nalgebra/src/na.rs
Sébastien Crozet bb5654d220 Remove free-functions alliasing structures constructors.
Those constructors are not idiomatic. Use e.g. `Vec3::new(0, 0, 0)` instead.
2013-10-14 11:22:38 +02:00

595 lines
12 KiB
Rust

//! **nalgebra** prelude.
use std::num::{Zero, One};
pub use traits::{
Absolute,
AbsoluteRotate,
AlgebraicVec,
AlgebraicVecExt,
Basis,
Cast,
Col,
Cov,
Cross,
CrossMatrix,
Dim,
Dot,
FromHomogeneous,
Indexable,
Inv,
Iterable,
IterableMut,
LMul,
Mat,
Mean,
Norm,
Outer,
RMul,
Rotate, Rotation, RotationMatrix, RotationWithTranslation,
Row,
ScalarAdd, ScalarSub,
ToHomogeneous,
Transform, Transformation,
Translate, Translation,
Transpose,
UniformSphereSample,
Vec,
VecExt
};
pub use structs::{
Identity,
DMat, DVec,
Iso2, Iso3, Iso4,
Mat1, Mat2, Mat3, Mat4,
Mat5, Mat6,
Rot2, Rot3, Rot4,
Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6
};
//
//
// Constructors
//
//
/// Create a special identity object.
///
/// Same as `Identity::new()`.
#[inline(always)]
pub fn identity() -> Identity {
Identity::new()
}
/// Create a zero-valued value.
///
/// This is the same as `std::num::Zero::zero()`.
#[inline(always)]
pub fn zero<T: Zero>() -> T {
Zero::zero()
}
/// Create a one-valued value.
///
/// This is the same as `std::num::One::one()`.
#[inline(always)]
pub fn one<T: One>() -> T {
One::one()
}
//
//
// Geometry
//
//
/*
* Translation<V>
*/
/// Gets the translation applicable by `m`.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::types::{Vec3, Iso3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
/// let trans = na::translation(t);
///
/// assert!(trans == Vec3::new(1.0, 1.0, 1.0));
/// }
/// ```
#[inline(always)]
pub fn translation<V, M: Translation<V>>(m: &M) -> V {
m.translation()
}
/// Gets the inverse translation applicable by `m`.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::types::{Vec3, Iso3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
/// let itrans = na::inv_translation(t);
///
/// assert!(itrans == Vec3::new(-1.0, -1.0, -1.0));
/// }
/// ```
#[inline(always)]
pub fn inv_translation<V, M: Translation<V>>(m: &M) -> V {
m.inv_translation()
}
/// Appied the translation `v` to a copy of `m`.
#[inline(always)]
pub fn append_translation<V, M: Translation<V>>(m: &M, v: &V) -> M {
Translation::append_translation_cpy(m, v)
}
/*
* Translate<V>
*/
/// Applies a translation to a vector.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na::{Vec3, Iso3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
/// let v = Vec3::new(2.0, 2.0, 2.0);
///
/// let tv = na::translate(&t, &v);
///
/// assert!(tv == Vec3::new(3.0, 3.0, 3.0))
/// }
/// ```
#[inline(always)]
pub fn translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
m.translate(v)
}
/// Applies an inverse translation to a vector.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na::{Vec3, Iso3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Iso3::new(Vec3::new(1.0, 1.0, 1.0), na::zero());
/// let v = Vec3::new(2.0, 2.0, 2.0);
///
/// let tv = na::translate(&t, &v);
///
/// assert!(tv == Vec3::new(1.0, 1.0, 1.0))
/// }
#[inline(always)]
pub fn inv_translate<V, M: Translate<V>>(m: &M, v: &V) -> V {
m.inv_translate(v)
}
/*
* Rotation<V>
*/
/// Gets the rotation applicable by `m`.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Rot3::new(Vec3::new(1.0, 1.0, 1.0));
///
/// assert!(na::rotation(t) == Vec3::new(1.0, 1.0, 1.0));
/// }
/// ```
#[inline(always)]
pub fn rotation<V, M: Rotation<V>>(m: &M) -> V {
m.rotation()
}
/// Gets the inverse rotation applicable by `m`.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Rot3::new(Vec3::new(1.0, 1.0, 1.0));
///
/// assert!(na::inv_rotation(t) == Vec3::new(-1.0, -1.0, -1.0));
/// }
/// ```
#[inline(always)]
pub fn inv_rotation<V, M: Rotation<V>>(m: &M) -> V {
m.inv_rotation()
}
/// Applies the rotation `v` to a copy of `m`.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na::{Vec3, Rot3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Rot3::new(Vec3::new(0.0, 0.0, 0.0));
/// let v = Vec3::new(1.0, 1.0, 1.0);
/// let rt = na::append_rotation(&t, &v);
///
/// assert!(na::rotation(&rt) == Vec3::new(1.0, 1.0, 1.0))
/// }
/// ```
#[inline(always)]
pub fn append_rotation<V, M: Rotation<V>>(m: &M, v: &V) -> M {
Rotation::append_rotation_cpy(m, v)
}
/*
* Rotate<V>
*/
/// Applies a rotation to a vector.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na::{Rot3, Vec3};
/// use nalgebra::na;
///
/// pub main() {
/// let t = Rot3::new(Vec3::new(1.0, 0.0, 0.0));
/// let v = Vec3::new(0.0, 0.0, na::pi() / 2.0);
///
/// let tv = na::rotate(&t, &v);
///
/// assert!(tv == Vec3::new(0.0, 1.0, 0.0))
/// }
/// ```
#[inline(always)]
pub fn rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
m.rotate(v)
}
/// Applies an inverse rotation to a vector.
