nalgebra/src/geometry/orthographic.rs
2023-07-09 11:36:44 +02:00

787 lines
28 KiB
Rust

#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{Distribution, Standard},
Rng,
};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::fmt;
use simba::scalar::RealField;
use crate::base::dimension::U3;
use crate::base::storage::Storage;
use crate::base::{Matrix4, Vector, Vector3};
use crate::geometry::{Point3, Projective3};
#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;
/// A 3D orthographic projection stored as a homogeneous 4x4 matrix.
#[repr(C)]
#[cfg_attr(
feature = "rkyv-serialize-no-std",
derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
archive(
as = "Orthographic3<T::Archived>",
bound(archive = "
T: rkyv::Archive,
Matrix4<T>: rkyv::Archive<Archived = Matrix4<T::Archived>>
")
)
)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(feature = "cuda", derive(cust_core::DeviceCopy))]
#[derive(Copy, Clone)]
pub struct Orthographic3<T> {
matrix: Matrix4<T>,
}
impl<T: RealField> fmt::Debug for Orthographic3<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.matrix.fmt(f)
}
}
impl<T: RealField> PartialEq for Orthographic3<T> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Zeroable for Orthographic3<T>
where
T: RealField + bytemuck::Zeroable,
Matrix4<T>: bytemuck::Zeroable,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T> bytemuck::Pod for Orthographic3<T>
where
T: RealField + bytemuck::Pod,
Matrix4<T>: bytemuck::Pod,
{
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: RealField + Serialize> Serialize for Orthographic3<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: RealField + Deserialize<'a>> Deserialize<'a> for Orthographic3<T> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let matrix = Matrix4::<T>::deserialize(deserializer)?;
Ok(Self::from_matrix_unchecked(matrix))
}
}
impl<T> Orthographic3<T> {
/// Wraps the given matrix to interpret it as a 3D orthographic matrix.
///
/// It is not checked whether or not the given matrix actually represents an orthographic
/// projection.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let mat = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// let proj = Orthographic3::from_matrix_unchecked(mat);
/// assert_eq!(proj, Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0));
/// ```
#[inline]
pub const fn from_matrix_unchecked(matrix: Matrix4<T>) -> Self {
Self { matrix }
}
}
impl<T: RealField> Orthographic3<T> {
/// Creates a new orthographic projection matrix.
///
/// This follows the OpenGL convention, so this will flip the `z` axis.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// // Check this projection actually transforms the view cuboid into the double-unit cube.
/// // See https://www.nalgebra.org/docs/user_guide/projections#orthographic-projection for more details.
/// let p1 = Point3::new(1.0, 2.0, -0.1);
/// let p2 = Point3::new(1.0, 2.0, -1000.0);
/// let p3 = Point3::new(1.0, 20.0, -0.1);
/// let p4 = Point3::new(1.0, 20.0, -1000.0);
/// let p5 = Point3::new(10.0, 2.0, -0.1);
/// let p6 = Point3::new(10.0, 2.0, -1000.0);
/// let p7 = Point3::new(10.0, 20.0, -0.1);
/// let p8 = Point3::new(10.0, 20.0, -1000.0);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
///
/// // This also works with flipped axis. In other words, we allow that
/// // `left > right`, `bottom > top`, and/or `znear > zfar`.
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new( 1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new(-1.0, -1.0, -1.0));
/// ```
#[inline]
pub fn new(left: T, right: T, bottom: T, top: T, znear: T, zfar: T) -> Self {
let matrix = Matrix4::<T>::identity();
let mut res = Self::from_matrix_unchecked(matrix);
res.set_left_and_right(left, right);
res.set_bottom_and_top(bottom, top);
res.set_znear_and_zfar(znear, zfar);
res
}
/// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
#[inline]
pub fn from_fov(aspect: T, vfov: T, znear: T, zfar: T) -> Self {
assert!(
znear != zfar,
"The far plane must not be equal to the near plane."
