not checked, and it is up
/// to the user to enforce this property.
///
/// # Errors
///
/// Returns an error if the numerical factorization fails. This can occur if the matrix is not
/// symmetric positive definite.
///
/// # Panics
///
/// Panics if the matrix is not square.
pub fn factor(matrix: &CscMatrix<T>) -> Result<Self, CholeskyError> {
let symbolic = CscSymbolicCholesky::factor(matrix.pattern().clone());
Self::factor_numerical(symbolic, matrix.values())
}
/// Re-computes the factorization for a new set of non-zero values.
///
/// This is useful when the values of a matrix changes, but the sparsity pattern remains
/// constant.
///
/// # Errors
///
/// Returns an error if the numerical factorization fails. This can occur if the matrix is not
/// symmetric positive definite.
///
/// # Panics
///
/// Panics if the number of values does not match the number of non-zeros in the sparsity
/// pattern.
pub fn refactor(&mut self, values: &[T]) -> Result<(), CholeskyError> {
self.decompose_left_looking(values)
}
/// Returns a reference to the Cholesky factor `L`.
#[must_use]
pub fn l(&self) -> &CscMatrix<T> {
&self.l_factor
}
/// Returns the Cholesky factor `L`.
pub fn take_l(self) -> CscMatrix<T> {
self.l_factor
}
/// Perform a numerical left-looking cholesky decomposition of a matrix with the same structure as the
/// one used to initialize `self`, but with different non-zero values provided by `values`.
fn decompose_left_looking(&mut self, values: &[T]) -> Result<(), CholeskyError> {
assert!(
values.len() >= self.m_pattern.nnz(),
// TODO: Improve error message
"The set of values is too small."
);
let n = self.l_factor.nrows();
// Reset `work_c` to the column pointers of `l`.
self.work_c.clear();
self.work_c.extend_from_slice(self.l_factor.col_offsets());
unsafe {
for k in 0..n {
// Scatter the k-th column of the original matrix with the values provided.
let range_begin = *self.m_pattern.major_offsets().get_unchecked(k);
let range_end = *self.m_pattern.major_offsets().get_unchecked(k + 1);
let range_k = range_begin..range_end;
*self.work_x.get_unchecked_mut(k) = T::zero();
for p in range_k.clone() {
let irow = *self.m_pattern.minor_indices().get_unchecked(p);
if irow >= k {
*self.work_x.get_unchecked_mut(irow) = *values.get_unchecked(p);
}
}
for &j in self.u_pattern.lane(k) {
let factor = -*self
.l_factor
.values()
.get_unchecked(*self.work_c.get_unchecked(j));
*self.work_c.get_unchecked_mut(j) += 1;
if j < k {
let col_j = self.l_factor.col(j);
let col_j_entries = col_j.row_indices().iter().zip(col_j.values());
for (&z, val) in col_j_entries {
if z >= k {
*self.work_x.get_unchecked_mut(z) += val.clone() * factor;
}
}
}
}
let diag = *self.work_x.get_unchecked(k);
if diag > T::zero() {
let denom = diag.sqrt();
{
let (offsets, _, values) = self.l_factor.csc_data_mut();
*values.get_unchecked_mut(*offsets.get_unchecked(k)) = denom;
}
let mut col_k = self.l_factor.col_mut(k);
let (col_k_rows, col_k_values) = col_k.rows_and_values_mut();
let col_k_entries = col_k_rows.iter().zip(col_k_values);
for (&p, val) in col_k_entries {
*val = *self.work_x.get_unchecked(p) / denom;
*self.work_x.get_unchecked_mut(p) = T::zero();
}
} else {
return Err(CholeskyError::NotPositiveDefinite);
}
}
}
Ok(())
}
/// Solves the system `A X = B`, where `X` and `B` are dense matrices.
///
/// # Panics
///
/// Panics if `B` is not square.
#[must_use = "Did you mean to use solve_mut()?"]
pub fn solve<'a>(&'a self, b: impl Into<DMatrixSlice<'a, T>>) -> DMatrix<T> {
let b = b.into();
let mut output = b.clone_owned();
self.solve_mut(&mut output);
output
}
/// Solves the system `AX = B`, where `X` and `B` are dense matrices.
///
/// The result is stored in-place in `b`.
///
/// # Panics
///
/// Panics if `b` is not square.
pub fn solve_mut<'a>(&'a self, b: impl Into<DMatrixSliceMut<'a, T>>) {
let expect_msg = "If the Cholesky factorization succeeded,\
then the triangular solve should never fail";
// Solve LY = B
let mut y = b.into();
spsolve_csc_lower_triangular(Op::NoOp(self.l()), &mut y).expect(expect_msg);
// Solve L^T X = Y
let mut x = y;
spsolve_csc_lower_triangular(Op::Transpose(self.l()), &mut x).expect(expect_msg);
}
}
fn reach(
pattern: &SparsityPattern,
j: usize,
max_j: usize,
tree: &[usize],
marks: &mut Vec<bool>,
out: &mut Vec<usize>,
) {
marks.clear();
marks.resize(tree.len(), false);
// TODO: avoid all those allocations.
let mut tmp = Vec::new();
let mut res = Vec::new();
for &irow in pattern.lane(j) {
let mut curr = irow;
while curr != usize::max_value() && curr <= max_j && !marks[curr] {
marks[curr] = true;
tmp.push(curr);
curr = tree[curr];
}
tmp.append(&mut res);
mem::swap(&mut tmp, &mut res);
}
res.sort_unstable();
out.append(&mut res);
}
fn nonzero_pattern(m: &SparsityPattern) -> (SparsityPattern, SparsityPattern) {
let etree = elimination_tree(m);
// Note: We assume CSC, therefore rows == minor and cols == major
let (nrows, ncols) = (m.minor_dim(), m.major_dim());
let mut rows = Vec::with_capacity(m.nnz());
let mut col_offsets = Vec::with_capacity(ncols + 1);
let mut marks = Vec::new();
// NOTE: the following will actually compute the non-zero pattern of
// the transpose of l.
col_offsets.push(0);
for i in 0..nrows {
reach(m, i, i, &etree, &mut marks, &mut rows);
col_offsets.push(rows.len());
}
let u_pattern =
SparsityPattern::try_from_offsets_and_indices(nrows, ncols, col_offsets, rows).unwrap();
// TODO: Avoid this transpose?
let l_pattern = u_pattern.transpose();
(l_pattern, u_pattern)
}
fn elimination_tree(pattern: &SparsityPattern) -> Vec<usize> {
// Note: The pattern is assumed to of a CSC matrix, so the number of rows is
// given by the minor dimension
let nrows = pattern.minor_dim();
let mut forest: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
let mut ancestor: Vec<_> = iter::repeat(usize::max_value()).take(nrows).collect();
for k in 0..nrows {
for &irow in pattern.lane(k) {
let mut i = irow;
while i < k {
let i_ancestor = ancestor[i];
ancestor[i] = k;
if i_ancestor == usize::max_value() {
forest[i] = k;
break;
}
i = i_ancestor;
}
}
}
forest
}