nalgebra/src/geometry/quaternion.rs
2023-09-30 13:01:11 +02:00

1712 lines
53 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::Zero;
use std::fmt;
use std::hash::{Hash, Hasher};
#[cfg(feature = "serde-serialize-no-std")]
use crate::base::storage::Owned;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use simba::scalar::{ClosedNeg, RealField};
use simba::simd::{SimdBool, SimdOption, SimdRealField};
use crate::base::dimension::{U1, U3, U4};
use crate::base::storage::{CStride, RStride};
use crate::base::{
Matrix3, Matrix4, MatrixView, MatrixViewMut, Normed, Scalar, Unit, Vector3, Vector4,
};
use crate::geometry::{Point3, Rotation};
#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
/// A quaternion. See the type alias `UnitQuaternion = Unit<Quaternion>` for a quaternion
/// that may be used as a rotation.
#[repr(C)]
#[derive(Copy, Clone)]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
archive(
as = "Quaternion<T::Archived>",
bound(archive = "
T: rkyv::Archive,
Vector4<T>: rkyv::Archive<Archived = Vector4<T::Archived>>
")
)
)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
pub struct Quaternion<T> {
/// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order.
pub coords: Vector4<T>,
}
impl<T: fmt::Debug> fmt::Debug for Quaternion<T> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.coords.as_slice().fmt(formatter)
}
}
impl<T: Scalar + Hash> Hash for Quaternion<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<T: Scalar + Eq> Eq for Quaternion<T> {}
impl<T: Scalar> PartialEq for Quaternion<T> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.coords == right.coords
}
}
impl<T: Scalar + Zero> Default for Quaternion<T> {
fn default() -> Self {
Quaternion {
coords: Vector4::zeros(),
}
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar> bytemuck::Zeroable for Quaternion<T> where Vector4<T>: bytemuck::Zeroable {}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar> bytemuck::Pod for Quaternion<T>
where
Vector4<T>: bytemuck::Pod,
T: Copy,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar> Serialize for Quaternion<T>
where
Owned<T, U4>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.coords.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar> Deserialize<'a> for Quaternion<T>
where
Owned<T, U4>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let coords = Vector4::<T>::deserialize(deserializer)?;
Ok(Self::from(coords))
}
}
impl<T: SimdRealField> Quaternion<T>
where
T::Element: SimdRealField,
{
/// Moves this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn into_owned(self) -> Self {
self
}
/// Clones this unit quaternion into one that owns its data.
#[inline]
#[deprecated(note = "This method is a no-op and will be removed in a future release.")]
pub fn clone_owned(&self) -> Self {
Self::from(self.coords.clone_owned())
}
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let q_normalized = q.normalize();
/// assert_relative_eq!(q_normalized.norm(), 1.0);
/// ```
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> Self {
Self::from(self.coords.normalize())
}
/// The imaginary part of this quaternion.
#[inline]
#[must_use]
pub fn imag(&self) -> Vector3<T> {
self.coords.xyz()
}
/// The conjugate of this quaternion.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let conj = q.conjugate();
/// assert!(conj.i == -2.0 && conj.j == -3.0 && conj.k == -4.0 && conj.w == 1.0);
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::from_parts(self.w.clone(), -self.imag())
}
/// Linear interpolation between two quaternion.
///
/// Computes `self * (1 - t) + other * t`.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let q2 = Quaternion::new(10.0, 20.0, 30.0, 40.0);
///
/// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(1.9, 3.8, 5.7, 7.6));
/// ```
#[inline]
#[must_use]
pub fn lerp(&self, other: &Self, t: T) -> Self {
self * (T::one() - t.clone()) + other * t
}
/// The vector part `(i, j, k)` of this quaternion.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_eq!(q.vector()[0], 2.0);
/// assert_eq!(q.vector()[1], 3.0);
/// assert_eq!(q.vector()[2], 4.0);
/// ```
#[inline]
#[must_use]
pub fn vector(&self) -> MatrixView<'_, T, U3, U1, RStride<T, U4, U1>, CStride<T, U4, U1>> {
self.coords.fixed_rows::<3>(0)
}
/// The scalar part `w` of this quaternion.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_eq!(q.scalar(), 1.0);
/// ```
#[inline]
#[must_use]
pub fn scalar(&self) -> T {
self.coords[3].clone()
}
/// Reinterprets this quaternion as a 4D vector.
///
/// # Example
/// ```
/// # use nalgebra::{Vector4, Quaternion};
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// // Recall that the quaternion is stored internally as (i, j, k, w)
/// // while the crate::new constructor takes the arguments as (w, i, j, k).