);
assert!(
!relative_eq!(aspect, T::zero()),
"The aspect ratio must not be zero."
);
let half: T = crate::convert(0.5);
let width = zfar.clone() * (vfov * half.clone()).tan();
let height = width.clone() / aspect;
Self::new(
-width.clone() * half.clone(),
width * half.clone(),
-height.clone() * half.clone(),
height * half,
znear,
zfar,
)
}
/// Retrieves the inverse of the underlying homogeneous matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let inv = proj.inverse();
///
/// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
/// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// let inv = proj.inverse();
/// assert_relative_eq!(inv * proj.as_matrix(), Matrix4::identity());
/// assert_relative_eq!(proj.as_matrix() * inv, Matrix4::identity());
/// ```
#[inline]
#[must_use]
pub fn inverse(&self) -> Matrix4<T> {
let mut res = self.clone().to_homogeneous();
let inv_m11 = T::one() / self.matrix[(0, 0)].clone();
let inv_m22 = T::one() / self.matrix[(1, 1)].clone();
let inv_m33 = T::one() / self.matrix[(2, 2)].clone();
res[(0, 0)] = inv_m11.clone();
res[(1, 1)] = inv_m22.clone();
res[(2, 2)] = inv_m33.clone();
res[(0, 3)] = -self.matrix[(0, 3)].clone() * inv_m11;
res[(1, 3)] = -self.matrix[(1, 3)].clone() * inv_m22;
res[(2, 3)] = -self.matrix[(2, 3)].clone() * inv_m33;
res
}
/// Computes the corresponding homogeneous matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(proj.to_homogeneous(), expected);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(self) -> Matrix4<T> {
self.matrix
}
/// A reference to the underlying homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(*proj.as_matrix(), expected);
/// ```
#[inline]
#[must_use]
pub fn as_matrix(&self) -> &Matrix4<T> {
&self.matrix
}
/// A reference to this transformation seen as a `Projective3`.
///
/// # Example
/// ```
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_eq!(proj.as_projective().to_homogeneous(), proj.to_homogeneous());
/// ```
#[inline]
#[must_use]
pub fn as_projective(&self) -> &Projective3<T> {
unsafe { &*(self as *const Orthographic3<T> as *const Projective3<T>) }
}
/// This transformation seen as a `Projective3`.
///
/// # Example
/// ```
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_eq!(proj.to_projective().to_homogeneous(), proj.to_homogeneous());
/// ```
#[inline]
#[must_use]
pub fn to_projective(self) -> Projective3<T> {
Projective3::from_matrix_unchecked(self.matrix)
}
/// Retrieves the underlying homogeneous matrix.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Orthographic3, Point3, Matrix4};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// let expected = Matrix4::new(
/// 2.0 / 9.0, 0.0, 0.0, -11.0 / 9.0,
/// 0.0, 2.0 / 18.0, 0.0, -22.0 / 18.0,
/// 0.0, 0.0, -2.0 / 999.9, -1000.1 / 999.9,
/// 0.0, 0.0, 0.0, 1.0
/// );
/// assert_eq!(proj.into_inner(), expected);
/// ```
#[inline]
pub fn into_inner(self) -> Matrix4<T> {
self.matrix
}
/// Retrieves the underlying homogeneous matrix.
/// Deprecated: Use [`Orthographic3::into_inner`] instead.
