nalgebra/nalgebra-lapack/src/lu.rs
2019-02-16 22:29:41 +01:00

405 lines
12 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use num::{One, Zero};
use num_complex::Complex;
use na::allocator::Allocator;
use na::dimension::{Dim, DimMin, DimMinimum, U1};
use na::storage::Storage;
use na::{DefaultAllocator, Matrix, MatrixMN, MatrixN, Scalar, VectorN};
use ComplexHelper;
use lapack;
/// LU decomposition with partial pivoting.
///
/// This decomposes a matrix `M` with m rows and n columns into three parts:
/// * `L` which is a `m × min(m, n)` lower-triangular matrix.
/// * `U` which is a `min(m, n) × n` upper-triangular matrix.
/// * `P` which is a `m * m` permutation matrix.
///
/// Those are such that `M == P * L * U`.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
serialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<i32, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Serialize,
PermutationSequence<DimMinimum<R, C>>: Serialize"
))
)]
#[cfg_attr(
feature = "serde-serialize",
serde(bound(
deserialize = "DefaultAllocator: Allocator<N, R, C> +
Allocator<i32, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Deserialize<'de>,
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"
))
)]
#[derive(Clone, Debug)]
pub struct LU<N: Scalar, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<N, R, C>
{
lu: MatrixMN<N, R, C>,
p: VectorN<i32, DimMinimum<R, C>>,
}
impl<N: Scalar, R: DimMin<C>, C: Dim> Copy for LU<N, R, C>
where
DefaultAllocator: Allocator<N, R, C> + Allocator<i32, DimMinimum<R, C>>,
MatrixMN<N, R, C>: Copy,
VectorN<i32, DimMinimum<R, C>>: Copy,
{}
impl<N: LUScalar, R: Dim, C: Dim> LU<N, R, C>
where
N: Zero + One,
R: DimMin<C>,
DefaultAllocator: Allocator<N, R, C>
+ Allocator<N, R, R>
+ Allocator<N, R, DimMinimum<R, C>>
+ Allocator<N, DimMinimum<R, C>, C>
+ Allocator<i32, DimMinimum<R, C>>,
{
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
pub fn new(mut m: MatrixMN<N, R, C>) -> Self {
let (nrows, ncols) = m.data.shape();
let min_nrows_ncols = nrows.min(ncols);
let nrows = nrows.value() as i32;
let ncols = ncols.value() as i32;
let mut ipiv: VectorN<i32, _> = Matrix::zeros_generic(min_nrows_ncols, U1);
let mut info = 0;
N::xgetrf(
nrows,
ncols,
m.as_mut_slice(),
nrows,
ipiv.as_mut_slice(),
&mut info,
);
lapack_panic!(info);
Self { lu: m, p: ipiv }
}
/// Gets the lower-triangular matrix part of the decomposition.
#[inline]
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.lu.data.shape();
let mut res = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
res.fill_upper_triangle(Zero::zero(), 1);
res.fill_diagonal(One::one());
res
}
/// Gets the upper-triangular matrix part of the decomposition.
#[inline]
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.lu.data.shape();
let mut res = self.lu.rows_generic(0, nrows.min(ncols)).into_owned();
res.fill_lower_triangle(Zero::zero(), 1);
res
}
/// Gets the row permutation matrix of this decomposition.
///
/// Computing the permutation matrix explicitly is costly and usually not necessary.
/// To permute rows of a matrix or vector, use the method `self.permute(...)` instead.
#[inline]
pub fn p(&self) -> MatrixN<N, R> {
let (dim, _) = self.lu.data.shape();
let mut id = Matrix::identity_generic(dim, dim);
self.permute(&mut id);
id
}
// FIXME: when we support resizing a matrix, we could add unwrap_u/unwrap_l that would
// re-use the memory from the internal matrix!
/// Gets the LAPACK permutation indices.
#[inline]
pub fn permutation_indices(&self) -> &VectorN<i32, DimMinimum<R, C>> {
&self.p
}
/// Applies the permutation matrix to a given matrix or vector in-place.
#[inline]
pub fn permute<C2: Dim>(&self, rhs: &mut MatrixMN<N, R, C2>)
where DefaultAllocator: Allocator<N, R, C2> {
let (nrows, ncols) = rhs.shape();
N::xlaswp(
ncols as i32,
rhs.as_mut_slice(),
nrows as i32,
1,
self.p.len() as i32,
self.p.as_slice(),
-1,
);
}
fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut MatrixMN<N, R2, C2>) -> bool
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
let dim = self.lu.nrows();
assert!(
self.lu.is_square(),
"Unable to solve a set of under/over-determined equations."
);
assert!(
b.nrows() == dim,
"The number of rows of `b` must be equal to the dimension of the matrix `a`."
