forked from M-Labs/nalgebra
241 lines
5.0 KiB
Rust
241 lines
5.0 KiB
Rust
#[test]
|
|
use std::iterator::IteratorUtil;
|
|
#[test]
|
|
use std::num::{Zero, One};
|
|
#[test]
|
|
use std::rand::{random};
|
|
#[test]
|
|
use std::cmp::ApproxEq;
|
|
#[test]
|
|
use vec::{Vec1, Vec2, Vec3, Vec4, Vec5, Vec6};
|
|
#[test]
|
|
use traits::basis::Basis;
|
|
#[test]
|
|
use traits::cross::Cross;
|
|
#[test]
|
|
use traits::dot::Dot;
|
|
#[test]
|
|
use traits::norm::Norm;
|
|
#[test]
|
|
use traits::iterable::{Iterable, IterableMut};
|
|
#[test]
|
|
use traits::scalar_op::{ScalarMul, ScalarDiv, ScalarAdd, ScalarSub};
|
|
|
|
macro_rules! test_iterator_impl(
|
|
($t: ty, $n: ty) => (
|
|
for 10000.times
|
|
{
|
|
let v: $t = random();
|
|
let mut mv: $t = copy v;
|
|
let n: $n = random();
|
|
|
|
let nv: $t = v.iter().transform(|e| e * n).collect();
|
|
|
|
for mv.mut_iter().advance |e|
|
|
{ *e = *e * n }
|
|
|
|
assert!(nv == mv && nv == v.scalar_mul(&n));
|
|
}
|
|
)
|
|
)
|
|
|
|
macro_rules! test_commut_dot_impl(
|
|
($t: ty) => (
|
|
for 10000.times
|
|
{
|
|
let v1 : $t = random();
|
|
let v2 : $t = random();
|
|
|
|
assert!(v1.dot(&v2).approx_eq(&v2.dot(&v1)));
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_scalar_op_impl(
|
|
($t: ty, $n: ty) => (
|
|
for 10000.times
|
|
{
|
|
let v1 : $t = random();
|
|
let n : $n = random();
|
|
|
|
assert!(v1.scalar_mul(&n).scalar_div(&n).approx_eq(&v1));
|
|
assert!(v1.scalar_div(&n).scalar_mul(&n).approx_eq(&v1));
|
|
assert!(v1.scalar_sub(&n).scalar_add(&n).approx_eq(&v1));
|
|
assert!(v1.scalar_add(&n).scalar_sub(&n).approx_eq(&v1));
|
|
|
|
let mut v1 : $t = random();
|
|
let v0 : $t = copy v1;
|
|
let n : $n = random();
|
|
|
|
v1.scalar_mul_inplace(&n);
|
|
v1.scalar_div_inplace(&n);
|
|
|
|
assert!(v1.approx_eq(&v0));
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_basis_impl(
|
|
($t: ty) => (
|
|
for 10000.times
|
|
{
|
|
let basis = Basis::canonical_basis::<$t>();
|
|
|
|
// check vectors form an ortogonal basis
|
|
assert!(
|
|
do basis.iter().zip(basis.iter()).all
|
|
|(e1, e2)| { e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero()) }
|
|
);
|
|
// check vectors form an orthonormal basis
|
|
assert!(basis.iter().all(|e| e.norm().approx_eq(&One::one())));
|
|
}
|
|
);
|
|
)
|
|
|
|
macro_rules! test_subspace_basis_impl(
|
|
($t: ty) => (
|
|
for 10000.times
|
|
{
|
|
let v : $t = random();
|
|
let v1 = v.normalized();
|
|
let subbasis = v1.orthogonal_subspace_basis();
|
|
|
|
// check vectors are orthogonal to v1
|
|
assert!(subbasis.iter().all(|e| v1.dot(e).approx_eq(&Zero::zero())));
|
|
// check vectors form an ortogonal basis
|
|
assert!(
|
|
do subbasis.iter().zip(subbasis.iter()).all
|
|
|(e1, e2)| { e1 == e2 || e1.dot(e2).approx_eq(&Zero::zero()) }
|
|
);
|
|
// check vectors form an orthonormal basis
|
|
assert!(subbasis.iter().all(|e| e.norm().approx_eq(&One::one())));
|
|
}
|
|
);
|
|
)
|
|
|
|
#[test]
|
|
fn test_cross_vec3()
|
|
{
|
|
for 10000.times
|
|
{
|
|
let v1 : Vec3<f64> = random();
|
|
let v2 : Vec3<f64> = random();
|
|
let v3 : Vec3<f64> = v1.cross(&v2);
|
|
|
|
assert!(v3.dot(&v2).approx_eq(&Zero::zero()));
|
|
assert!(v3.dot(&v1).approx_eq(&Zero::zero()));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_commut_dot_nvec()
|
|
{ test_commut_dot_impl!(Vec6<f64>); }
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec3()
|
|
{ test_commut_dot_impl!(Vec3<f64>); }
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec2()
|
|
{ test_commut_dot_impl!(Vec2<f64>); }
|
|
|
|
#[test]
|
|
fn test_commut_dot_vec1()
|
|
{ test_commut_dot_impl!(Vec1<f64>); }
|
|
|
|
#[test]
|
|
fn test_basis_vec1()
|
|
{ test_basis_impl!(Vec1<f64>); }
|
|
|
|
#[test]
|
|
fn test_basis_vec2()
|
|
{ test_basis_impl!(Vec2<f64>); }
|
|
|
|
#[test]
|
|
fn test_basis_vec3()
|
|
{ test_basis_impl!(Vec3<f64>); }
|
|
|
|
#[test]
|
|
fn test_basis_vec4()
|
|
{ test_basis_impl!(Vec4<f64>); }
|
|
|
|
#[test]
|
|
fn test_basis_vec5()
|
|
{ test_basis_impl!(Vec5<f64>); }
|
|
|
|
#[test]
|
|
fn test_basis_vec6()
|
|
{ test_basis_impl!(Vec6<f64>); }
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec1()
|
|
{ test_subspace_basis_impl!(Vec1<f64>); }
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec2()
|
|
{ test_subspace_basis_impl!(Vec2<f64>); }
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec3()
|
|
{ test_subspace_basis_impl!(Vec3<f64>); }
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec4()
|
|
{ test_subspace_basis_impl!(Vec4<f64>); }
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec5()
|
|
{ test_subspace_basis_impl!(Vec5<f64>); }
|
|
|
|
#[test]
|
|
fn test_subspace_basis_vec6()
|
|
{ test_subspace_basis_impl!(Vec6<f64>); }
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec1()
|
|
{ test_scalar_op_impl!(Vec1<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec2()
|
|
{ test_scalar_op_impl!(Vec2<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec3()
|
|
{ test_scalar_op_impl!(Vec3<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec4()
|
|
{ test_scalar_op_impl!(Vec4<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec5()
|
|
{ test_scalar_op_impl!(Vec5<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_scalar_op_vec6()
|
|
{ test_scalar_op_impl!(Vec6<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_iterator_vec1()
|
|
{ test_iterator_impl!(Vec1<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_iterator_vec2()
|
|
{ test_iterator_impl!(Vec2<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_iterator_vec3()
|
|
{ test_iterator_impl!(Vec3<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_iterator_vec4()
|
|
{ test_iterator_impl!(Vec4<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_iterator_vec5()
|
|
{ test_iterator_impl!(Vec5<f64>, f64); }
|
|
|
|
#[test]
|
|
fn test_iterator_vec6()
|
|
{ test_iterator_impl!(Vec6<f64>, f64); }
|