#[deprecated(note = "use `.into_inner()` instead")]
#[inline]
pub fn unwrap(self) -> Matrix4<T> {
self.matrix
}
/// The left offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.left(), 1.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.left(), 10.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn left(&self) -> T {
(-T::one() - self.matrix[(0, 3)].clone()) / self.matrix[(0, 0)].clone()
}
/// The right offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.right(), 10.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.right(), 1.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn right(&self) -> T {
(T::one() - self.matrix[(0, 3)].clone()) / self.matrix[(0, 0)].clone()
}
/// The bottom offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.bottom(), 2.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.bottom(), 20.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn bottom(&self) -> T {
(-T::one() - self.matrix[(1, 3)].clone()) / self.matrix[(1, 1)].clone()
}
/// The top offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.top(), 20.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.top(), 2.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn top(&self) -> T {
(T::one() - self.matrix[(1, 3)].clone()) / self.matrix[(1, 1)].clone()
}
/// The near plane offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.znear(), 0.1, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.znear(), 1000.0, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn znear(&self) -> T {
(T::one() + self.matrix[(2, 3)].clone()) / self.matrix[(2, 2)].clone()
}
/// The far plane offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// assert_relative_eq!(proj.zfar(), 1000.0, epsilon = 1.0e-6);
///
/// let proj = Orthographic3::new(10.0, 1.0, 20.0, 2.0, 1000.0, 0.1);
/// assert_relative_eq!(proj.zfar(), 0.1, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn zfar(&self) -> T {
(-T::one() + self.matrix[(2, 3)].clone()) / self.matrix[(2, 2)].clone()
}
// TODO: when we get specialization, specialize the Mul impl instead.
/// Projects a point. Faster than matrix multiplication.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let p1 = Point3::new(1.0, 2.0, -0.1);
/// let p2 = Point3::new(1.0, 2.0, -1000.0);
/// let p3 = Point3::new(1.0, 20.0, -0.1);
/// let p4 = Point3::new(1.0, 20.0, -1000.0);
/// let p5 = Point3::new(10.0, 2.0, -0.1);
/// let p6 = Point3::new(10.0, 2.0, -1000.0);
/// let p7 = Point3::new(10.0, 20.0, -0.1);
/// let p8 = Point3::new(10.0, 20.0, -1000.0);
///
/// assert_relative_eq!(proj.project_point(&p1), Point3::new(-1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p2), Point3::new(-1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p3), Point3::new(-1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p4), Point3::new(-1.0, 1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p5), Point3::new( 1.0, -1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p6), Point3::new( 1.0, -1.0, 1.0));
/// assert_relative_eq!(proj.project_point(&p7), Point3::new( 1.0, 1.0, -1.0));
/// assert_relative_eq!(proj.project_point(&p8), Point3::new( 1.0, 1.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn project_point(&self, p: &Point3<T>) -> Point3<T> {
Point3::new(
self.matrix[(0, 0)].clone() * p[0].clone() + self.matrix[(0, 3)].clone(),
self.matrix[(1, 1)].clone() * p[1].clone() + self.matrix[(1, 3)].clone(),
self.matrix[(2, 2)].clone() * p[2].clone() + self.matrix[(2, 3)].clone(),
)
}
/// Un-projects a point. Faster than multiplication by the underlying matrix inverse.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Orthographic3, Point3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let p1 = Point3::new(-1.0, -1.0, -1.0);
/// let p2 = Point3::new(-1.0, -1.0, 1.0);
/// let p3 = Point3::new(-1.0, 1.0, -1.0);
/// let p4 = Point3::new(-1.0, 1.0, 1.0);
/// let p5 = Point3::new( 1.0, -1.0, -1.0);
/// let p6 = Point3::new( 1.0, -1.0, 1.0);
/// let p7 = Point3::new( 1.0, 1.0, -1.0);
/// let p8 = Point3::new( 1.0, 1.0, 1.0);
///
/// assert_relative_eq!(proj.unproject_point(&p1), Point3::new(1.0, 2.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p2), Point3::new(1.0, 2.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p3), Point3::new(1.0, 20.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p4), Point3::new(1.0, 20.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p5), Point3::new(10.0, 2.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p6), Point3::new(10.0, 2.0, -1000.0), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p7), Point3::new(10.0, 20.0, -0.1), epsilon = 1.0e-6);
/// assert_relative_eq!(proj.unproject_point(&p8), Point3::new(10.0, 20.0, -1000.0), epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn unproject_point(&self, p: &Point3<T>) -> Point3<T> {
Point3::new(
(p[0].clone() - self.matrix[(0, 3)].clone()) / self.matrix[(0, 0)].clone(),
(p[1].clone() - self.matrix[(1, 3)].clone()) / self.matrix[(1, 1)].clone(),
(p[2].clone() - self.matrix[(2, 3)].clone()) / self.matrix[(2, 2)].clone(),
)
}
// TODO: when we get specialization, specialize the Mul impl instead.