);
let nrhs = b.ncols() as i32;
let lda = dim as i32;
let ldb = dim as i32;
let mut info = 0;
N::xgetrs(
trans,
dim as i32,
nrhs,
self.lu.as_slice(),
lda,
self.p.as_slice(),
b.as_mut_slice(),
ldb,
&mut info,
);
lapack_test!(info)
}
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
let mut res = b.clone_owned();
if self.generic_solve_mut(b'N', &mut res) {
Some(res)
} else {
None
}
}
/// Solves the linear system `self.transpose() * x = b`, where `x` is the unknown to be
/// determined.
pub fn solve_transpose<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
let mut res = b.clone_owned();
if self.generic_solve_mut(b'T', &mut res) {
Some(res)
} else {
None
}
}
/// Solves the linear system `self.conjugate_transpose() * x = b`, where `x` is the unknown to
/// be determined.
pub fn solve_conjugate_transpose<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<N, R2, C2, S2>,
) -> Option<MatrixMN<N, R2, C2>>
where
S2: Storage<N, R2, C2>,
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
let mut res = b.clone_owned();
if self.generic_solve_mut(b'T', &mut res) {
Some(res)
} else {
None
}
}
/// Solves in-place the linear system `self * x = b`, where `x` is the unknown to be determined.
///
/// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
self.generic_solve_mut(b'N', b)
}
/// Solves in-place the linear system `self.transpose() * x = b`, where `x` is the unknown to be
/// determined.
///
/// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
where DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2> {
self.generic_solve_mut(b'T', b)
}
/// Solves in-place the linear system `self.conjugate_transpose() * x = b`, where `x` is the unknown to
/// be determined.
///
/// Returns `false` if no solution was found (the decomposed matrix is singular).
pub fn solve_conjugate_transpose_mut<R2: Dim, C2: Dim>(
&self,
b: &mut MatrixMN<N, R2, C2>,
) -> bool
where
DefaultAllocator: Allocator<N, R2, C2> + Allocator<i32, R2>,
{
self.generic_solve_mut(b'T', b)
}
}
impl<N: LUScalar, D: Dim> LU<N, D, D>
where
N: Zero + One,
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<N, D, D> + Allocator<i32, D>,
{
/// Computes the inverse of the decomposed matrix.
pub fn inverse(mut self) -> Option<MatrixN<N, D>> {
let dim = self.lu.nrows() as i32;
let mut info = 0;
let lwork = N::xgetri_work_size(
dim,
self.lu.as_mut_slice(),
dim,
self.p.as_mut_slice(),
&mut info,
);
lapack_check!(info);
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
N::xgetri(
dim,
self.lu.as_mut_slice(),
dim,
self.p.as_mut_slice(),
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
Some(self.lu)
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the LU decomposition.
pub trait LUScalar: Scalar {
#[allow(missing_docs)]
fn xgetrf(m: i32, n: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], info: &mut i32);
#[allow(missing_docs)]
fn xlaswp(n: i32, a: &mut [Self], lda: i32, k1: i32, k2: i32, ipiv: &[i32], incx: i32);
#[allow(missing_docs)]
fn xgetrs(
trans: u8,
n: i32,
nrhs: i32,
a: &[Self],
lda: i32,
ipiv: &[i32],
b: &mut [Self],
ldb: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xgetri(
n: i32,
a: &mut [Self],
lda: i32,
ipiv: &[i32],
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xgetri_work_size(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32], info: &mut i32) -> i32;
}
macro_rules! lup_scalar_impl(
($N: ty, $xgetrf: path, $xlaswp: path, $xgetrs: path, $xgetri: path) => (
impl LUScalar for $N {
#[inline]
fn xgetrf(m: i32, n: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], info: &mut i32) {
unsafe { $xgetrf(m, n, a, lda, ipiv, info) }
}
#[inline]
fn xlaswp(n: i32, a: &mut [Self], lda: i32, k1: i32, k2: i32, ipiv: &[i32], incx: i32) {
unsafe { $xlaswp(n, a, lda, k1, k2, ipiv, incx) }
}
#[inline]
fn xgetrs(trans: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, ipiv: &[i32],
b: &mut [Self], ldb: i32, info: &mut i32) {
unsafe { $xgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info) }
}
#[inline]
fn xgetri(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32],
work: &mut [Self], lwork: i32, info: &mut i32) {
unsafe { $xgetri(n, a, lda, ipiv, work, lwork, info) }
}
#[inline]
fn xgetri_work_size(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32], info: &mut i32) -> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xgetri(n, a, lda, ipiv, &mut work, lwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
lup_scalar_impl!(
f32,
lapack::sgetrf,
lapack::slaswp,
lapack::sgetrs,
lapack::sgetri
);
lup_scalar_impl!(
f64,
lapack::dgetrf,
lapack::dlaswp,
lapack::dgetrs,
lapack::dgetri
);
lup_scalar_impl!(
Complex<f32>,
lapack::cgetrf,
lapack::claswp,
lapack::cgetrs,
lapack::cgetri
);
lup_scalar_impl!(
Complex<f64>,
lapack::zgetrf,
lapack::zlaswp,
lapack::zgetrs,
lapack::zgetri
);