/// assert_eq!(*q.as_vector(), Vector4::new(2.0, 3.0, 4.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn as_vector(&self) -> &Vector4<T> {
&self.coords
}
/// The norm of this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_relative_eq!(q.norm(), 5.47722557, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn norm(&self) -> T {
self.coords.norm()
}
/// A synonym for the norm of this quaternion.
///
/// Aka the length.
/// This is the same as `.norm()`
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_relative_eq!(q.magnitude(), 5.47722557, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn magnitude(&self) -> T {
self.norm()
}
/// The squared norm of this quaternion.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_eq!(q.norm_squared(), 30.0);
/// ```
#[inline]
#[must_use]
pub fn norm_squared(&self) -> T {
self.coords.norm_squared()
}
/// A synonym for the squared norm of this quaternion.
///
/// Aka the squared length.
/// This is the same as `.norm_squared()`
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_eq!(q.magnitude_squared(), 30.0);
/// ```
#[inline]
#[must_use]
pub fn magnitude_squared(&self) -> T {
self.norm_squared()
}
/// The dot product of two quaternions.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let q1 = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let q2 = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// assert_eq!(q1.dot(&q2), 70.0);
/// ```
#[inline]
#[must_use]
pub fn dot(&self, rhs: &Self) -> T {
self.coords.dot(&rhs.coords)
}
}
impl<T: SimdRealField> Quaternion<T>
where
T::Element: SimdRealField,
{
/// Inverts this quaternion if it is not zero.
///
/// This method also does not works with SIMD components (see `simd_try_inverse` instead).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let inv_q = q.try_inverse();
///
/// assert!(inv_q.is_some());
/// assert_relative_eq!(inv_q.unwrap() * q, Quaternion::identity());
///
/// //Non-invertible case
/// let q = Quaternion::new(0.0, 0.0, 0.0, 0.0);
/// let inv_q = q.try_inverse();
///
/// assert!(inv_q.is_none());
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(&self) -> Option<Self>
where
T: RealField,
{
let mut res = self.clone();
if res.try_inverse_mut() {
Some(res)
} else {
None
}
}
/// Attempt to inverse this quaternion.
///
/// This method also works with SIMD components.
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn simd_try_inverse(&self) -> SimdOption<Self> {
let norm_squared = self.norm_squared();
let ge = norm_squared.clone().simd_ge(T::simd_default_epsilon());
SimdOption::new(self.conjugate() / norm_squared, ge)
}
/// Calculates the inner product (also known as the dot product).
/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel
/// Formula 4.89.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
/// let expected = Quaternion::new(-20.0, 0.0, 0.0, 0.0);
/// let result = a.inner(&b);
/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);
/// ```
#[inline]
#[must_use]
pub fn inner(&self, other: &Self) -> Self {
(self * other + other * self).half()
}
/// Calculates the outer product (also known as the wedge product).
/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel
/// Formula 4.89.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
/// let expected = Quaternion::new(0.0, -5.0, 18.0, -11.0);
/// let result = a.outer(&b);
/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);
/// ```
#[inline]
#[must_use]
pub fn outer(&self, other: &Self) -> Self {
#[allow(clippy::eq_op)]
(self * other - other * self).half()
}
/// Calculates the projection of `self` onto `other` (also known as the parallel).
/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel
/// Formula 4.94.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
/// let expected = Quaternion::new(0.0, 3.333333333333333, 1.3333333333333333, 0.6666666666666666);
/// let result = a.project(&b).unwrap();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);
/// ```
#[inline]
#[must_use]
pub fn project(&self, other: &Self) -> Option<Self>
where
T: RealField,
{
self.inner(other).right_div(other)
}
/// Calculates the rejection of `self` from `other` (also known as the perpendicular).
/// See "Foundations of Game Engine Development, Volume 1: Mathematics" by Lengyel
/// Formula 4.94.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let a = Quaternion::new(0.0, 2.0, 3.0, 4.0);
/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
/// let expected = Quaternion::new(0.0, -1.3333333333333333, 1.6666666666666665, 3.3333333333333335);
/// let result = a.reject(&b).unwrap();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-5);
/// ```
#[inline]
#[must_use]
pub fn reject(&self, other: &Self) -> Option<Self>
where
T: RealField,
{
self.outer(other).right_div(other)
}
/// The polar decomposition of this quaternion.
///
/// Returns, from left to right: the quaternion norm, the half rotation angle, the rotation
/// axis. If the rotation angle is zero, the rotation axis is set to `None`.