/// Projects a vector. Faster than matrix multiplication.
///
/// Vectors are not affected by the translation part of the projection.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Orthographic3, Vector3};
/// let proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
///
/// let v1 = Vector3::x();
/// let v2 = Vector3::y();
/// let v3 = Vector3::z();
///
/// assert_relative_eq!(proj.project_vector(&v1), Vector3::x() * 2.0 / 9.0);
/// assert_relative_eq!(proj.project_vector(&v2), Vector3::y() * 2.0 / 18.0);
/// assert_relative_eq!(proj.project_vector(&v3), Vector3::z() * -2.0 / 999.9);
/// ```
#[inline]
#[must_use]
pub fn project_vector<SB>(&self, p: &Vector<T, U3, SB>) -> Vector3<T>
where
SB: Storage<T, U3>,
{
Vector3::new(
self.matrix[(0, 0)].clone() * p[0].clone(),
self.matrix[(1, 1)].clone() * p[1].clone(),
self.matrix[(2, 2)].clone() * p[2].clone(),
)
}
/// Sets the left offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_left(2.0);
/// assert_relative_eq!(proj.left(), 2.0, epsilon = 1.0e-6);
///
/// // It is OK to set a left offset greater than the current right offset.
/// proj.set_left(20.0);
/// assert_relative_eq!(proj.left(), 20.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_left(&mut self, left: T) {
let right = self.right();
self.set_left_and_right(left, right);
}
/// Sets the right offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_right(15.0);
/// assert_relative_eq!(proj.right(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a right offset smaller than the current left offset.
/// proj.set_right(-3.0);
/// assert_relative_eq!(proj.right(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_right(&mut self, right: T) {
let left = self.left();
self.set_left_and_right(left, right);
}
/// Sets the bottom offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_bottom(8.0);
/// assert_relative_eq!(proj.bottom(), 8.0, epsilon = 1.0e-6);
///
/// // It is OK to set a bottom offset greater than the current top offset.
/// proj.set_bottom(50.0);
/// assert_relative_eq!(proj.bottom(), 50.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_bottom(&mut self, bottom: T) {
let top = self.top();
self.set_bottom_and_top(bottom, top);
}
/// Sets the top offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_top(15.0);
/// assert_relative_eq!(proj.top(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a top offset smaller than the current bottom offset.
/// proj.set_top(-3.0);
/// assert_relative_eq!(proj.top(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_top(&mut self, top: T) {
let bottom = self.bottom();
self.set_bottom_and_top(bottom, top);
}
/// Sets the near plane offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_znear(8.0);
/// assert_relative_eq!(proj.znear(), 8.0, epsilon = 1.0e-6);
///
/// // It is OK to set a znear greater than the current zfar.
/// proj.set_znear(5000.0);
/// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_znear(&mut self, znear: T) {
let zfar = self.zfar();
self.set_znear_and_zfar(znear, zfar);
}
/// Sets the far plane offset of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_zfar(15.0);
/// assert_relative_eq!(proj.zfar(), 15.0, epsilon = 1.0e-6);
///
/// // It is OK to set a zfar smaller than the current znear.
/// proj.set_zfar(-3.0);
/// assert_relative_eq!(proj.zfar(), -3.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_zfar(&mut self, zfar: T) {
let znear = self.znear();
self.set_znear_and_zfar(znear, zfar);
}
/// Sets the view cuboid offsets along the `x` axis.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_left_and_right(7.0, 70.0);
/// assert_relative_eq!(proj.left(), 7.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.right(), 70.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `left > right`.