///
/// ```rust
/// extern mod nalgebra;
/// use nalgebra::na;
///
/// pub main() {
/// let t = Rot3::new(Vec3::new(1.0, 0.0, 0.0));
/// let v = Vec3::new(0.0, 0.0, na::pi() / 2.0);
///
/// let tv = na::rotate(&t, &v);
///
/// assert!(tv == Vec3::new(0.0, -1.0, 0.0))
/// }
/// ```
#[inline(always)]
pub fn inv_rotate<V, M: Rotate<V>>(m: &M, v: &V) -> V {
m.inv_rotate(v)
}
/*
* RotationWithTranslation<LV, AV>
*/
/// Rotates a copy of `m` by `amount` using `center` ase the pivot point.
#[inline(always)]
pub fn append_rotation_wrt_point<LV: Neg<LV>,
AV,
M: RotationWithTranslation<LV, AV>>(
m: &M,
amount: &AV,
center: &LV) -> M {
RotationWithTranslation::append_rotation_wrt_point_cpy(m, amount, center)
}
/// Rotates a copy of `m` by `amount` using `m.translation()` as the pivot point.
#[inline(always)]
pub fn rotate_wrt_center<LV: Neg<LV>,
AV,
M: RotationWithTranslation<LV, AV>>(
m: &M,
amount: &AV) -> M {
RotationWithTranslation::append_rotation_wrt_center_cpy(m, amount)
}
/*
* RotationMatrix<LV, AV, R>
*/
/// Builds a rotation matrix from `r`.
#[inline(always)]
pub fn to_rot_mat<LV, AV, M: Mat<LV, LV> + Rotation<AV>, R: RotationMatrix<LV, AV, M>>(r: &R) -> M {
r.to_rot_mat()
}
/*
* AbsoluteRotate<V>
*/
/// Applies a rotation using the absolute values of its components.
#[inline(always)]
pub fn absolute_rotate<V, M: AbsoluteRotate<V>>(m: &M, v: &V) -> V {
m.absolute_rotate(v)
}
/*
* Transformation<T>
*/
/// Gets the transformation applicable by `m`.
#[inline(always)]
pub fn transformation<T, M: Transformation<T>>(m: &M) -> T {
m.transformation()
}
/// Gets the inverse transformation applicable by `m`.
#[inline(always)]
pub fn inv_transformation<T, M: Transformation<T>>(m: &M) -> T {
m.inv_transformation()
}
/// Gets a transformed copy of `m`.
#[inline(always)]
pub fn append_transformation<T, M: Transformation<T>>(m: &M, t: &T) -> M {
Transformation::append_transformation_cpy(m, t)
}
/*
* Transform<V>
*/
/// Applies a transformation to a vector.
#[inline(always)]
pub fn transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
m.transform(v)
}
/// Applies an inverse transformation to a vector.
#[inline(always)]
pub fn inv_transform<V, M: Transform<V>>(m: &M, v: &V) -> V {
m.inv_transform(v)
}
/*
* Dot<N>
*/
/// Computes the dot product of two vectors.
#[inline(always)]
pub fn dot<V: Dot<N>, N>(a: &V, b: &V) -> N {
a.dot(b)
}
/// Computes a subtraction followed by a dot product.
#[inline(always)]
pub fn sub_dot<V: Dot<N>, N>(a: &V, b: &V, c: &V) -> N {
a.sub_dot(b, c)
}
/*
* Norm<N>
*/
/// Computes the L2 norm of a vector.
#[inline(always)]
pub fn norm<V: Norm<N>, N: Algebraic>(v: &V) -> N {
v.norm()
}
/// Computes the squared L2 norm of a vector.
#[inline(always)]
pub fn sqnorm<V: Norm<N>, N: Algebraic>(v: &V) -> N {
v.sqnorm()
}
/// Gets the normalized version of a vector.