///
/// # Example
/// ```
/// # use std::f32;
/// # use nalgebra::{Vector3, Quaternion};
/// let q = Quaternion::new(0.0, 5.0, 0.0, 0.0);
/// let (norm, half_ang, axis) = q.polar_decomposition();
/// assert_eq!(norm, 5.0);
/// assert_eq!(half_ang, f32::consts::FRAC_PI_2);
/// assert_eq!(axis, Some(Vector3::x_axis()));
/// ```
#[must_use]
pub fn polar_decomposition(&self) -> (T, T, Option<Unit<Vector3<T>>>)
where
T: RealField,
{
if let Some((q, n)) = Unit::try_new_and_get(self.clone(), T::zero()) {
if let Some(axis) = Unit::try_new(self.vector().clone_owned(), T::zero()) {
let angle = q.angle() / crate::convert(2.0f64);
(n, angle, Some(axis))
} else {
(n, T::zero(), None)
}
} else {
(T::zero(), T::zero(), None)
}
}
/// Compute the natural logarithm of a quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(2.0, 5.0, 0.0, 0.0);
/// assert_relative_eq!(q.ln(), Quaternion::new(1.683647, 1.190289, 0.0, 0.0), epsilon = 1.0e-6)
/// ```
#[inline]
#[must_use]
pub fn ln(&self) -> Self {
let n = self.norm();
let v = self.vector();
let s = self.scalar();
Self::from_parts(n.clone().simd_ln(), v.normalize() * (s / n).simd_acos())
}
/// Compute the exponential of a quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
/// assert_relative_eq!(q.exp(), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5)
/// ```
#[inline]
#[must_use]
pub fn exp(&self) -> Self {
self.exp_eps(T::simd_default_epsilon())
}
/// Compute the exponential of a quaternion. Returns the identity if the vector part of this quaternion
/// has a norm smaller than `eps`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.683647, 1.190289, 0.0, 0.0);
/// assert_relative_eq!(q.exp_eps(1.0e-6), Quaternion::new(2.0, 5.0, 0.0, 0.0), epsilon = 1.0e-5);
///
/// // Singular case.
/// let q = Quaternion::new(0.0000001, 0.0, 0.0, 0.0);
/// assert_eq!(q.exp_eps(1.0e-6), Quaternion::identity());
/// ```
#[inline]
#[must_use]
pub fn exp_eps(&self, eps: T) -> Self {
let v = self.vector();
let nn = v.norm_squared();
let le = nn.clone().simd_le(eps.clone() * eps);
le.if_else(Self::identity, || {
let w_exp = self.scalar().simd_exp();
let n = nn.simd_sqrt();
let nv = v * (w_exp.clone() * n.clone().simd_sin() / n.clone());
Self::from_parts(w_exp * n.simd_cos(), nv)
})
}
/// Raise the quaternion to a given floating power.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// assert_relative_eq!(q.powf(1.5), Quaternion::new( -6.2576659, 4.1549037, 6.2323556, 8.3098075), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn powf(&self, n: T) -> Self {
(self.ln() * n).exp()
}
/// Transforms this quaternion into its 4D vector form (Vector part, Scalar part).
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, Vector4};
/// let mut q = Quaternion::identity();
/// *q.as_vector_mut() = Vector4::new(1.0, 2.0, 3.0, 4.0);
/// assert!(q.i == 1.0 && q.j == 2.0 && q.k == 3.0 && q.w == 4.0);
/// ```
#[inline]
pub fn as_vector_mut(&mut self) -> &mut Vector4<T> {
&mut self.coords
}
/// The mutable vector part `(i, j, k)` of this quaternion.
///
/// # Example
/// ```
/// # use nalgebra::{Quaternion, Vector4};
/// let mut q = Quaternion::identity();
/// {
/// let mut v = q.vector_mut();
/// v[0] = 2.0;
/// v[1] = 3.0;
/// v[2] = 4.0;
/// }
/// assert!(q.i == 2.0 && q.j == 3.0 && q.k == 4.0 && q.w == 1.0);
/// ```
#[inline]
pub fn vector_mut(
&mut self,
) -> MatrixViewMut<'_, T, U3, U1, RStride<T, U4, U1>, CStride<T, U4, U1>> {
self.coords.fixed_rows_mut::<3>(0)
}
/// Replaces this quaternion by its conjugate.