/// proj.set_left_and_right(70.0, 7.0);
/// assert_relative_eq!(proj.left(), 70.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.right(), 7.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_left_and_right(&mut self, left: T, right: T) {
assert!(
left != right,
"The left corner must not be equal to the right corner."
);
self.matrix[(0, 0)] = crate::convert::<_, T>(2.0) / (right.clone() - left.clone());
self.matrix[(0, 3)] = -(right.clone() + left.clone()) / (right - left);
}
/// Sets the view cuboid offsets along the `y` axis.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_bottom_and_top(7.0, 70.0);
/// assert_relative_eq!(proj.bottom(), 7.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.top(), 70.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `bottom > top`.
/// proj.set_bottom_and_top(70.0, 7.0);
/// assert_relative_eq!(proj.bottom(), 70.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.top(), 7.0, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_bottom_and_top(&mut self, bottom: T, top: T) {
assert_ne!(
bottom, top,
"The top corner must not be equal to the bottom corner."
);
self.matrix[(1, 1)] = crate::convert::<_, T>(2.0) / (top.clone() - bottom.clone());
self.matrix[(1, 3)] = -(top.clone() + bottom.clone()) / (top - bottom);
}
/// Sets the near and far plane offsets of the view cuboid.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Orthographic3;
/// let mut proj = Orthographic3::new(1.0, 10.0, 2.0, 20.0, 0.1, 1000.0);
/// proj.set_znear_and_zfar(50.0, 5000.0);
/// assert_relative_eq!(proj.znear(), 50.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.zfar(), 5000.0, epsilon = 1.0e-6);
///
/// // It is also OK to have `znear > zfar`.
/// proj.set_znear_and_zfar(5000.0, 0.5);
/// assert_relative_eq!(proj.znear(), 5000.0, epsilon = 1.0e-6);
/// assert_relative_eq!(proj.zfar(), 0.5, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn set_znear_and_zfar(&mut self, znear: T, zfar: T) {
assert!(
zfar != znear,
"The near-plane and far-plane must not be superimposed."
);
self.matrix[(2, 2)] = -crate::convert::<_, T>(2.0) / (zfar.clone() - znear.clone());
self.matrix[(2, 3)] = -(zfar.clone() + znear.clone()) / (zfar - znear);
}
}
#[cfg(feature = "rand-no-std")]
impl<T: RealField> Distribution<Orthographic3<T>> for Standard
where
Standard: Distribution<T>,
{
/// Generate an arbitrary random variate for testing purposes.
fn sample<R: Rng + ?Sized>(&self, r: &mut R) -> Orthographic3<T> {
use crate::base::helper;
let left = r.gen();
let right = helper::reject_rand(r, |x: &T| *x > left);
let bottom = r.gen();
let top = helper::reject_rand(r, |x: &T| *x > bottom);
let znear = r.gen();
let zfar = helper::reject_rand(r, |x: &T| *x > znear);
Orthographic3::new(left, right, bottom, top, znear, zfar)
}
}
#[cfg(feature = "arbitrary")]
impl<T: RealField + Arbitrary> Arbitrary for Orthographic3<T>
where
Matrix4<T>: Send,
{
fn arbitrary(g: &mut Gen) -> Self {
use crate::base::helper;
let left = Arbitrary::arbitrary(g);
let right = helper::reject(g, |x: &T| *x > left);
let bottom = Arbitrary::arbitrary(g);
let top = helper::reject(g, |x: &T| *x > bottom);
let znear = Arbitrary::arbitrary(g);
let zfar = helper::reject(g, |x: &T| *x > znear);
Self::new(left, right, bottom, top, znear, zfar)
}
}
impl<T: RealField> From<Orthographic3<T>> for Matrix4<T> {
#[inline]
fn from(orth: Orthographic3<T>) -> Self {
orth.into_inner()
}
}