#[inline(always)]
pub fn normalize<V: Norm<N>, N: Algebraic>(v: &V) -> V {
Norm::normalize_cpy(v)
}
/*
* Cross<V>
*/
/// Computes the cross product of two vectors.
#[inline(always)]
pub fn cross<LV: Cross<AV>, AV>(a: &LV, b: &LV) -> AV {
a.cross(b)
}
/*
* CrossMatrix<M>
*/
/// Given a vector, computes the matrix which, when multiplied by another vector, computes a cross
/// product.
#[inline(always)]
pub fn cross_matrix<V: CrossMatrix<M>, M>(v: &V) -> M {
v.cross_matrix()
}
/*
* ToHomogeneous<U>
*/
/// Converts a matrix or vector to homogoneous coordinates.
#[inline(always)]
pub fn to_homogeneous<M: ToHomogeneous<Res>, Res>(m: &M) -> Res {
m.to_homogeneous()
}
/*
* FromHomogeneous<U>
*/
/// Converts a matrix or vector from homogoneous coordinates.
///
/// w-normalization is appied.
#[inline(always)]
pub fn from_homogeneous<M, Res: FromHomogeneous<M>>(m: &M) -> Res {
FromHomogeneous::from(m)
}
/*
* UniformSphereSample
*/
/// Samples the unit sphere living on the dimension as the samples types.
///
/// The number of sampling point is implementation-specific. It is always uniform.
#[inline(always)]
pub fn sample_sphere<V: UniformSphereSample>(f: &fn(V)) {
UniformSphereSample::sample(f)
}
//
//
// Operations
//
//
/*
* Absolute<A>
*/
/// Computes a component-wise absolute value.
#[inline(always)]
pub fn absolute<M: Absolute<Res>, Res>(m: &M) -> Res {
m.absolute()
}
/*
* Inv
*/
/// Gets an inverted copy of a matrix.
#[inline(always)]
pub fn inv<M: Inv>(m: &M) -> Option<M> {
Inv::inv_cpy(m)
}
/*
* Transpose
*/
/// Gets a transposed copy of a matrix.
#[inline(always)]
pub fn transpose<M: Transpose>(m: &M) -> M {
Transpose::transpose_cpy(m)
}
/*
* Outer<M>
*/
/// Computes the outer product of two vectors.
#[inline(always)]
pub fn outer<V: Outer<M>, M>(a: &V, b: &V) -> M {
a.outer(b)
}
/*
* Cov<M>
*/
/// Computes the covariance of a set of observations.
#[inline(always)]
pub fn cov<M: Cov<Res>, Res>(observations: &M) -> Res {
observations.cov()
}
/*
* Mean<N>
*/
/// Computes the mean of a set of observations.
#[inline(always)]
pub fn mean<N, M: Mean<N>>(observations: &M) -> N {
observations.mean()
}
//
//
// Structure
//
//
/*
* Basis
*/
/// Computes the canonical basis for a given dimension.
#[inline(always)]
pub fn canonical_basis<V: Basis>(f: &fn(V) -> bool) {
Basis::canonical_basis(f)
}
/// Computes the basis of the orthonormal subspace of a given vector.
#[inline(always)]
pub fn orthonormal_subspace_basis<V: Basis>(v: &V, f: &fn(V) -> bool) {
v.orthonormal_subspace_basis(f)
}
/*
* Row<R>
*/
/*
* Col<C>
*/
/*
* Dim
*/
/// Gets the dimension an object lives in.
///
/// Same as `Dim::dim::(None::<V>)`.
#[inline(always)]
pub fn dim<V: Dim>() -> uint {
Dim::dim(None::<V>)
}
/*
* Cast<T>
*/
/// Converts an object from one type to another.
///
/// For primitive types, this is the same as the `as` keywords.
/// The following properties are preserved by a cast:
///
/// * Type-level geometric invariants cannot be broken (eg. a cast from Rot3<f64> to Rot3<i64> is
/// not possible)
/// * A cast to a type with more type-level invariants cannot be done (eg. a cast from Mat<f64> to
/// Rot3<f64> is not possible)
/// * For primitive types an unbounded cast is done using the `as` keyword (this is different from
/// the standard library which makes bound-checking to ensure eg. that a i64 is not out of the
/// range of an i32 when a cast from i64 to i32 is done).
/// * A cast does not affect the dimension of an algebraic object. Note that this prevents an
/// isometric transform to be cast to a raw matrix. Use `to_homogeneous` for that special purpose.
#[inline(always)]
pub fn cast<T, U: Cast<T>>(t: T) -> U {
Cast::from(t)
}
/*
* Indexable
*/