///
/// # Example
/// ```
/// # use nalgebra::Quaternion;
/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// q.conjugate_mut();
/// assert!(q.i == -2.0 && q.j == -3.0 && q.k == -4.0 && q.w == 1.0);
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
self.coords[0] = -self.coords[0].clone();
self.coords[1] = -self.coords[1].clone();
self.coords[2] = -self.coords[2].clone();
}
/// Inverts this quaternion in-place if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let mut q = Quaternion::new(1.0f32, 2.0, 3.0, 4.0);
///
/// assert!(q.try_inverse_mut());
/// assert_relative_eq!(q * Quaternion::new(1.0, 2.0, 3.0, 4.0), Quaternion::identity());
///
/// //Non-invertible case
/// let mut q = Quaternion::new(0.0f32, 0.0, 0.0, 0.0);
/// assert!(!q.try_inverse_mut());
/// ```
#[inline]
pub fn try_inverse_mut(&mut self) -> T::SimdBool {
let norm_squared = self.norm_squared();
let ge = norm_squared.clone().simd_ge(T::simd_default_epsilon());
*self = ge.if_else(|| self.conjugate() / norm_squared, || self.clone());
ge
}
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let mut q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// q.normalize_mut();
/// assert_relative_eq!(q.norm(), 1.0);
/// ```
#[inline]
pub fn normalize_mut(&mut self) -> T {
self.coords.normalize_mut()
}
/// Calculates square of a quaternion.
#[inline]
#[must_use]
pub fn squared(&self) -> Self {
self * self
}
/// Divides quaternion into two.
#[inline]
#[must_use]
pub fn half(&self) -> Self {
self / crate::convert(2.0f64)
}
/// Calculates square root.
#[inline]
#[must_use]
pub fn sqrt(&self) -> Self {
self.powf(crate::convert(0.5))
}
/// Check if the quaternion is pure.
///
/// A quaternion is pure if it has no real part (`self.w == 0.0`).
#[inline]
#[must_use]
pub fn is_pure(&self) -> bool {
self.w.is_zero()
}
/// Convert quaternion to pure quaternion.
#[inline]
#[must_use]
pub fn pure(&self) -> Self {
Self::from_imag(self.imag())
}
/// Left quaternionic division.
///
/// Calculates B<sup>-1</sup> * A where A = self, B = other.
#[inline]
#[must_use]
pub fn left_div(&self, other: &Self) -> Option<Self>
where
T: RealField,
{
other.try_inverse().map(|inv| inv * self)
}
/// Right quaternionic division.
///
/// Calculates A * B<sup>-1</sup> where A = self, B = other.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let a = Quaternion::new(0.0, 1.0, 2.0, 3.0);
/// let b = Quaternion::new(0.0, 5.0, 2.0, 1.0);
/// let result = a.right_div(&b).unwrap();
/// let expected = Quaternion::new(0.4, 0.13333333333333336, -0.4666666666666667, 0.26666666666666666);
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn right_div(&self, other: &Self) -> Option<Self>
where
T: RealField,
{
other.try_inverse().map(|inv| self * inv)
}
/// Calculates the quaternionic cosinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(58.93364616794395, -34.086183690465596, -51.1292755356984, -68.17236738093119);
/// let result = input.cos();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn cos(&self) -> Self {
let z = self.imag().magnitude();
let w = -self.w.clone().simd_sin() * z.clone().simd_sinhc();
Self::from_parts(self.w.clone().simd_cos() * z.simd_cosh(), self.imag() * w)
}
/// Calculates the quaternionic arccosinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let result = input.cos().acos();
/// assert_relative_eq!(input, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn acos(&self) -> Self {
let u = Self::from_imag(self.imag().normalize());
let identity = Self::identity();
let z = (self + (self.squared() - identity).sqrt()).ln();
-(u * z)
}
/// Calculates the quaternionic sinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(91.78371578403467, 21.886486853029176, 32.82973027954377, 43.77297370605835);
/// let result = input.sin();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn sin(&self) -> Self {
let z = self.imag().magnitude();
let w = self.w.clone().simd_cos() * z.clone().simd_sinhc();
Self::from_parts(self.w.clone().simd_sin() * z.simd_cosh(), self.imag() * w)
}
/// Calculates the quaternionic arcsinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let result = input.sin().asin();
/// assert_relative_eq!(input, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn asin(&self) -> Self {
let u = Self::from_imag(self.imag().normalize());
let identity = Self::identity();
let z = ((u.clone() * self) + (identity - self.squared()).sqrt()).ln();
-(u * z)
}
/// Calculates the quaternionic tangent.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(0.00003821631725009489, 0.3713971716439371, 0.5570957574659058, 0.7427943432878743);
/// let result = input.tan();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn tan(&self) -> Self
where
T: RealField,
{
self.sin().right_div(&self.cos()).unwrap()
}
/// Calculates the quaternionic arctangent.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let result = input.tan().atan();
/// assert_relative_eq!(input, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn atan(&self) -> Self
where
T: RealField,
{
let u = Self::from_imag(self.imag().normalize());
let num = u.clone() + self;
let den = u.clone() - self;
let fr = num.right_div(&den).unwrap();
let ln = fr.ln();
(u.half()) * ln
}
/// Calculates the hyperbolic quaternionic sinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(0.7323376060463428, -0.4482074499805421, -0.6723111749708133, -0.8964148999610843);
/// let result = input.sinh();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn sinh(&self) -> Self {
(self.exp() - (-self).exp()).half()
}
/// Calculates the hyperbolic quaternionic arcsinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(2.385889902585242, 0.514052600662788, 0.7710789009941821, 1.028105201325576);
/// let result = input.asinh();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn asinh(&self) -> Self {
let identity = Self::identity();
(self + (identity + self.squared()).sqrt()).ln()
}
/// Calculates the hyperbolic quaternionic cosinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(0.9615851176369566, -0.3413521745610167, -0.5120282618415251, -0.6827043491220334);
/// let result = input.cosh();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn cosh(&self) -> Self {
(self.exp() + (-self).exp()).half()
}
/// Calculates the hyperbolic quaternionic arccosinus.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(2.4014472020074007, 0.5162761016176176, 0.7744141524264264, 1.0325522032352352);
/// let result = input.acosh();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn acosh(&self) -> Self {
let identity = Self::identity();
(self + (self + identity.clone()).sqrt() * (self - identity).sqrt()).ln()
}
/// Calculates the hyperbolic quaternionic tangent.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(1.0248695360556623, -0.10229568178876419, -0.1534435226831464, -0.20459136357752844);
/// let result = input.tanh();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn tanh(&self) -> Self
where
T: RealField,
{
self.sinh().right_div(&self.cosh()).unwrap()
}
/// Calculates the hyperbolic quaternionic arctangent.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Quaternion;
/// let input = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let expected = Quaternion::new(0.03230293287000163, 0.5173453683196951, 0.7760180524795426, 1.0346907366393903);
/// let result = input.atanh();
/// assert_relative_eq!(expected, result, epsilon = 1.0e-7);
/// ```
#[inline]
#[must_use]
pub fn atanh(&self) -> Self {
let identity = Self::identity();
((identity.clone() + self).ln() - (identity - self).ln()).half()
}
}
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for Quaternion<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_vector().abs_diff_eq(other.as_vector(), epsilon.clone()) ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.abs_diff_eq(&-b.clone(), epsilon.clone()))
}
}
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for Quaternion<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_vector().relative_eq(other.as_vector(), epsilon.clone(), max_relative.clone()) ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.relative_eq(&-b.clone(), epsilon.clone(), max_relative.clone()))
}
}
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for Quaternion<T> {
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_vector().ulps_eq(other.as_vector(), epsilon.clone(), max_ulps) ||
// Account for the double-covering of S², i.e. q = -q.
self.as_vector().iter().zip(other.as_vector().iter()).all(|(a, b)| a.ulps_eq(&-b.clone(), epsilon.clone(), max_ulps))
}
}
impl<T: RealField + fmt::Display> fmt::Display for Quaternion<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Quaternion {} ({}, {}, {})",
self[3], self[0], self[1], self[2]
)
}
}
/// A unit quaternions. May be used to represent a rotation.
pub type UnitQuaternion<T> = Unit<Quaternion<T>>;
#[cfg(feature = "cuda")]
unsafe impl<T: cust_core::DeviceCopy> cust_core::DeviceCopy for UnitQuaternion<T> {}
impl<T: Scalar + ClosedNeg + PartialEq> PartialEq for UnitQuaternion<T> {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.coords == rhs.coords ||
// Account for the double-covering of S², i.e. q = -q
self.coords.iter().zip(rhs.coords.iter()).all(|(a, b)| *a == -b.clone())
}
}
impl<T: Scalar + ClosedNeg + Eq> Eq for UnitQuaternion<T> {}
impl<T: SimdRealField> Normed for Quaternion<T> {
type Norm = T::SimdRealField;
#[inline]
fn norm(&self) -> T::SimdRealField {
self.coords.norm()
}
#[inline]
fn norm_squared(&self) -> T::SimdRealField {
self.coords.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.coords.scale_mut(n)
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.coords.unscale_mut(n)
}
}
impl<T: SimdRealField> UnitQuaternion<T>
where
T::Element: SimdRealField,
{
/// The rotation angle in [0; pi] of this unit quaternion.
///
/// # Example
/// ```
/// # use nalgebra::{Unit, UnitQuaternion, Vector3};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
/// assert_eq!(rot.angle(), 1.78);
/// ```
#[inline]
#[must_use]
pub fn angle(&self) -> T {
let w = self.quaternion().scalar().simd_abs();
self.quaternion().imag().norm().simd_atan2(w) * crate::convert(2.0f64)
}
/// The underlying quaternion.
///
/// Same as `self.as_ref()`.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Quaternion};
/// let axis = UnitQuaternion::identity();
/// assert_eq!(*axis.quaternion(), Quaternion::new(1.0, 0.0, 0.0, 0.0));
/// ```
#[inline]
#[must_use]
pub fn quaternion(&self) -> &Quaternion<T> {
self.as_ref()
}
/// Compute the conjugate of this unit quaternion.
///
/// # Example
/// ```
/// # use nalgebra::{Unit, UnitQuaternion, Vector3};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
/// let conj = rot.conjugate();
/// assert_eq!(conj, UnitQuaternion::from_axis_angle(&-axis, 1.78));
/// ```
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> Self {
Self::new_unchecked(self.as_ref().conjugate())
}
/// Inverts this quaternion if it is not zero.
///
/// # Example
/// ```
/// # use nalgebra::{Unit, UnitQuaternion, Vector3};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let rot = UnitQuaternion::from_axis_angle(&axis, 1.78);
/// let inv = rot.inverse();
/// assert_eq!(rot * inv, UnitQuaternion::identity());
/// assert_eq!(inv * rot, UnitQuaternion::identity());
/// ```
#[inline]
#[must_use = "Did you mean to use inverse_mut()?"]
pub fn inverse(&self) -> Self {
self.conjugate()
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
/// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn angle_to(&self, other: &Self) -> T {
let delta = self.rotation_to(other);
delta.angle()
}
/// The unit quaternion needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let rot1 = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), 1.0);
/// let rot2 = UnitQuaternion::from_axis_angle(&Vector3::x_axis(), 0.1);
/// let rot_to = rot1.rotation_to(&rot2);
/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn rotation_to(&self, other: &Self) -> Self {
other / self
}
/// Linear interpolation between two unit quaternions.
///
/// The result is not normalized.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Quaternion};
/// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
/// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
/// assert_eq!(q1.lerp(&q2, 0.1), Quaternion::new(0.9, 0.1, 0.0, 0.0));
/// ```
#[inline]
#[must_use]
pub fn lerp(&self, other: &Self, t: T) -> Quaternion<T> {
self.as_ref().lerp(other.as_ref(), t)
}
/// Normalized linear interpolation between two unit quaternions.
///
/// This is the same as `self.lerp` except that the result is normalized.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Quaternion};
/// let q1 = UnitQuaternion::new_normalize(Quaternion::new(1.0, 0.0, 0.0, 0.0));
/// let q2 = UnitQuaternion::new_normalize(Quaternion::new(0.0, 1.0, 0.0, 0.0));
/// assert_eq!(q1.nlerp(&q2, 0.1), UnitQuaternion::new_normalize(Quaternion::new(0.9, 0.1, 0.0, 0.0)));
/// ```
#[inline]
#[must_use]
pub fn nlerp(&self, other: &Self, t: T) -> Self {
let mut res = self.lerp(other, t);
let _ = res.normalize_mut();
Self::new_unchecked(res)
}
/// Spherical linear interpolation between two unit quaternions.
///
/// Panics if the angle between both quaternion is 180 degrees (in which case the interpolation
/// is not well-defined). Use `.try_slerp` instead to avoid the panic.
///
/// # Example
/// ```
/// # use nalgebra::geometry::UnitQuaternion;
///
/// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
/// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
///
/// let q = q1.slerp(&q2, 1.0 / 3.0);
///
/// assert_eq!(q.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
/// ```
#[inline]
#[must_use]
pub fn slerp(&self, other: &Self, t: T) -> Self
where
T: RealField,
{
self.try_slerp(other, t, T::default_epsilon())
.expect("Quaternion slerp: ambiguous configuration.")
}
/// Computes the spherical linear interpolation between two unit quaternions or returns `None`
/// if both quaternions are approximately 180 degrees apart (in which case the interpolation is
/// not well-defined).
///
/// # Arguments
/// * `self`: the first quaternion to interpolate from.
/// * `other`: the second quaternion to interpolate toward.
/// * `t`: the interpolation parameter. Should be between 0 and 1.
/// * `epsilon`: the value below which the sinus of the angle separating both quaternion
/// must be to return `None`.
#[inline]
#[must_use]
pub fn try_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
where
T: RealField,
{
let coords = if self.coords.dot(&other.coords) < T::zero() {
Unit::new_unchecked(self.coords.clone()).try_slerp(
&Unit::new_unchecked(-other.coords.clone()),
t,
epsilon,
)
} else {
Unit::new_unchecked(self.coords.clone()).try_slerp(
&Unit::new_unchecked(other.coords.clone()),
t,
epsilon,
)
};
coords.map(|q| Unit::new_unchecked(Quaternion::from(q.into_inner())))
}
/// Compute the conjugate of this unit quaternion in-place.
#[inline]
pub fn conjugate_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// Inverts this quaternion if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let mut rot = UnitQuaternion::new(axisangle);
/// rot.inverse_mut();
/// assert_relative_eq!(rot * UnitQuaternion::new(axisangle), UnitQuaternion::identity());
/// assert_relative_eq!(UnitQuaternion::new(axisangle) * rot, UnitQuaternion::identity());
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.as_mut_unchecked().conjugate_mut()
}
/// The rotation axis of this unit quaternion or `None` if the rotation is zero.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);
/// assert_eq!(rot.axis(), Some(axis));
///
/// // Case with a zero angle.
/// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
/// assert!(rot.axis().is_none());
/// ```
#[inline]
#[must_use]
pub fn axis(&self) -> Option<Unit<Vector3<T>>>
where
T: RealField,
{
let v = if self.quaternion().scalar() >= T::zero() {
self.as_ref().vector().clone_owned()
} else {
-self.as_ref().vector()
};
Unit::try_new(v, T::zero())
}
/// The rotation axis of this unit quaternion multiplied by the rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let rot = UnitQuaternion::new(axisangle);
/// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn scaled_axis(&self) -> Vector3<T>
where
T: RealField,
{
if let Some(axis) = self.axis() {
axis.into_inner() * self.angle()
} else {
Vector3::zero()
}
}
/// The rotation axis and angle in (0, pi] of this unit quaternion.
///
/// Returns `None` if the angle is zero.
///
/// # Example
/// ```
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);
/// assert_eq!(rot.axis_angle(), Some((axis, angle)));
///
/// // Case with a zero angle.
/// let rot = UnitQuaternion::from_axis_angle(&axis, 0.0);
/// assert!(rot.axis_angle().is_none());
/// ```
#[inline]
#[must_use]
pub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>
where
T: RealField,
{
self.axis().map(|axis| (axis, self.angle()))
}
/// Compute the exponential of a quaternion.
///
/// Note that this function yields a `Quaternion<T>` because it loses the unit property.
#[inline]
#[must_use]
pub fn exp(&self) -> Quaternion<T> {
self.as_ref().exp()
}
/// Compute the natural logarithm of a quaternion.
///
/// Note that this function yields a `Quaternion<T>` because it loses the unit property.
/// The vector part of the return value corresponds to the axis-angle representation (divided
/// by 2.0) of this unit quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, UnitQuaternion};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let q = UnitQuaternion::new(axisangle);
/// assert_relative_eq!(q.ln().vector().into_owned(), axisangle, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn ln(&self) -> Quaternion<T>
where
T: RealField,
{
if let Some(v) = self.axis() {
Quaternion::from_imag(v.into_inner() * self.angle())
} else {
Quaternion::zero()
}
}
/// Raise the quaternion to a given floating power.
///
/// This returns the unit quaternion that identifies a rotation with axis `self.axis()` and
/// angle `self.angle() × n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{UnitQuaternion, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = UnitQuaternion::from_axis_angle(&axis, angle);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
/// assert_eq!(pow.angle(), 2.4);
/// ```
#[inline]
#[must_use]
pub fn powf(&self, n: T) -> Self
where
T: RealField,
{
if let Some(v) = self.axis() {
Self::from_axis_angle(&v, self.angle() * n)
} else {
Self::identity()
}
}
/// Builds a rotation matrix from this unit quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3, Matrix3};
/// let q = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let rot = q.to_rotation_matrix();
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(*rot.matrix(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_rotation_matrix(self) -> Rotation<T, 3> {
let i = self.as_ref()[0].clone();
let j = self.as_ref()[1].clone();
let k = self.as_ref()[2].clone();
let w = self.as_ref()[3].clone();
let ww = w.clone() * w.clone();
let ii = i.clone() * i.clone();
let jj = j.clone() * j.clone();
let kk = k.clone() * k.clone();
let ij = i.clone() * j.clone() * crate::convert(2.0f64);
let wk = w.clone() * k.clone() * crate::convert(2.0f64);
let wj = w.clone() * j.clone() * crate::convert(2.0f64);
let ik = i.clone() * k.clone() * crate::convert(2.0f64);
let jk = j * k * crate::convert(2.0f64);
let wi = w * i * crate::convert(2.0f64);
Rotation::from_matrix_unchecked(Matrix3::new(
ww.clone() + ii.clone() - jj.clone() - kk.clone(),
ij.clone() - wk.clone(),
wj.clone() + ik.clone(),
wk + ij,
ww.clone() - ii.clone() + jj.clone() - kk.clone(),
jk.clone() - wi.clone(),
ik - wj,
wi + jk,
ww - ii - jj + kk,
))
}
/// Converts this unit quaternion into its equivalent Euler angles.
///
/// The angles are produced in the form (roll, pitch, yaw).
#[inline]
#[deprecated(note = "This is renamed to use `.euler_angles()`.")]
pub fn to_euler_angles(self) -> (T, T, T)
where
T: RealField,
{
self.euler_angles()
}
/// Retrieves the euler angles corresponding to this unit quaternion.
///
/// The angles are produced in the form (roll, pitch, yaw).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitQuaternion;
/// let rot = UnitQuaternion::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn euler_angles(&self) -> (T, T, T)
where
T: RealField,
{
self.clone().to_rotation_matrix().euler_angles()
}
/// Converts this unit quaternion into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3, Matrix4};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_6);
/// let expected = Matrix4::new(0.8660254, -0.5, 0.0, 0.0,
/// 0.5, 0.8660254, 0.0, 0.0,
/// 0.0, 0.0, 1.0, 0.0,
/// 0.0, 0.0, 0.0, 1.0);
///
/// assert_relative_eq!(rot.to_homogeneous(), expected, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(self) -> Matrix4<T> {
self.to_rotation_matrix().to_homogeneous()
}
/// Rotate a point by this unit quaternion.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3, Point3};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
/// let transformed_point = rot.transform_point(&Point3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T> {
self * pt
}
/// Rotate a vector by this unit quaternion.
///
/// This is the same as the multiplication `self * v`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_vector, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
self * v
}
/// Rotate a point by the inverse of this unit quaternion. This may be
/// cheaper than inverting the unit quaternion and transforming the
/// point.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3, Point3};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
/// let transformed_point = rot.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_point, Point3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T> {
// TODO: would it be useful performance-wise not to call inverse explicitly (i-e. implement
// the inverse transformation explicitly here) ?
self.inverse() * pt
}
/// Rotate a vector by the inverse of this unit quaternion. This may be
/// cheaper than inverting the unit quaternion and transforming the
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::y_axis(), f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
///
/// assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T> {
self.inverse() * v
}
/// Rotate a vector by the inverse of this unit quaternion. This may be
/// cheaper than inverting the unit quaternion and transforming the
/// vector.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{UnitQuaternion, Vector3};
/// let rot = UnitQuaternion::from_axis_angle(&Vector3::z_axis(), f32::consts::FRAC_PI_2);
/// let transformed_vector = rot.inverse_transform_unit_vector(&Vector3::x_axis());
///
/// assert_relative_eq!(transformed_vector, -Vector3::y_axis(), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn inverse_transform_unit_vector(&self, v: &Unit<Vector3<T>>) -> Unit<Vector3<T>> {
self.inverse() * v
}
/// Appends to `self` a rotation given in the axis-angle form, using a linearized formulation.
///
/// This is faster, but approximate, way to compute `UnitQuaternion::new(axisangle) * self`.
#[inline]
#[must_use]
pub fn append_axisangle_linearized(&self, axisangle: &Vector3<T>) -> Self {
let half: T = crate::convert(0.5);
let q1 = self.clone().into_inner();
let q2 = Quaternion::from_imag(axisangle * half);
Unit::new_normalize(&q1 + q2 * &q1)
}
}
impl<T: RealField> Default for UnitQuaternion<T> {
fn default() -> Self {
Self::identity()
}
}
impl<T: RealField + fmt::Display> fmt::Display for UnitQuaternion<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(axis) = self.axis() {
let axis = axis.into_inner();
write!(
f,
"UnitQuaternion angle: {} axis: ({}, {}, {})",
self.angle(),
axis[0],
axis[1],
axis[2]
)
} else {
write!(
f,
"UnitQuaternion angle: {} axis: (undefined)",
self.angle()
)
}
}
}
impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for UnitQuaternion<T> {
type Epsilon = T;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for UnitQuaternion<T> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for UnitQuaternion<T> {
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}